
Service AvailabilityTM Forum
Service Availability Interface

Overview SAI-Overview-B.02.01

The Service AvailabilityTM solution is high availability and more; it is the delivery of ultra-dependable
communication services on demand and without interruption.

This Service AvailabilityTM Forum Application Interface Specification document might contain
design defects or errors known as errata, which might cause the product to deviate from
published specifications. Current characterized errata are available on request.

.

 Service AvailabilityTM Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40
 SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT

The Service Availability™ Specification(s) (the "Specification") found at the URL http://www.saforum.org (the
"Site") is generally made available by the Service Availability Forum (the "Licensor") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions, which govern the
use of the Specification are set forth in this agreement (this "Agreement").

IMPORTANT – PLEASE READ THE TERMS AND CONDITIONS PROVIDED IN THIS AGREEMENT BEFORE DOWN-
LOADING OR COPYING THE SPECIFICATION. IF YOU AGREE TO THE TERMS AND CONDITIONS OF THIS AGREE-
MENT, CLICK ON THE "ACCEPT" BUTTON. BY DOING SO, YOU AGREE TO BE BOUND BY THE TERMS AND
CONDITIONS STATED IN THIS AGREEMENT. IF YOU DO NOT WISH TO AGREE TO THESE TERMS AND CONDITIONS,
YOU SHOULD PRESS THE "CANCEL"BUTTON AND THE DOWNLOAD PROCESS WILL NOT PROCEED.

1. LICENSE GRANT. Subject to the terms and conditions of this Agreement, Licensor hereby grants you a non-
exclusive, worldwide, non-transferable, revocable, but only for breach of a material term of the license granted in
this section 1, fully paid-up, and royalty free license to:

a. reproduce copies of the Specification to the extent necessary to study and understand the
Specification and to use the Specification to create products that are intended to be compatible
with the Specification;
b. distribute copies of the Specification to your fellow employees who are working on a project or
product development for which this Specification is useful; and
c. distribute portions of the Specification as part of your own documentation for a product you have
built, which is intended to comply with the Specification.

2. DISTRIBUTION. If you are distributing any portion of the Specification in accordance with Section 1(c), your
documentation must clearly and conspicuously include the following statements:

a. Title to and ownership of the Specification (and any portion thereof) remain with Service Avail-
ability Forum ("SA Forum").
b. The Specification is provided "As Is." SA Forum makes no warranties, including any implied
warranties, regarding the Specification (and any portion thereof) by Licensor.
c. SA Forum shall not be liable for any direct, consequential, special, or indirect damages (includ-
ing, without limitation, lost profits) arising from or relating to the Specification (or any portion
thereof).
d. The terms and conditions for use of the Specification are provided on the SA Forum website.

3. RESTRICTION. Except as expressly permitted under Section 1, you may not (a) modify, adapt, alter, translate,
or create derivative works of the Specification, (b) combine the Specification (or any portion thereof) with another
document, (c) sublicense, lease, rent, loan, distribute, or otherwise transfer the Specification to any third party, or
(d) copy the Specification for any purpose.

4. NO OTHER LICENSE. Except as expressly set forth in this Agreement, no license or right is granted to you, by
implication, estoppel, or otherwise, under any patents, copyrights, trade secrets, or other intellectual property by
virtue of your entering into this Agreement, downloading the Specification, using the Specification, or building prod-
ucts complying with the Specification.

5. OWNERSHIP OF SPECIFICATION AND COPYRIGHTS. The Specification and all worldwide copyrights therein
are the exclusive property of Licensor. You may not remove, obscure, or alter any copyright or other proprietary
rights notices that are in or on the copy of the Specification you download. You must reproduce all such notices on
all copies of the Specification you make. Licensor may make changes to the Specification, or to items referenced
Overview SAI-Overview-B.02.01 3

Service AvailabilityTM Interface Specification

Legal Notice

1

5

10

15

20

25

30

35

40
therein, at any time without notice. Licensor is not obligated to support or update the Specification.

6. WARRANTY DISCLAIMER. THE SPECIFICATION IS PROVIDED "AS IS." LICENSOR DISCLAIMS ALL
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY, NONINFRINGEMENT OF THIRD-PARTY RIGHTS, FITNESS FOR ANY PARTICULAR PUR-
POSE, OR TITLE. Without limiting the generality of the foregoing, nothing in this Agreement will be construed as
giving rise to a warranty or representation by Licensor that implementation of the Specification will not infringe the
intellectual property rights of others.

7. PATENTS. Members of the Service Availability Forum and other third parties [may] have patents relating to the
Specification or a particular implementation of the Specification. You may need to obtain a license to some or all of
these patents in order to implement the Specification. You are responsible for determining whether any such
license is necessary for your implementation of the Specification and for obtaining such license, if necessary.
[Licensor does not have the authority to grant any such license.] No such license is granted under this Agreement.

8. LIMITATION OF LIABILITY. To the maximum extent allowed under applicable law, LICENSOR DISCLAIMS
ALL LIABILITY AND DAMAGES, INCLUDING DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, AND INCI-
DENTAL DAMAGES, ARISING FROM OR RELATING TO THIS AGREEMENT, THE USE OF THE SPECIFICA-
TION OR ANY PRODUCT MANUFACTURED IN ACCORDANCE WITH THE SPECIFICATION, WHETHER
BASED ON CONTRACT, ESTOPPEL, TORT, NEGLIGENCE, STRICT LIABILITY, OR OTHER THEORY. NOT-
WITHSTANDING ANYTHING TO THE CONTRARY, LICENSOR’S TOTAL LIABILITY TO YOU ARISING FROM
OR RELATING TO THIS AGREEMENT OR THE USE OF THE SPECIFICATION OR ANY PRODUCT MANU-
FACTURED IN ACCORDANCE WITH THE SPECIFICATION WILL NOT EXCEED ONE HUNDRED DOLLARS
($100). YOU UNDERSTAND AND AGREE THAT LICENSOR IS PROVIDING THE SPECIFICATION TO YOU AT
NO CHARGE AND, ACCORDINGLY, THIS LIMITATION OF LICENSOR’S LIABILITY IS FAIR, REASONABLE,
AND AN ESSENTIAL TERM OF THIS AGREEMENT.

9. TERMINATION OF THIS AGREEMENT. Licensor may terminate this Agreement, effective immediately upon
written notice to you, if you commit a material breach of this Agreement and do not cure the breach within ten (30)
days after receiving written notice thereof from Licensor. Upon termination, you will immediately cease all use of
the Specification and, at Licensor’s option, destroy or return to Licensor all copies of the Specification and certify in
writing that all copies of the Specification have been returned or destroyed. Parts of the Specification that are
included in your product documentation pursuant to Section 1 prior to the termination date will be exempt from this
return or destruction requirement.

10. ASSIGNMENT. You may not assign, delegate, or otherwise transfer any right or obligation under this Agree-
ment to any third party without the prior written consent of Licensor. Any purported assignment, delegation, or
transfer without such consent will be null and void.

11. GENERAL. This Agreement will be construed in accordance with, and governed in all respects by, the laws of
the State of Delaware (without giving effect to principles of conflicts of law that would require the application of the
laws of any other state). You acknowledge that the Specification comprises proprietary information of Licensor and
that any actual or threatened breach of Section 1 or 3 will constitute immediate, irreparable harm to Licensor for
which monetary damages would be an inadequate remedy, and that injunctive relief is an appropriate remedy for
such breach. All waivers must be in writing and signed by an authorized representative of the party to be charged.
Any waiver or failure to enforce any provision of this Agreement on one occasion will not be deemed a waiver of
any other provision or of such provision on any other occasion. This Agreement may be amended only by binding
written instrument signed by both parties. This Agreement sets forth the entire understanding of the parties relating
to the subject matter hereof and thereof and supersede all prior and contemporaneous agreements, communica-
tions, and understandings between the parties relating to such subject matter.
4 SAI-Overview-B.02.01 Overview

 Service AvailabilityTM Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
Table of Contents Overview
1 Document Introduction . 9
 1.1 Document Purpose . 9
 1.2 Documents Organization . 9
 1.2.1 Hardware Interface Specification (HPI) Documents . 9
 1.2.2 Application Interface Specification (AIS) Documents . 9
 1.3 History . 10
 1.3.1 New Topics . 10
 1.3.2 Clarifications . 10
 1.3.3 Changes . 11
 1.4 References . 11
 1.5 How to Provide Feedback on the Specification . 11
 1.6 How to Join the Service Availability™ Forum . 12
 1.7 Additional Information . 12
 1.7.1 Member Companies . 12
 1.7.2 Press Materials . 12

2 Overview of the Application Interface Specification . 13
 2.1 AIS Availability Management Framework . 13
 2.2 AIS Services . 13
 2.2.1 Cluster Membership Service . 14
 2.2.2 Checkpoint Service . 14
 2.2.3 Event Service . 14
 2.2.4 Message Service . 14
 2.2.5 Lock Service . 15
 2.2.6 Information Model Management Service . 15
 2.2.7 Notification Service . 16
 2.2.8 Log Service . 17
 2.2.9 Modeling AIS Services . 17
 2.3 Dependencies . 18
 2.4 SNMP MIBs . 18
3 AIS Programming Model and Naming Conventions . 19
 3.1 Programming Model and Usage Overview . 19
 3.1.1 Synchronous and Asynchronous Programming Models . 24
 3.1.1.1 Asynchronous APIs . 25
 3.1.1.2 Synchronous APIs . 26
 3.1.2 Library Life Cycle . 27
 3.1.2.1 Initialization . 27
 3.1.2.2 Finalization . 28
 3.1.2.3 Dispatching . 29
 3.1.3 Interaction Between AIS and POSIX APIs . 31
 3.1.4 Memory Management . 32
 3.1.4.1 Usage of [in], [out], and [in/out] in Parameters . 32
 3.1.4.2 Memory Allocation and Deallocation . 32
Overview SAI-Overview-B.02.01 5

Service AvailabilityTM Interface Specification

Table of Contents

1

5

10

15

20

25

30

35

40
 3.1.4.3 Handling Pointers in a Process and an Area Service . 33
 3.1.5 Track APIs . 34
 3.1.5.1 Track an Object . 34
 3.1.5.2 Callback Notification . 35
 3.1.5.3 Stop Tracking an Object . 36
 3.1.5.4 Deallocating Memory Allocated for Tracking an Object . 36
 3.2 Naming Conventions . 37
 3.2.1 Case Sensitivity . 37
 3.2.2 Global Function Declarations . 38
 3.2.3 Global Variable Declarations . 39
 3.2.4 Type Declarations . 40
 3.2.5 Macro Declarations . 40
 3.2.6 Enumeration Type Declarations . 40
 3.3 Standard Predefined Types and Constants . 42
 3.3.1 Boolean Type . 42
 3.3.2 Signed and Unsigned Integer Types . 42
 3.3.2.1 Signed Types . 42
 3.3.2.2 Unsigned Types . 42
 3.3.3 Floating Point Types . 43
 3.3.4 String Type . 43
 3.3.5 Size Type . 43
 3.3.6 Offset Type . 43
 3.3.7 Time Type . 44
 3.3.7.1 Timestamps . 44
 3.3.7.2 Time Durations . 45
 3.3.8 Sequence of Octets Type . 45
 3.3.9 Name Type . 46
 3.3.9.1 Note on AIS Object Names . 47
 3.3.9.1.1 Recommendations on RDN Values . 47
 3.3.9.1.2 Values for the safApp Application RDN of AIS Services . 48
 3.3.10 SaServicesT . 48
 3.3.11 Version Type . 49
 3.3.11.1 Notes on Backward Compatibility . 50
 3.3.12 Track Flags . 51
 3.3.13 Dispatch Flags . 51
 3.3.14 Selection Object . 52
 3.3.15 Invocation . 52
 3.3.16 Error Codes . 53

4 SA Forum Information Model . 57
 4.1 DN formats . 58
 4.2 Mapping from UML to the IMM Service . 59
 4.3 HPI View . 62
 4.4 Cluster View . 63
 4.5 AMF View . 64
 4.6 AMF Cluster and Node Classes . 65
6 SAI-Overview-B.02.01 Overview

 Service AvailabilityTM Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 4.7 AMF Application/SG Classes . 66
 4.8 AMF SU Class . 67
 4.9 AMF Component . 68
 4.10 AMF SI Classes . 69
 4.11 AMF CSI Classes . 70
 4.12 CKPT Classes . 71
 4.13 CLM Classes . 72
 4.14 EVT Classes . 73
 4.15 LCK Classes . 74
 4.16 LOG Classes . 75
 4.17 MSG Classes . 76
5 AIS Abbreviations, Concepts, and Terminology . 77
Overview SAI-Overview-B.02.01 7

Service AvailabilityTM Interface Specification

Table of Contents

1

5

10

15

20

25

30

35

40
8 SAI-Overview-B.02.01 Overview

 Service AvailabilityTM Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document (SAI-Overview-B.02.01) provides a brief guide to the remainder of
the Service AvailabilityTM Forum (SA Forum) Interface Specifications documents and
includes a description of the SA Forum Information Model.

As the Application Interface Specification (AIS) APIs are described in several docu-
ments, this document also provides an introduction to the AIS documents. It
describes the objectives of the AIS specification as well as programming models and
definitions that are common to all specifications. Additionally, it contains an overview
of the Availability Management Framework and of the other AIS services and a chap-
ter that describes the main abbreviations, concepts and terms used in the AIS docu-
ments.

This revision of the document does not contain a complete overview of the access
interfaces (SNMP) and the hardware interface specification (HPI), this is intended to
be provided in future versions of the document.

1.2 Documents Organization
The SAI-XMI-A.01.01 document contains the description of SA Forum Information
Model in XML Metadata Interchange (XMI) v1.2 format.

1.2.1 Hardware Interface Specification (HPI) Documents

The Hardware Interface Specification is organized into the following documents:
• SAI-HPI-B.01.01 describes the HPI API.
• SAIM-HPI-B.01.01-ATCA describes the mapping on ATCA platforms.
• SAI-HPI-SNMP-B.01.01 describes the HPI SNMP MIBs.

1.2.2 Application Interface Specification (AIS) Documents

The Application Interface Specification is organized into the following documents:
• SAI-AIS-AMF-B.02.01 describes the Availability Management Framework API.
• SAI-AIS-CLM-B.02.01 describes the Cluster Membership Service API.
• SAI-AIS-CKPT-B.02.01 describes the Checkpoint Service API.
• SAI-AIS-EVT-B.02.01 describes the Event Service API.
• SAI-AIS-MSG-B.02.01 describes the Message Service API.
• SAI-AIS-LCK-B.02.01 describes the Lock Service API.
Overview SAI-Overview-B.02.01 Section 1 9

Service AvailabilityTM Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
• SAI-AIS-IMM-A.01.01 describes the Information Model Management Service
API.

• SAI-AIS-LOG-A.01.01 describes the Log Service API.
• SAI-AIS-NTF-A.01.01 describes the Notification Service API.
• SAI-AIS-SNMP-A.01.01 the AIS SNMP MIBs.

1.3 History
This section presents the main changes in the current release of this document (SAI-
Overview-B.02.01), with respect to its previous release (SAI-AIS-B.01.01). The edito-
rial changes are not mentioned.

1.3.1 New Topics
• Section 2.2 on page 13 includes the description of the new AIS Services: Infor-

mation Model Management Service (IMMS), Notification Service (NTF), and Log
Service (LOG).

• Section 2.4 on page 18 introduces the new AIS SNMP MIBs.
• Section 3.1.5.4 on page 36 explains the service-specific functions used to deallo-

cate memory allocated by the area service library when tracking an object.
• Section 3.3.3 on page 43 introduces new floating point types, Section 3.3.4 on

page 43 introduces the new SaStringT type, and Section 3.3.8 on page 45
describes the new SaAnyT type.

• Section 3.3.16 on page 53 introduces the new SA_AIS_ERR_NO_OP and
SA_AIS_ERR_REPAIR_PENDING error codes.

• Section 3.3.9.1.2 on page 48 shows the values for the safApp RDN of AIS ser-
vices.

• Chapter 4 on page 57 provides a UML description of the SA Forum Information
Model and its mapping on the Information Model Management Service.

1.3.2 Clarifications
• Section 3.1.1.1 on page 25 on asynchronous APIs explains that the choice is left

to the implementation whether errors are detected in the library and returned by
the asynchronous API or whether errors are detected by the area server and
returned subsequently by the callback.

• Section 3.1.2.1 on page 27 clarifies the consequences of a process exit after the
process has successfully called the area server initialization function and before
it invokes the corresponding area server finalization function.

• Section 3.3.9.1 on page 47 clarifies that only printable Unicode characters can be
used in LDAP names.
10 SAI-Overview-B.02.01 Section 1.3 Overview

 Service AvailabilityTM Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.3 Changes
• Section 3.1.4.2 on page 32 states now that each AIS service must provide func-

tions to free memory dynamically allocated by AIS service functions.
• Section 3.1.5.1 on page 34 states now that It is the responsibility of the calling

process to invoke the corresponding free function of the area service library to
deallocate the buffer allocated by the area service library if the items fields in the
Sa<Area><Object>NotificationBufferT is NULL.

• The format of Distinguished Names (DNs) of the different SA Forum objects are
shown in Chapter 4 on page 57. The RDN for an external service unit has been
removed and safSu is valid now for any service unit and not only for local service
units. Some new RDNs have been added.

• Section 3.3.16 on page 53: The description of the
SA_AIS_ERR_FAILED_OPERATION error code has been generalized and the
SA_AIS_ERR_NAME_NOT_FOUND has been removed, as it was not used in
the AIS specifications.

1.4 References
The following documents contain information that is relevant to the specification:

[1] CCITT Recommendation X.730 | ISO/IEC 10164-1, Object Management Func-
tion

[2] CCITT Recommendation X.731 | ISO/IEC 10164-2, State Management Function
[3] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function
[4] CCITT Recommendation X.736 | ISO/IEC 10164-7, Security Alarm Reporting

Function
[5] IETF RFC 2253 (http://www.ietf.org/rfc/rfc2253.txt)
[6] http://www.unicode.org

References to these documents are made by putting the number of the document in
brackets.

1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum website (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.
Overview SAI-Overview-B.02.01 Section 1.3.3 11

Service AvailabilityTM Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to
participate in the Forum complete a membership application. Once completed, a
representative of the Service Availability™ Forum will contact you to discuss your
membership in the Forum. The Service Availability™ Forum Membership Application
can be completed online by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by
using the links provided on the Forum’s website
(http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).
12 SAI-Overview-B.02.01 Section 1.6 Overview

Service AvailabilityTM Interface Specification
Overview

1

5

10

15

20

25

30

35

40
 2 Overview of the Application Interface Specification
This chapter provides an overview of the Application Interface Specification (AIS),
which includes the AIS Availability Management Framework and the AIS Services.
More details on the AIS Availability Management Framework and on the AIS Ser-
vices, and the APIs that they provide, can be found in corresponding documents.

This chapter also includes a section describing the dependencies among the AIS
Services and a section introducing the AIS SNMP MIBs.

2.1 AIS Availability Management Framework
The Availability Management Framework is the software entity that provides service
availability by coordinating redundant resources within a cluster to deliver a system
with no single point of failure.

The Availability Management Framework provides a view of one logical cluster that
consists of a number of cluster nodes. These nodes host various resources in a dis-
tributed computing environment.

The Availability Management Framework provides a set of APIs to enable highly
available applications. The Availability Management Framework determines the
states of a component and monitors the health of components. It also allows a com-
ponent to query the Availability Management Framework for information about the
component’s state.

2.2 AIS Services
The following core AIS Services provide the basic functionality of the cluster on which
the Availability Management Framework and the highly available application are
implemented. The AIS Services defined in this specification are:

• Cluster Membership Service
• Checkpoint Service
• Event Service
• Message Service
• Lock Service
• Information Model Management Service
• Notification Service
• Log Service

Each of these services is briefly described below.
Overview SAI-Overview-B.02.01 Section 2 13

Service AvailabilityTM Interface Specification

Overview

1

5

10

15

20

25

30

35

40
2.2.1 Cluster Membership Service

The Cluster Membership Service provides applications with membership information
about the nodes that have been administratively configured in the cluster configura-
tion (these nodes are also called cluster nodes or configured nodes), and it is core to
any clustered system. A cluster consists of this set of configured nodes, each with a
unique node name.

A member node is a configured node that the Cluster Membership Service has recog-
nized to be healthy and well-connected to be used for deploying HA applications and
services. The set of member nodes at a given point in time is referred to as the clus-
ter membership, or simply membership. The Cluster Membership Service is the
authority that decides whether a configured node is transitioned to be a member node
of the cluster.

The Cluster Membership Service also allows application processes to register a call-
back function to receive membership change notifications as those changes occur.

2.2.2 Checkpoint Service

The Checkpoint Service provides a facility for processes to record checkpoint data
incrementally, which can be used to protect an application against failures. When pro-
cesses recover from a failure (with a restart or a fail-over procedure), the Checkpoint
Service can be used to retrieve the previous checkpoint data and resume execution
from the state recorded before the failure, minimizing the impact of the failure.

Checkpoints are cluster-wide entities. A copy of the data stored in a checkpoint is
called a checkpoint replica, which is typically stored in main memory rather than on
disk for performance reasons. A given checkpoint may have several checkpoint repli-
cas stored on different nodes in the cluster to protect it against node failures.

2.2.3 Event Service

The Event Service is a publish/subscribe multipoint-to-multipoint communication
mechanism that is based on the concept of event channels: One or more publishers
communicate asynchronously with one or more subscribers via events over a cluster-
wide entity, named event channel. Publishers can also be subscribers on the same
event channel.

Events consist of a standard header and zero or more bytes of published event data.
The Event Service API does not impose a specific layout for the published event
data.

2.2.4 Message Service

The Message Service specifies a buffered message passing system based on the
concept of a message queue for processes on the same or on different nodes. Mes-
14 SAI-Overview-B.02.01 Section 2.2.1 Overview

Service AvailabilityTM Interface Specification
Overview

1

5

10

15

20

25

30

35

40
 sages are written to and read from message queues. A single message queue per-
mits a multipoint-to-point communication. Message queues are persistent or non-
persistent. The Message Service must preserve messages that have not yet been
consumed when the message queue is closed.

Processes sending messages to a message queue are unaware that the process,
which was originally processing these messages, has been replaced by another pro-
cess acting as a standby in case the original process fails or switches over.

Message queues can be grouped together to form message queue groups. Message
queue groups permit multipoint-to-multipoint communication. They are identified by
logical names, so that a process is unaware of the number of message queues and of
the physical location of the message queues to which it is communicating. The
sender addresses message queue groups using the same mechanisms that it uses to
address single message queues. The message queue groups can be used to distrib-
ute messages among message queues pertaining to the message queue group.
Regardless of the number of message queues to which messages are distributed, the
message queue group remains accessible under the same name.

Message queue groups can be used to maintain transparency of the sender process
to faults in the receiver processes, represented by the message queues in the mes-
sage queue groups. The sender process communicates with the message queue
group. If a receiver process fails, the sender process continues to communicate with
the message queue group and is unaware of the fault, because it continues to obtain
service from the other receiver processes.

With message queues, the Message Service uses the model of n senders to one
receiver whereas, with message queue groups, the Message Service uses the model
of m senders to n receivers.

2.2.5 Lock Service

The Lock Service is a distributed lock service, intended for use in a cluster, where
processes in different nodes might compete with each other for access to a shared
resource.

The Lock Service provides entities, called lock resources, that are used to synchro-
nize access to shared resources between application processes.

The Lock Service provides a simple lock model supporting two locking modes for
exclusive access and shared access.

2.2.6 Information Model Management Service

The different entities of an SA Forum cluster, such as components provided by the
Availability Management Framework, checkpoints provided by the Checkpoint Ser-
Overview SAI-Overview-B.02.01 Section 2.2.5 15

Service AvailabilityTM Interface Specification

Overview

1

5

10

15

20

25

30

35

40
vice, or message queues provided by the Message Service are represented by vari-
ous objects of the SA Forum information model.

The SA Forum information model (IM) is specified in UML and managed by the Infor-
mation Model Management (IMM) Service.

The objects in the Information Model are provided with their attributes and administra-
tive operations (i.e., operations that can be performed on the represented entities
through system management interfaces). For management applications or Object
Managers, the IMM provides the APIs to create, access and manage these objects.

Subsequently, it delivers the requested operations to the appropriate AIS services or
applications (referred to as Object Implementers) that implement these objects for
execution.

Information Model objects and attributes can be classified into two categories:
• Configuration objects and attributes
• Runtime objects and attributes

The IMM Service exposes two sets of APIs:
(1) An Object Management API (OM-API) exposed typically to system management

applications (for example, SNMP agents and CIM providers).
(2) An Object Implementer API (OI-API) restricted to Object Implementers.

2.2.7 Notification Service

The Notification Service is, to a great degree, based on the ITU-T Fault Management
model as found in the X.700 series of documents as well as many other supportive
recommendations.

The Notification Service is centered around the concept of a notification, which
explains an incident or change in status. The term ‘notification’ is used instead of
‘event’ to clearly distinguish it from ‘event’ as defined by the AIS Event Service.

There are five notification types with distinct parameters. They are:
• Alarm
• State Change
• Object Creation/Deletion
• Attribute Value Change
• Security Alarm

The Notification Service is based on a publish/subscribe paradigm.

Any number of notification producers can publish notifications.
16 SAI-Overview-B.02.01 Section 2.2.7 Overview

Service AvailabilityTM Interface Specification
Overview

1

5

10

15

20

25

30

35

40
 Notification consumers can be of two types:
• Notification subscribers receive selected notifications as they occur.
• Notification readers retrieve historical notification entries from the persistent noti-

fication log.

There can be any number of notification consumers of each type.

2.2.8 Log Service

SA Forum distinguishes between a Log and a Trace Service: The former is for clus-
ter-significant, function-based information suited for system administrators or auto-
mated tools, while the later is low level implementation-specific information suited for
developers or field engineers.

The Log Service enables applications to express and forward log records through
well-known log streams that lead to particular output destinations such as a named
file. Once at the output destination, a log record is subject to configurable and public
output formatting rules. Since the output format is public, third party tools can read
these log files.

There are four types of log streams supported by the log service:
• the alarm log stream for ITU X.733 [3] and ITU X.736 [4] based log records,
• the notification stream for ITU X.730 [1] and ITU X.731 [2] based log records,
• the system stream is for system relevant log records, and
• the application stream is for application-specific log records.

For each of the alarm, notification, and system log stream types, there is exactly one
log stream in an SA Forum cluster. However, there can be any number of application
log streams, each with a unique name, that can come and go, as needed by running
applications.

2.2.9 Modeling AIS Services

The SA Forum AIS does not specify any particular implementation of the various AIS
services that are described in Section 2.2. However, the SA Forum strongly recom-
mends using the system modeling abstractions and logical entities that are made
available by the Availability Management Framework specification while implement-
ing such services. This promotes a single and unified AIS modeling scheme (based
on Availability Management Framework logical entities) and causes the AIS services
to be modeled, managed, and upgraded in the same way as any other SA Forum
application would be modeled, managed, and upgraded.
Overview SAI-Overview-B.02.01 Section 2.2.8 17

Service AvailabilityTM Interface Specification

Overview

1

5

10

15

20

25

30

35

40
2.3 Dependencies
AIS services including the Availability Management Framework have a dependency
on the AIS Notification Service. The Notification Service in turn has a dependency on
the Log Service.

The Availability Management Framework and all AIS services, except the Information
Model Management Service and the Notification Service, have a section that
describes the various alarms and notifications that may be generated by these ser-
vices. These alarms and notifications are expressed using the notification producer
API syntax and semantics as specified in the Notification Service. The expectation is
that an alarm correlator, an element manager, or a management subagent in the
cluster would subscribe for notifications and alarms (using the notification subscriber
API) that they are interested in.

The Information Model Management Service exposes the configuration objects and
the administrative operations on behalf of all AIS services. Therefore, any service that
exposes such a management interface depends on the IMM Service.

Other Interactions between the AIS Availability Management Framework and the AIS
Services, and between the AIS Services, may depend on functions that are not
defined by this version of the specification and may be defined by future versions of
the specification.

2.4 SNMP MIBs
In order to provide system management access to various entities exposed by the
Availability Management Framework and the various other AIS services, SNMP MIBS
are defined for these services.

SNMP (Simple Network Management Protocol) is an application layer protocol that
facilitates the exchange of management information between networked devices or
systems to provide for management access, monitoring, and control. The SNMP
model assumes the existence of managers and agents.

The SNMP agents implementing the AIS MIBs rely on the Information Model man-
agement (IMM) Service to access the various managed objects exposed by AIS Ser-
vices.
18 SAI-Overview-B.02.01 Section 2.3 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
3 AIS Programming Model and Naming Conventions
This chapter describes the programming model and naming conventions used by the
SA Forum Application Interface Specification (AIS). The chapter aims to ensure uni-
formity in the specifications of the various AIS services.

The chapter discusses the asynchronous and synchronous APIs, and the APIs for
using a library of the Application Interface Specification. The chapter describes how
the names of type, data, function and macro declarations are formed, and defines the
predefined types and constants, which support application portability between plat-
forms and implementations.

3.1 Programming Model and Usage Overview
This section provides an overview of the SA Forum Application Interface program-
ming model and the generally intended usage of the SA Forum Application Inter-
faces. The descriptions contained herein are not intended to constrain
implementations unduly.

The SA Forum Application Interface occurs between a process and a library that
implements the interface. The interface is designed for use by both threaded and
non-threaded application processes.

The term process, as used in this document, can be regarded as being equivalent to
a process defined by the POSIX standard. However, the use of the term process
does not mandate a POSIX process but, rather, any equivalent entity that a system
provides to manage executing software.

The area server is an abstraction that represents the server that provides services
for a specification area (Availability Management Framework, Cluster Membership
Service, Checkpoint Service, Event Service, Message Service and Lock Service).
Each area has a separate logical area server, although the implementer is free to cre-
ate them as the same or separate physical modules.

The area implementation libraries may be implemented in one or several physical
libraries; however, a process is required to initialize, register and obtain an operating
system "selection object" separately for each area's implementation library. Thus,
from a programming standpoint, it is useful to view these as separate libraries.

The UML diagram in Figure 1 shows the relationships among an "area" server, an
“area” implementation library, and a process, all represented as UML components.
Overview SAI-Overview-B.02.01 Section 3 19

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
Although Figure 1 shows only one area server, area implementation library, and appli-
cation component, there is nothing restricting an area server from interfacing with
numerous area implementation libraries and an area implementation library from ser-
vicing multiple application components. Where a component comprises multiple pro-
cesses, each process must have its own implementation libraries and must initialize
those libraries itself.

Note: For those readers who are unfamiliar with UML, the boxes with two rectangles
on the left are UML "components" (not to be confused with components in the context
of the SA Forum Application Interface Specification), the box with a "tab" at the top is
a package, and the two circles are interfaces. The dashed lines to the interfaces are
dependency or "consumes" relationships, and the solid lines to the interfaces are
"realizes" or "provides" relationships. Thus, the process connected to the interface by
the dashed line is an interface consumer, while that connected by the solid line is an
interface provider. As shown in Figure 1, the area server and the area implementation
library are packaged together.

It is expected that the area server and area implementation library are packaged
together and are designed to be released as a set. However, this does not preclude
providing other packaging options.
The interface between the area server and the area implementation library is propri-
etary and outside the scope of this specification. The area server and the area imple-
mentation library could reside on the same or separate computers, and perhaps even
within the same software module.
20 SAI-Overview-B.02.01 Section 3.1 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
FIGURE 1 Interface Relationships

Internal (Private)
Interface

Communication
method unspecified
- could be remote or

local

Server for
<Area> Service

communication

Availability Management Framework Package

Application Interface
Implementation Library

Designed to accommodate
unthreaded process model --
can be used with threaded

model as well

Process

SA Forum
Application
Interface
Overview SAI-Overview-B.02.01 Section 3.1 21

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
The SA Forum Application Interface Specification programming/usage model views
the area server as a "server" for the component and the component as a "client" of
the area server. In this sense, the usage model is not much different from that of an
X-windows "client" application, where setup is done and the application then receives
callbacks as events occur.
22 SAI-Overview-B.02.01 Section 3.1 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
FIGURE 2 Programming/Usage Model

The programming/usage model is shown in Figure 2. Again, this model is intended to
show the usage for which the interfaces were generally intended, rather than unduly
constraining implementations. For example, it is possible that actions 6 and 7 of the

:Process

1: sa<Area>Initialize()

2: Return Handle

3: sa<Area>SelectionObjectGet()

4: Return Selection Object

5: Wait on Selection Object

7: Wait Complete

Server for
<Area> Service

:Application Interface
Implementation (Library)

6: Command

8: sa<Area>Dispatch()

9: Call proper callback to

10: Response(s) to callback

perform command
Overview SAI-Overview-B.02.01 Section 3.1 23

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
model might be combined, or the library might obtain the command from the area
server between actions 8 and 9.

An example usage of the APIs, which involves a callback mechanism, is as follows:

1. The process within the component invokes the sa<Area>Initialize() function to pro-
vide a set of callbacks for use by the library in calling back the component.

2. The sa<Area>Initialize() function returns an interface handle to the invoking pro-
cess.

3. The process invokes the sa<Area>SelectionObjectGet() function to obtain a selec-
tion object, which is an operating system dependent object (e.g., a file descriptor
suitable for use in select() for Unix/Linux).

4. The interface returns a selection object to the process. This operating system
dependent object allows the process to wait until an invocation to a callback func-
tion is pending for it.

5. The process waits on the selection object.

6. The area server sends a command over its "private" interface to the library.

7. The library "awakes" the selection object, thereby awaking the process.

8. The process invokes the sa<Area>Dispatch() function.

9. The library invokes the appropriate callback function of the process corresponding
to the command received from the area server. The callback function parameters
inform the process of the specific details of the command issued by the area
server or the information provided by the area server.

10. Once the process completes processing the callback, it responds by invoking a
function of the area interface. In some cases, more than one response invocation,
or no response, may be necessary.

In addition to the callback mechanism, certain functions that the component may
invoke are asynchronous, for example, for obtaining information from the area server,
via the library, or for reporting errors.

3.1.1 Synchronous and Asynchronous Programming Models

The Application Interface Specification employs both the synchronous and asynchro-
nous programming models. The synchronous model is generally easier for program-
mers to understand and use. However, there are situations where the number of
simultaneous outstanding requests precludes having an independent thread of exe-
cution for each. Some applications also require direct control of scheduling within a
process. To support such applications, asynchronous APIs are used in the core of the
24 SAI-Overview-B.02.01 Section 3.1.1 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
service availability components.
AIS defines synchronous and asynchronous variants of open calls, as it is expected
that these are cluster-operations needing some time to complete. In contrast, only
synchronous close calls are specified, as it is expected that these calls return as soon
as possible to the caller, and that the remaining processing is done asynchronously.

Synchronous APIs are generally used for library and association housekeeping inter-
faces. It is possible to build a synchronous API on top of an asynchronous API but not
vice versa.

Note: Some of the examples in this section contain POSIX operating system specific
constructs. The examples are given for illustrative purposes only and do not imply
that POSIX specific constructs are necessary to use a given programming model.

3.1.1.1 Asynchronous APIs

Functions that are called by an application process and that solicit an asynchronous
response from the area server, e.g., those with an Async suffix, generally have as the
first two parameters <area>Handle and invocation. The <area>Handle is the handle
that was provided by the sa<Area> library when the process invoked the
sa<Area>Initialize() function. This allows the sa<Area> library to invoke the response
callback function, using the correct selection object in a multithreaded process.

The process allocates invocation for the call, and uses invocation subsequently to
distinguish the corresponding response invocation. Response invocations that are
solicited by a process have invocation as the first parameter. Unsolicited callbacks,
such as asynchronous event notifications, do not require invocation.

If the API implementation does not invoke the callback function, for whatever reason,
then the process receives no other indication of the completion or success of the
asynchronous function that it invoked.

Typically, the choice is left to the implementation whether errors are detected in the
library and returned by the asynchronous API or whether errors are detected by the
area server and returned subsequently by the callback. In order to allow this flexibility,
some error codes are listed as returned values of the asynchronous API as well as
errors returned by the callback. If an error is detected directly by the asynchronous
API (which typically means that the return value from the API is different from
SA_AIS_OK), the request for the corresponding asynchronous operation is implicitly
canceled and no callback is invoked subsequently for this operation.
Overview SAI-Overview-B.02.01 Section 3.1.1.1 25

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
Example
An asynchronous function declaration:

SaAisErrorT saClmClusterNodeGetAsync(

SaClmHandleT clmHandle,
SaInvocationT invocation,
SaClmClusterNodeIdT nodeId,
SaClmClusterNodeT *clusterNode

);

The corresponding response declaration:

typedef void (*SaClmClusterNodeGetCallbackT)(

SaInvocationT invocation,
const SaClusterNodeInfoT *clusterNode,
SaAisErrorT error

);

3.1.1.2 Synchronous APIs

Two types of synchronous APIs do not need any particular consideration:

1. A synchronous API that does not require a context switch, i.e., it can be completed
by local processing within the library.

2. A synchronous API that will not, or may not, be called from a function with bounded
time constraints.

Other APIs and, in particular, the synchronous counterparts of asynchronous APIs
provide a timeout parameter to control the blocking behavior of the call.
26 SAI-Overview-B.02.01 Section 3.1.1.2 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
Example
SaAisErrorT error;
SaClmClusterNodeT clusterNode;
SaClmNodeIdT nodeId;
SaTimeT timeout; /* timeout value for synchronous invocations */
...
timeout = 100 * SA_TIME_ONE_MILLISECOND; /* 100 milliseconds */
nodeId = 10;
error = saClmClusterNodeGet(clmHandle, nodeId, timeout, &clusterNode);
if (error == SA_AIS_ERR_TRY_AGAIN) { /* try again later */ }

3.1.2 Library Life Cycle

3.1.2.1 Initialization

The use of a Service Availability library starts with a call to initialize the library. This
call potentially loads any dynamic code and binds the asynchronous calls imple-
mented by the process.

Prototype
SaAisErrorT sa<Area>Initialize(

Sa<Area>HandleT *<area>Handle,
const Sa<Area>CallbacksT *<area>Callbacks,
const SaVersionT *version

);
A handle <area>Handle, representing the association of the library initialization, is
returned by the library and used in subsequent asynchronous calls and for finaliza-
tion. Service availability libraries must support several invocations of
sa<Area>Initialize() issued from the same binary program (e.g., process in the
POSIX.1 world). Each invocation to sa<Area>Initialize() returns a different handle.
This allows a process to obtain a separate selectionObject for each handle, thereby
allowing support for multithreaded dispatching of <area> callbacks.

When a process invokes an asynchronous function of the <area> library, the
<area>Handle, cited as a parameter of that function, can determine the selection
object that the library uses for the asynchronous response callback.

The <area>Callbacks parameter contains a structure of pointers to the functions
implemented by the process that the <area> library can invoke. If the process does
not implement any callback functions, it must invoke sa<Area>Initialize() with a NULL
<area>Callbacks parameter. The process must also set individual members of
Overview SAI-Overview-B.02.01 Section 3.1.2 27

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
Sa<Area>CallbacksT to NULL, if these particular callbacks are not to be used by the
particular initialization and must not be invoked by the <area> library.

Any API calls, including sa<Area>Dispatch() calls (refer to Section 3.1.2.3 on page
29), can be called from any callback function.

If the invoking process exits after successfully returning from the sa<Area>Initialize()
function and before invoking sa<Area>Finalize() to finalize the handle <area>Handle
(see Section 3.1.2.2 on page 28), the <Area> Service automatically finalizes this han-
dle and any other handles obtained via the handle <area>Handle when the death of
the process is detected.

Prototype
typedef void (*SaComponent<Object><Action>T)(...);

Example
typedef void (*SaClmClusterNodeGetCallbackT)(

SaInvocationT invocation,
SaClmClusterNodeT *clusterNode,
SaAisErrorT error,

);
The process calls structure prototype:

typedef struct {
Sa<Area><Object><Action-1>CallbackT sa<Area><Object><Action-1>Callback;
Sa<Area><Object><Action-2>CallbackT sa<Area><Object><Action-2>Callback;
...
Sa<Area><Object><Action-N>CallbackT sa<Area><Object><Action-N>Callback;
} Sa<Area>CallbacksT;

As an input parameter of the sa<Area>Initialize() function, version indicates the ver-
sion of the Availability Management Framework or the particular SA service that the
process requires. This parameter can be used by library implementers to provide
support for different API versions in a single library. As an output parameter, the ver-
sion actually supported by the Availability Management Framework or the particular
SA service is delivered.

3.1.2.2 Finalization

When the process no longer requires the use of the area functions, it calls the area
finalization function. The semantics of finalization are area-dependent, concerning
termination of outstanding requests; however, the intention is to disassociate the pro-
28 SAI-Overview-B.02.01 Section 3.1.2.2 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
cess from the interface area implementation instance and recover any associated
resources. If a process has invoked sa<Area>Initialize() multiple times to obtain mul-
tiple <area>Handles, it must invoke sa<Area>Finalize() separately for each such han-
dle.

Prototype
SaAisErrorT sa<Area>Finalize(Sa<Area>HandleT <area>handle);
where the handle parameter is the handle returned by the corresponding prior invoca-
tion of the initialization function.

3.1.2.3 Dispatching

In the synchronous model, the dispatching of Service Availability interface area library
calls is done when the process makes a call to an API of the area. This interaction
may depend on some IPC or synchronization primitives that might be blocking. If syn-
chronous versions of the APIs are used in a non-threaded environment, polling by
repeatedly invoking the call with a small timeout value might be required to service
multiple requests simultaneously.

Dispatching in the asynchronous model is supported by obtaining an operating sys-
tem handle that allows the process to ascertain whether there are any calls pending.
The generic call to obtain the operating system handle is as follows:

SaAisErrorT sa<Area>SelectionObjectGet(
Sa<Area>HandleT <area>Handle,
SaSelectionObjectT *selectionObject

);
In the POSIX.1 world, the selection object is simply a file descriptor, provided by the
operating system, and selectionObject is a pointer to the file descriptor. The
selectionObject returned by sa<Area>SelectionObjectGet() is valid until
sa<Area>Finalize() is invoked on <area>Handle.

The following code fragment illustrates how to detect pending area invocations for
various library associations referenced by the handle parameter of the corresponding
sa<Area>SelectionObjectGet() calls. Note there may be multiple active handles for
the same area.
Overview SAI-Overview-B.02.01 Section 3.1.2.3 29

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
Example

#define MAX_AREA 5

SaSelectionObjectT fd[MAX_AREA];
void (*dispatch[MAX_AREA])();
SaUint32T *handle[MAX_AREA];
SaUint32T handle0;
SaUint32T handle1;
...
int i;
fd_set rfds;
int nfds = 0;
int numArea = 0;
struct timeval timeout;
sa<Area0>SelectionObjectGet(handle0, &fd[numArea]);
dispatch[numArea] = (void *) sa<Area0>Dispatch;
handle[numArea] = &handle0;
numArea++;
sa<Area1>SelectionObjectGet(handle1, &fd[numArea]);
dispatch[numArea] = (void *) sa<Area1>Dispatch;
handle[numArea] = &handle1;
numArea++;
...
FD_ZERO(&rfds);
for (i=0; i<numArea; i++) {

if (nfds < fd[i]) nfds = fd[i]; /* find max fd */
FD_SET(fd[i], &rfds);

}
select(nfds+1, &rfds, NULL, NULL, &timeout);
for (i=0; i<numArea; i++) {

if (FD_ISSET(fd[i], &rfds)) (*dispatch[i])(*handle[i], SA_DISPATCH_ONE);
}
When the process detects that invocations are pending for a library association and is
ready to process them, it calls the relevant sa<Area>Dispatch() function. This invoca-
tion may be made in the main thread or in a dedicated thread. Dispatching with differ-
ent priorities can be achieved by initializing multiple associations each with a
dedicated thread running at the appropriate operating system priority.
30 SAI-Overview-B.02.01 Section 3.1.2.3 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
Prototype

SaAisErrorT sa<Area>Dispatch(

Sa<Area>HandleT <area>Handle,
SaDispatchFlagsT dispatchFlags

);
The <area>Handle is obtained from the sa<Area>Initialize() function, and the
dispatchFlags specify the callback execution behavior of the sa<Area>Dispatch()
function. The sa<Area>Dispatch() function invokes, in the context of the calling
thread, pending callbacks for the handle, designated by <area>Handle, in a way that
is specified by the dispatchFlags parameter.

If no callbacks are pending and sa<Area>Dispatch() is invoked with either the
SA_DISPATCH_ONE or the SA_DISPATCH_ALL flags, it returns immediately and
successfully. Refer to Section 3.3.13 on page 51 for the meaning of the
SA_DISPATCH_ONE and SA_DISPATCH_ALL flags.

Different threads of a process can invoke sa<Area>Dispatch() on the same handle.
As a consequence, several pending callbacks may be invoked concurrently. It is up to
the application to provide concurrency control (for instance, locking), if needed.

3.1.3 Interaction Between AIS and POSIX APIs

In a POSIX environment, the AIS functions can be invoked concurrently by different
threads of a process. Hence, the AIS functions must be thread-safe. However, this
specification does not require that the AIS functions can be safely invoked from a sig-
nal handler.

When developed in a POSIX environment, greater portability of applications from one
AIS implementation to another can be attained by observing the following rules during
application development:

• Avoid using any SA Forum API from a signal handler.
• Do not assume that SA Forum APIs are interruptible by signals.
• Do not assume that SA Forum APIs are thread cancellation points.
• Do not assume that the AIS functions are fork-safe. Therefore, if a process using

AIS functions forks a child process, in which AIS functions will be called, the
child process should exec() a new program immediately after being forked. This
new program can, then, use AIS functions.
Overview SAI-Overview-B.02.01 Section 3.1.3 31

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
3.1.4 Memory Management

3.1.4.1 Usage of [in], [out], and [in/out] in Parameters

The AIS services use the acronyms [in], [out], and [in/out] in the description of param-
eters. These acronyms have the following meaning:

• [in] is used when a parameter passes information to the invoked function and
receives no information from the invoked function.

• [out] is used when the caller passes a memory area through a pointer, and no
additional information for the invoked function is passed in this memory area.
The invoked function supplies the requested information into the provided mem-
ory area.

• [in/out] is used when a parameter passes information to the invoked function and
receives information from the invoked function.

3.1.4.2 Memory Allocation and Deallocation

Rule 1

Memory dynamically allocated by one entity (user process or service area library) is
deallocated by the same entity that allocated it. This rule has only one exception,
described in rule 2 below.

Rule 2

In the following cases, it is simpler to have the area service library allocate the buffer
and have the service user deallocate the memory:

• It is not easy to provide a buffer of the appropriate size by the invoking process
as it is hard to predict in advance how much memory is actually required.

• Avoid excessive copying for performance reasons.

This use must be clearly documented, because it is a potential source of memory
leaks.

Each area service providing a function that dynamically allocates memory for a user
process must provide a function to be called by the user to deallocate the allocated
memory.

The following prototype definitions and a code sample illustrate the use of rule 2.
32 SAI-Overview-B.02.01 Section 3.1.4 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
Prototype

typedef struct{

char *buf;
SaInt32T len;

} SaXxxBufferT;

SaAisErrorT saXxxReceive(SaXxxHandleT handle, SaXxxBufferT buffer);

SaAisErrorT saXxxReceiveDataFree(SaXxxHandleT handle, void *buffer);

Example

SaXxxxBufferT msg;

SaInt32T myLen;
msg.buf = NULL;
error = saXxxReceive(handle, msg);
if (error != SA_AIS_OK) { /* handle error */ }
if (msg.buf != NULL) {

/* process message */
myLen = msg.len; /* area service sets length */
process_message(msg.buf, myLen);
saXxxReceiveDataFree(handle, msg.buf);
msg.buf = NULL;

};

3.1.4.3 Handling Pointers in a Process and an Area Service

The following notes explain how a service user process and the area service should
handle pointers passed as parameters:

• When the area service library invokes a callback function, provided by the pro-
cess, and that callback function has a parameter that is a pointer, the process
must not retain that pointer after the callback function has returned. Rather, if the
process needs to retain that information, it must copy the information into mem-
ory that it has allocated.
Overview SAI-Overview-B.02.01 Section 3.1.4.3 33

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
• When the process invokes a synchronous function, provided by the area service,
the area service must not retain any pointer, passed to it as a parameter of that
function, after the function has returned.

• When the process invokes an asynchronous function, provided by the area ser-
vice, the area service must not retain any pointer, passed to it as a parameter of
that function, after it has invoked the corresponding asynchronous callback func-
tion.

3.1.5 Track APIs

Some area services provide groups of entities and allow these groups to be tracked
by service user processes. For example, the Message Service allows tracking the
membership of message queues within message queue groups.

The track APIs of services providing them, are not identical, but very similar. They
consist of three functions:

• Track an object
• Stop tracking an object
• Callback notification about an object change

The format of a function name is:

sa<Area><Object>Track[<Func>]()

where <Area>, <Object>, and <Func> denote the area service, the tracked object,
and one of the track functions, respectively.

A tracked object is identified by an area service handle and an object name. The
object name is omitted if the object can be identified by the area service handle only.
For this reason, the objectName parameter in the APIs listed below is marked as "if
needed".

Examples:

• A tracked queue group is identified by the Message Service handle and the
queue group name.

• A tracked cluster membership is identified by the Cluster Membership Service
handle. It has no separate object name.

3.1.5.1 Track an Object

A call to the routine
34 SAI-Overview-B.02.01 Section 3.1.5 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
SaAisErrorT sa<Area><Object>Track(

Sa<Area>HandleT <area>Handle,
SaNameT *objectName, /* if needed */
SaUin8T trackFlags,
Sa<Area><Object>NotificationBufferT *notificationBuffer

);
tracks the object in a way determined by the trackFlags parameter (see Section
3.3.12 on page 51).

If the flag SA_TRACK_CURRENT is set in the trackFlags parameter, initial status
information of the tracked object is retrieved. If the notificationBuffer parameter is not
NULL, this information is passed in the given buffer; otherwise, it is passed asynchro-
nously via the callback notification API.

The notificationBuffer is of type:

typedef struct{

/* Optional fields specific to the service */
SaUint32T numberOfItems;
Sa<Area><Object>NotificationT *items;

} Sa<Area><Object>NotificationBufferT;
If items is NULL, the area service will allocate the buffer. The required information will
be placed by the service library into the allocated buffer when the
sa<Area><Object>Track() call returns. It is the responsibility of the calling process to
invoke the corresponding free function of the area service library to deallocate the
allocated buffer (see Section 3.1.5.4 on page 36).

Status changes of the tracked object are always passed asynchronously through the
callback notification API; however, if the trackFlags parameter contains no flag other
than SA_TRACK_CURRENT, a one-time status request is made. No subsequent sta-
tus changes are notified, unless they have been requested in a preceding
sa<Area><Object>Track() call.

3.1.5.2 Callback Notification

If a process has called sa<Area><Object>Track() such that asynchronous notifica-
tions will take place, these are passed through the callback
Overview SAI-Overview-B.02.01 Section 3.1.5.2 35

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
typedef void (*Sa<Area><Object>TrackCallbackT)(

SaNameT *objectName, /* if needed */
Sa<Area><Object>NotificationBufferT *notificationBuffer,
SaUint32T numberOfMembers,
SaErrorT error

);
The notificationBuffer contains the information of the tracked object according to the
trackFlags parameter in a preceding sa<Area><Object>Track() call. It is always allo-
cated by the area service, and it cannot be accessed outside the callback routine.

The numberOfMembers parameter contains the number of members in the group
represented by the tracked object.

3.1.5.3 Stop Tracking an Object

A call to the routine

SaAisErrorT sa<Area><Object>TrackStop(

Sa<Area>HandleT <area>Handle,
SaNameT *objectName /* if needed */

);
stops tracking an object. No more callback notifications about object status changes
will be sent to the process.

This call is only needed if there was a preceding invocation to
sa<Area><Object>Track(), and if this invocation was not a one-time status request for
the object.

3.1.5.4 Deallocating Memory Allocated for Tracking an Object

A call to the routine

SaAisErrorT sa<Area><Object>NotificationFree(

Sa<Area>HandleT <area>Handle,
Sa<Area><Object>NotificationT *items

);
deallocates the memory, pointed to by the items parameter. This memory was allo-
cated by the area service library in a previous call to the sa<Area><Object>Track()
function.
For details when this memory is allocated, refer to the description of the items field in
the Sa<Area><Object>NotificationBufferT structure (see Section 3.1.5.1 on page 34)
36 SAI-Overview-B.02.01 Section 3.1.5.3 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
3.2 Naming Conventions
The conventions for the naming of constants, types, variables and functions defined
in the SA Forum Application Interface Specification are covered in this section. The
Application Interface Specification is broken down into interface areas. An interface
area consists of a set of self-contained APIs that can be provided as a single library
with its associated header file(s). Each interface area is assigned an interface area
tag (or simply area tag, if the context makes it clear) that identifies the functions per-
taining to a given area.

Application interface area tags:

• Hpi ::= Hardware Platform Interface
• Amf ::= Availability Management Framework
• Clm ::= Cluster Membership Service
• Ckpt ::= Checkpoint Service
• Evt ::= Event Service
• Msg ::= Message Service
• Lck ::= Lock Service
• Imm ::= Information Model Management Service
• Ntf ::= Notification Service
• Log ::= Log Service

<Area> used in names (see next sections) consists of the interface area tag followed
by an optional Sub-area tag:

<Area> = <Area tag> [<Sub-area tag>]

The <Sub-area tag> is currently only defined for the Information Model Management
Service. Two values are defined for the <Sub-area tag> of this service:

• Om for Object Management
• Oi for Object Implementer

3.2.1 Case Sensitivity

All usage of strings in the AIS documents is assumed to be case sensitive, and an
implementation of the Availability Management Framework or the AIS services must
not make any assumptions regarding the strings being case insensitive, especially for
processing and comparison purposes.
Overview SAI-Overview-B.02.01 Section 3.2 37

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
3.2.2 Global Function Declarations

The function name of a global declaration, that is, one that is visible to an application
component, has a prefix that starts with the letters “sa” in lower case, standing for
“service availability”, followed by <Area> that identifies the area of the specification.
The rest of the function name is formed from capitalized words that are descriptive of
the object, action and tag of the function.

Prototype
type sa<Area><Object><Action><Tag>(<arguments>);
where sa = prefix for Service Availability

• <Area> = interface area
• <Object> = name or abbreviation of object or service
• <Action> = name or abbreviation of action
• <Tag> = tag for the function such as Async or Callback

Example without <Sub-area Tag>

SaAisErrorT saEvtChannelOpen(

const SaEvtHandleT evtHandle,
const SaNameT *channelName,
SaEvtChannelOpenFlagsT channelOpenFlags,
SaTimeT timeout,
SaEvtChannelHandleT *channelHandle

);

Here, <Area> = Evt for Event Service, <Object> = Channel, and <Action> = Open.

Example with <Sub-area Tag>

SaAisErrorT saImmOmCcbObjectDelete(

SaImmCcbHandleT ccbHandle,

const SaNameT *objectName

);
38 SAI-Overview-B.02.01 Section 3.2.2 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
Here, <Area> = ImmOm for the Object Management sub-area of the Information
Model Management Service, <Object> = Object, and <Action> = Delete.

Some other common <Action> suffixes are:

• Request
• Response
• Set
• Get

For functions that solicit an asynchronous invocation from the area service, the proto-
type has an Async suffix unless it is obvious from the <Action> suffix. The corre-
sponding callback invocation function prototype has a Callback suffix.

Example

SaAisErrorT saClmClusterNodeGetAsync(

SaClmHandleT clmHandle,
SaInvocationT invocation,
SaClmNodeIdT nodeId,
SaClmClusterNodeT *clusterNode

);

Here, <Area> = Clm for Cluster Membership Service, <Object> = ClusterNode,
<Action> = Get, and <Tag> = Async.

typedef void (*SaClmClusterNodeGetCallbackT)(

SaInvocationT invocation,
const SaClmClusterNodeT *clusterNode,
SaAisErrorT error

);

Here, <Area> = Clm for Cluster Membership Service, <Object> = ClusterNode,
<Action> = Get, and <Tag> = Callback.

3.2.3 Global Variable Declarations

The name of a global variable, that is, one that is visible to an application component,
has a prefix that starts with the letters “sa”, standing for service availability, followed
by <Area> that identifies the area of the specification. The rest of the name is formed
from capitalized words that describe the variable.
Overview SAI-Overview-B.02.01 Section 3.2.3 39

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
Prototype

<type> sa<Area><Variable Name>

Example

SaNameT saAmfComponentName;

3.2.4 Type Declarations

The names of types, that are visible to an application component, have a prefix that
starts with the letters “Sa”, followed by <Area> that identifies the area of the specifica-
tion. The rest of the name is formed from capitalized words that describe the type.

Prototype

typedef <...> Sa<Area><TypeName>T

Example

typedef SaUint32T SaCkptHandleT;

typedef SaUint32T SaEvtChannelOpenFlagsT;

3.2.5 Macro Declarations

The names of macros that are visible to an application component use only upper-
case letters and the digits 0-9. Underscores are used to separate words and improve
readability. Macro names start with the letters “SA”, followed by an underscore, fol-
lowed by <Area> followed by an underscore and underscore separated words.

Prototype

#define SA_<AREA>_<MACRO NAME> <macro definition>

Example

#define SA_EVT_HIGHEST_PRIORITY 0

3.2.6 Enumeration Type Declarations

The names of enumeration elements use only uppercase letters and the digits 0-9.
Underscores are used to separate words and improve readability. Element names
40 SAI-Overview-B.02.01 Section 3.2.4 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
start with the letters “SA”, followed by an underscore, followed by <Area>, followed by
an underscore and underscore separated words.

Prototype

typedef enum {

SA_<AREA>_<ENUMERATION_NAME1> [= <value>],
SA_<AREA>_<ENUMERATION_NAME2> [= <value>],
....
SA_<AREA>_<ENUMERATION_NAMEn> [= <value>]

} <enumeration type name>;

Example
typedef enum {

SA_CKPT_SECTION_VALID = 1,
SA_CKPT_SECTION_CORRUPTED = 2

} SaCkptSectionStateT;
Overview SAI-Overview-B.02.01 Section 3.2.6 41

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
3.3 Standard Predefined Types and Constants

3.3.1 Boolean Type

The type SaBoolT defines the standard boolean type.

Definition

typedef enum {

SA_FALSE = 0,
SA_TRUE = 1

} SaBoolT;

3.3.2 Signed and Unsigned Integer Types

The set of fixed bit-width integer types expected to be supported on all platforms are
defined below.

3.3.2.1 Signed Types

• Signed 8 bit integer quantity: SaInt8T
• Signed 16 bit integer quantity: SaInt16T
• Signed 32 bit integer quantity: SaInt32T
• Signed 64 bit integer quantity: SaInt64T

A typical declaration of these types on a 32-bit platform is as follows:

typedef char SaInt8T;

typedef short SaInt16T;

typedef long SaInt32T;

typedef long long SaInt64T;

3.3.2.2 Unsigned Types

• Unsigned 8-bit integer quantity: SaUint8T
• Unsigned 16 bit integer quantity: SaUint16T
• Unsigned 32 bit integer quantity: SaUint32T
• Unsigned 64 bit integer quantity: SaUint64T

A typical declaration of these types on a 32-bit platform is as follows:
42 SAI-Overview-B.02.01 Section 3.3 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
typedef unsigned char SaUint8T;
typedef unsigned short SaUint16T;
typedef unsigned long SaUint32T;
typedef unsigned long long SaUint64T;

3.3.3 Floating Point Types

Two floating point types are defined:

typedef float SaFloatT;
typedef double SaDoubleT;

3.3.4 String Type

Definition
typedef char * SaStringT;

Example

typedef SaStringT SaImmClassNameT;

3.3.5 Size Type

This SaSizeT type is used to specify sizes of objects.

Definition

typedef SaUint64T SaSizeT;

Example

SaSizeT checkpointSize;

3.3.6 Offset Type

This SaOffsetT type is used to specify offsets in data areas.
Overview SAI-Overview-B.02.01 Section 3.3.3 43

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
Definition
typedef SaUint64T SaOffsetT;

Example

SaOffsetT dataOffset;

3.3.7 Time Type

The SaTimeT type is used to specify time values. A time value is always expressed
as a positive number of nanoseconds, except for the SA_TIME_UNKNOWN con-
stant, defined later in this section.

The SaTimeT type can be interpreted as either an absolute timestamp or a time dura-
tion.

An interface specification containing a parameter of SaTimeT type should state how
the time value is interpreted. If no such statement is present, a duration value is
assumed.

Definition

typedef SaInt64T SaTimeT;

Granularity
Nanoseconds = 10-9 seconds

Range
Approximately 292 years
In some cases, it is necessary to represent an unknown time value. A special value is
reserved for this:

Definition

#define SA_TIME_UNKNOWN 0x8000000000000000

This hexadecimal constant corresponds to a time of -263 nanoseconds.

3.3.7.1 Timestamps

A timestamp is represented in an SaTimeT data item as the number of positive nano-
seconds elapsed since 00:00:00 UTC, 1 Jan 1970.
44 SAI-Overview-B.02.01 Section 3.3.7 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
It is common to use another term called “absolute time” that is the same as the defini-
tion of a timestamp. These two terms are often used interchangeably.

Definition

#define SA_TIME_END 0x7FFFFFFFFFFFFFFF

SA_TIME_END represents the largest timestamp value: Fri Apr 11
23:47:16.854775807 UTC 2262.

Definition

#define SA_TIME_BEGIN 0x0

SA_TIME_BEGIN represents the smallest timestamp value: Thu 1 Jan 00:00:00 UTC
1970.

3.3.7.2 Time Durations

A time duration is represented in an SaTimeT data item as the number of positive
nanoseconds counted from a given reference time, for instance, the time of an API
call.

For the convenience of the user, the following values are defined:

#define SA_TIME_ONE_MICROSECOND 1000
#define SA_TIME_ONE_MILLISECOND 1000000
#define SA_TIME_ONE_SECOND 1000000000
#define SA_TIME_ONE_MINUTE 60000000000
#define SA_TIME_ONE_HOUR 3600000000000
#define SA_TIME_ONE_DAY 86400000000000
#define SA_TIME_MAX SA_TIME_END

A duration of SA_TIME_MAX is interpreted as an infinite duration. If a timeout param-
eter is set to SA_TIME_MAX when invoking an AIS API function, there will be no time
limit associated with this request. This value should be viewed as a convenience
value for programmers who do not care about timeouts associated with various APIs.
Typically, it is not advisable to use SA_TIME_MAX in timeout parameters, and other
pre-defined constants should generally suffice.

3.3.8 Sequence of Octets Type

This SaAnyT type is used to define a set of arbitrary octets.
Overview SAI-Overview-B.02.01 Section 3.3.7.2 45

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
Definition

typedef struct {

SaSizeT buffer Size;
SaUint8T *bufferAddr;

} SaAnyT;

Example
SaAnyT SaRawBinary;

3.3.9 Name Type

The type SaNameT is intended to be used to represent object names that are passed
in SA Forum APIs. It allows for both human readable and other representations.
Human readable representations include ASCII and multi-byte character locales. The
length field in the SaNameT structure refers to the number of octets (bytes) used by
the representation of the name in the name field. If the C character string representa-
tion is used, the value field contains the characters in the string without the terminat-
ing null character, and the length field the number of these characters.
46 SAI-Overview-B.02.01 Section 3.3.9 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
Definition

#define SA_MAX_NAME_LENGTH 256

typedef struct {

SaUint16T length;
SaUint8T value[SA_MAX_NAME_LENGTH];

} SaNameT;

Example

SaNameT myName;

...
myName.length = strlen(“fred”);
memcpy(myName.value,”fred”, myName.length);
error = saXxxCreateObject(myName,yyy,zzz);

3.3.9.1 Note on AIS Object Names

Current AIS runtime APIs use LDAP distinguished names (DNs) to name objects.
Future AIS runtime and system management interfaces (XML, administrative APIs,
configuration management APIs) will also use LDAP DNs to name objects.
These LDAP DNs follow UTF-8 encoding conventions described in reference [5].

The scope of these names is limited to the cluster. Hence, the names do not include
any relative distinguished name (RDN), which would identify the cluster itself.

Multi-valued RDNs are not supported.

LDAP names are encoded in SaNameT by using its UTF-8 representation without a
terminating null character. Only printable Unicode characters must be used in LDAP
names. This simplifies printing or displaying these names (see [6]).

Section 4.1 on page 58 indicates for each object class the supported formats for the
DNs of their object instances.

3.3.9.1.1 Recommendations on RDN Values

• The value of a node RDN should be identical to the operating system node
name, if this notion is supported by the operating system running on the node.

• To minimize name conflicts, RDN values for components, message queues,
message queue groups, checkpoints, event channels or locks should include a
Overview SAI-Overview-B.02.01 Section 3.3.9.1 47

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
prefix specific to the particular application they are associated with. For example
the stock symbol of the company providing the application is an example for
such prefix.

• When exposed through the AIS interfaces, these DNs are encapsulated in an
SaNameT data structure and normalized as follows:

• All tabs or white spaces before or after '=' separating the RDN type from the
RDN value, and before or after the ',' character separating the RDNs, are
removed.

• Only ',' is used to separate RDNs.
• Because SaNameT has a size of 256 characters, the size of the RDN val-

ues represented as UTF-8 strings is limited to 64 characters.

3.3.9.1.2 Values for the safApp Application RDN of AIS Services

This section describes standard SA Forum AIS defined RDN values for the safApp
RDN for the various AIS services. The values use a common format of
safApp = saf<Area>Service[:<varAppName>] where the saf<Area>Service part has
constant well-known values as defined below for the various AIS services and the
<varAppName> is an arbitrary string (according to rules defined in Section 3.3.9.1).

• Availability Management Framework safApp="safAmfService"
• Checkpoint Service safApp="safCkptService"
• Cluster Membership Service safApp="safClmService"
• Event Service safApp="safEvtService"
• Information Model Management Service safApp="safImmService"
• Lock Service safApp="safLckService"
• Message Service safApp="safMsgService"
• Notification Service safApp="safNtfService"
• Log Service safApp="safLogService"

The <varAppName> part of the RDN value enables differentiation of multiple imple-
mentations of the same AIS service.

3.3.10 SaServicesT

The following type enumerates the services specified by the SA Forum.
48 SAI-Overview-B.02.01 Section 3.3.9.1.2 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
typedef enum {

SA_SVC_HPI = 1,
SA_SVC_AMF = 2,
SA_SVC_CLM = 3,
SA_SVC_CKPT = 4,
SA_SVC_EVT = 5,
SA_SVC_MSG = 6,
SA_SVC_LCK = 7,
SA_SVC_IMMS = 8,
SA_SVC_LOG = 9,
SA_SVC_NTF = 10

} SaServicesT;

3.3.11 Version Type

The SaVersionT type is used to represent software versions of area implementations.
Application components can use instances of this type to request compatibility with a
particular version of an SA Forum Application Interface area specification. The area
referred to is implicit in this API.

Definition

typedef struct {

SaUint8T releaseCode;
SaUint8T majorVersion;
SaUint8T minorVersion;

} SaVersionT;

releaseCode: The release code is a single ASCII capital letter [A-Z]. All specifications
and implementations with the same release code are backward compatible. Refer to
Section 3.3.11.1 for details on how the SA Forum will handle backward compatibility.
It is expected that the release code will change very infrequently. Release codes are
assigned exclusively by the SA Forum.

majorVersion: The major version is a number in the range [01..255]. An area imple-
mentation with a given major version number implies compliance to the interface
specification bearing the same release code and major version number. Changes to a
specification requiring a revision of the major version number are expected to occur
at most once or twice a year for the first few years, becoming less frequent as time
goes on. Major version numbers are assigned exclusively by the SA Forum.
Overview SAI-Overview-B.02.01 Section 3.3.11 49

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
minorVersion: The minor version is a number in the range [01..255]. Successive
updates to an area implementation complying to an area interface specification bear-
ing the same release code and major version number have increasing minor version
number starting from 01. Increasing minor version numbers only refer to enhance-
ments of the implementation, like better performance or bug fixes. Different values of
the minor version may not impact the compatibility and are not used to check whether
required and supported versions are compatible.

Successive updates to an area interface specification with the same release code
and major version number will also have increasing minor version numbers starting
from 01. However, such changes to a specification are limited to editorial changes
that do not impose changes on any software implementations for the sake of compli-
ance. Minor version numbers are assigned independently by the SA Forum for inter-
face specifications and by members and licensed implementers for their
implementations.

Example

SaVersionT myAmfVersion;

...
myAmfVersion.releaseCode = ’B’;
myAmfVersion.majorVersion = 0x02;
myAmfVersion.minorVersion= 0x00;
/* Version “B.02.xx” */
error = saAmfInitialize(handle, const &callbacks, *myAmfVersion);

3.3.11.1 Notes on Backward Compatibility

To achieve backward compatibility with B.01.01 when evolving the B spec in the
future, the SA Forum will follow the rules below. However, this goal can only be
achieved with the cooperation of AIS implementers (refer to the notes below).

• A function/type definition never changes for a given SA Forum release.
• Changes in a function/type definition (adding a new argument to a function, add-

ing a new field to a data structure) force the definition of a new function/type
name. A new function/type name is built from the original name in B.01.01 with a
suffix indicating the version where the function/type changed (for instance,
saAmfComponentRegister_3()).

• As an exception to the previous rule, new enum values, flag values or union
fields can be added to an existing enum, flag or union typedef without changing
50 SAI-Overview-B.02.01 Section 3.3.11.1 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
the type name as long as the size of the enum, flag or union typedef does not
change.

• AIS implementers must ensure that they respect the version numbers provided
by the application when it initializes the library and do not expose new enum val-
ues to applications using older versions.

• AIS implementers must also ensure that they respect the version numbers pro-
vided by the application when the library is initialized, with regards to new or
modified error codes and do not expose error codes that only apply to functions
in the most recent version of the specification to applications written to an older
version of the specification.

3.3.12 Track Flags

The following constants are used by the sa<Area><Object>Track() API for all areas
with track APIs to specify what needs to be tracked and what information is supplied
in the notification callback.

#define SA_TRACK_CURRENT 0x01

Information about all entities is returned immediately, either in a notification buffer as
indicated by the caller, or by a single subsequent notification callback.

#define SA_TRACK_CHANGES 0x02

The notification callback is invoked each time at least one change happens in the set
of entities or one attribute of at least one entity in the set changes. Information about
all entities is passed to the notification callback (both entities for which a change
occurred and entities for which no change occurred).

#define SA_TRACK_CHANGES_ONLY 0x04

The notification callback is invoked each time at least one change happens in the set
of entities or one attribute of at least one entity in the set changes. Only information
about entities that changed is passed in the notification callback.

3.3.13 Dispatch Flags

The following enumeration type is used by the dispatch function for each of the differ-
ent areas.
Overview SAI-Overview-B.02.01 Section 3.3.12 51

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
typedef enum {

SA_DISPATCH_ONE = 1,
SA_DISPATCH_ALL = 2,
SA_DISPATCH_BLOCKING = 3

} SaDispatchFlagsT;
The values of the SaDispatchFlagsT enumeration type have the following interpreta-
tion:

• SA_DISPATCH_ONE - Invoke a single pending callback in the context of the
calling thread, if there is a pending callback, and then return from the dispatch.

• SA_DISPATCH_ALL - Invoke all of the pending callbacks in the context of the
calling thread, if there are any pending callbacks, before returning from dis-
patch.

• SA_DISPATCH_BLOCKING - One or more threads calling dispatch remain
within dispatch and execute callbacks as they become pending. The thread or
threads do not return from dispatch until the corresponding finalize function is
executed by one thread of the process.

3.3.14 Selection Object

The SaSelectionObjectT type is used for selection objects. Selection objects are
operating system dependent objects allowing a process to wait until an invocation of
a callback function is pending for it.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.

Definition

typedef SaUint64T SaSelectionObjectT;

3.3.15 Invocation

The SaInvocationT type is used to match a callback call to the call requesting the call-
back. Refer to Section 3.1.1.1 on page 25 for details, including an example.

Definition

typedef SaUint64T SaInvocationT;
52 SAI-Overview-B.02.01 Section 3.3.14 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
3.3.16 Error Codes

To simplify the coding of error handling, error codes returned by SA Forum Applica-
tion Interface Specification APIs are globally unique, and are defined as follows.

typedef enum {

SA_AIS_OK = 1,
SA_AIS_ERR_LIBRARY = 2,
SA_AIS_ERR_VERSION = 3,
SA_AIS_ERR_INIT = 4,
SA_AIS_ERR_TIMEOUT = 5,
SA_AIS_ERR_TRY_AGAIN = 6,
SA_AIS_ERR_INVALID_PARAM = 7,
SA_AIS_ERR_NO_MEMORY = 8,
SA_AIS_ERR_BAD_HANDLE = 9,
SA_AIS_ERR_BUSY = 10,
SA_AIS_ERR_ACCESS = 11,
SA_AIS_ERR_NOT_EXIST = 12,
SA_AIS_ERR_NAME_TOO_LONG = 13,
SA_AIS_ERR_EXIST = 14,
SA_AIS_ERR_NO_SPACE = 15,
SA_AIS_ERR_INTERRUPT =16,
SA_AIS_ERR_NO_RESOURCES = 18,
SA_AIS_ERR_NOT_SUPPORTED = 19,
SA_AIS_ERR_BAD_OPERATION = 20,
SA_AIS_ERR_FAILED_OPERATION = 21,
SA_AIS_ERR_MESSAGE_ERROR = 22,
SA_AIS_ERR_QUEUE_FULL = 23,
SA_AIS_ERR_QUEUE_NOT_AVAILABLE = 24,
SA_AIS_ERR_BAD_FLAGS = 25,
SA_AIS_ERR_TOO_BIG = 26,
SA_AIS_ERR_NO_SECTIONS = 27,
SA_AIS_ERR_NO_OP = 28,
SA_AIS_ERR_REPAIR_PENDING = 29

} SaAisErrorT;
Overview SAI-Overview-B.02.01 Section 3.3.16 53

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_VERSION - The version parameter is not compatible with the version
of the implementation of the Availability Management Framework or particular ser-
vice.

SA_AIS_ERR_INIT - A callback function that is required for this API has not been
supplied in a previous call of sa<Area>Initialize().

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout or the timeout
specified in the API call occurred before the call could complete. It is unspecified
whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The com-
ponent or process might try again later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the service library or the provider of the ser-
vice is out of memory and cannot provide the service.

SA_AIS_ERR_BAD_HANDLE - A handle is invalid.

SA_AIS_ERR_BUSY - Resource is already in use.

SA_AIS_ERR_ACCESS - Access is denied.

SA_AIS_ERR_NOT_EXIST - An entity, referenced by the invoker, does not exist.

SA_AIS_ERR_NAME_TOO_LONG - Name exceeds maximum length.

SA_AIS_ERR_EXIST - An entity, referenced by the invoker, already exists.

SA_AIS_ERR_NO_SPACE - The buffer provided by the component or process is too
small.

SA_AIS_ERR_INTERRUPT - The request was canceled by a timeout or other inter-
rupt.

SA_AIS_ERR_NOT_SUPPORTED - The requested function is not supported.

SA_AIS_ERR_BAD_OPERATION - The requested operation is not allowed.

SA_AIS_ERR_FAILED_OPERATION - The requested operation failed.

SA_AIS_ERR_NO_RESOURCES - Not enough resources.

SA_AIS_ERR_MESSAGE_ERROR - A communication error occurred.
54 SAI-Overview-B.02.01 Section 3.3.16 Overview

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_QUEUE_FULL - The destination queue does not contain enough
space for the entire message.

SA_AIS_ERR_QUEUE_NOT_AVAILABLE - The destination queue is not available.

SA_AIS_ERR_BAD_FLAGS - The flags are invalid.

SA_AIS_ERR_TOO_BIG - A value is larger than the maximum value permitted.

SA_AIS_ERR_NO_SECTIONS - There are no or no more sections matching the
specified sections in the saCkptSectionIteratorInititialize() call.

SA_AIS_ERR_NO_OP - The requested operation had no effect.

SA_AIS_ERR_REPAIR_PENDING - The administrative operation is only partially
completed as some targeted components must be repaired.
Overview SAI-Overview-B.02.01 Section 3.3.16 55

Service AvailabilityTM Interface Specification
Programming Model

1

5

10

15

20

25

30

35

40
56 SAI-Overview-B.02.01 Section 3.3.16 Overview

Service AvailabilityTM Interface Specification
Information Model

1

5

10

15

20

25

30

35

40
 4 SA Forum Information Model
The SA Forum Information Model is described in UML and has been organized as fif-
teen UML class diagrams. Three diagrams provide global views showing how various
object classes relate to each other:

• HPI View
• Cluster View
• AMF View

The other diagrams show the attributes and administrative operations of each individ-
ual class. There are six diagrams for the Availability Management Framework:

• AMF Cluster/Node Classes
• AMF Application/SG Classes
• AMF SU Class
• AMF Component Class
• AMF SI Classes
• AMF CSI Classes

And one diagram for each other AIS service:
• CKPT Classes
• CLM Classes
• EVT Classes
• LCK Classes
• MSG Classes
• LOG Classes

Section 4.1 provides the format of the Distinguished Names (DNs) of the various
objects of the information model.

Section 4.2 describes how the SA Forum UML information model is implemented by
the Information Model Management (IMM) Service.

The remaining sections of the chapter contain the different UML class diagrams.

Refer to SAI-XMI-A.01.01 for a UML description in XML Metadata Interchange (XMI)
v1.2 format. This XMI file can be visualized with UML tools supporting XMI v1.2 (such
as MagicDraw for example).
Overview SAI-Overview-B.02.01 Section 4 57

Service AvailabilityTM Interface Specification

Information Model

1

5

10

15

20

25

30

35

40
4.1 DN formats

Table 1: DN formats

Object Class DN format for objects of that class

SaAmfApplication "safApp=..."

SaAmfCluster "safAmfCluster=..."

SaAmfComp "safComp=...,safSu=...,safSg=...,safApp=..."

SaAmfCSI "safCsi=...,safSi=...,safApp=..."

SaAmfCSIAssignment "safCSIComp=...,safCsi=...,safSi=....,safApp=..."

SaAmfCSIAttribute "safCsiAttr=...,safCsi=...,safSi=...,safApp=..."

SaAmfCSType "safCSType=...,safApp=..."

SaAmfHealthcheck "safHealthcheckKey=...,
safComp=...,safSu=...,safSg=...,safApp=..."

SaAmfLogStreamConfig "safLgStr=...,* "

SaAmfNode "safAmfNode=...,safAmfCluster=..."

SaAmfSG "safSg=...,safApp=..."

SaAmfSI "safSi=...,safApp=..."

SaAmfSIAssignment "safSISU=...,safSi=...,safApp=..."

SaAmfSIDependency "safDepend=...,safSi=...,safApp=..."

SaAmfSIRankedSU "safRankedSu=...,safSi=...,safApp=..."

SaAmfSU "safSu=...,safSG=...,safApp=..."

SaCkptCheckpoint "safCkpt=...,* "

SaCkptReplica "safReplica=...,safCkpt=...,* "

SaClmCluster "safCluster=..."

SaClmNode "safNode=..., safCluster=..."

SaEvtChannel "safChnl=...,* "

SaHpiEntity "safHpiEntity=..., safHpiDomain=..."

SaLckResource "safLock=...,* "
58 SAI-Overview-B.02.01 Section 4.1 Overview

Service AvailabilityTM Interface Specification
Information Model

1

5

10

15

20

25

30

35

40

Table 1 provides the format of the various DNs used to name objects of the SA Forum
Information Model. There is one format defined for each object class. The ‘*’ notation
at the end of a DN format indicates that zero, one or more RDNs may be appended to
the proposed format.

4.2 Mapping from UML to the IMM Service
The SA Forum Information Model is described in UML but is implemented within the
Information Model Management (IMM) Service. The following is a brief description of
how translation must be performed from the UML description to IMM Service con-
cepts. Refer to SAI-AIS-IMM-A.01.01 for details about the IMM Service.

A UML class stereotype is used to indicate the IMM service class category (CONFIG/
RUNTIME).

IMM Service attribute definition is obtained as follows:

SaLogStream "safLgStr=..., * "

SaMsgQueue "safMq=...,* "

SaMsgQueueGroup "safMqg=...,* "

SaMsgQueuePriority "safMqPrio=..., safMq=...,* "

Table 2: Mapping attribute characteristics from UML to IMM Service

UML IMM Service

CONFIG constraint SA_IMM_ATTR_CONFIG

RUNTIME constraint SA_IMM_ATTR_RUNTIME

WRITABLE constraint SA_IMM_ATTR_WRITABLE

CACHED constraint SA_IMM_ATTR_CACHED

PERSISTENT constraint SA_IMM_ATTR_PERSISTENT

RDN constraint SA_IMM_ATTR_RDN

[1] or [1..*] multiplicity SA_IMM_ATTR_INITIALIZED

[0..*] or [1..*] multiplicity SA_IMM_ATTR_MULTI_VALUE

Table 1: DN formats

Object Class DN format for objects of that class
Overview SAI-Overview-B.02.01 Section 4.2 59

Service AvailabilityTM Interface Specification

Information Model

1

5

10

15

20

25

30

35

40
When the UML type of an attribute has no equivalent in the IMM Service, an attribute
constraint is used to specify to which IMM Service type the attribute must be mapped
(SAUINT32T or SASTRINGT attribute constraints).

If an attribute multiplicity is [0..1] or [0..*], the UML ’Initial Value’ provides the attribute
Default value.

For example, in Section 4.7 the first attribute of the SaAmfApplication class is
described as:

safApp: SaStringT [1] {RDN, CONFIG}, where
• safApp is the attribute name,
• SaStringT is the attribute type,
• [1] is the attribute multiplicity and indicates in this case that the attribute has only

one value and must be specified.
• {RDN, CONFIG} is the list of constraints for this attribute and indicates in this

case that the attribute is the object RDN and is a configuration attribute.

As the SaStringT is a type supported by the IMM Service, the attribute will be imple-
mented as an SA_IMM_ATTR_SASTRINGT IMM attribute.

In the same class, the second attribute is described as:

saAmfApplicationAdminState: saAmfAdminStateT [1] {RUNTIME, CACHED, PER-
SISTENT, SAUINT32T}, where

• saAmfApplicationAdminState is the attribute name,
• saAmfAdminStateT is the typedef defined in the Availability Management Frame-

work specification. The valid values for this attribute are the values of the typedef
definition,

• [1] is the attribute multiplicity. This attribute is always present.
• {RUNTIME, CACHED, PERSISTENT, SAUINT32T} is the list of constraints for

this attribute and indicates in this case that the attribute is a runtime attribute that
is both cached by the IMM Service and persistent. SAUINT32T indicates that
this attribute must be implemented as an SA_IMM_ATTR_SAUINT32T IMM
attribute.

In the same section, the third attribute of the SaAmfSG class is described as:

saAmfSGAutoAdjust: SaBoolT[0..1] = 0 (SA_FALSE) {CONFIG,
WRITABLE,SAUINT32T}, where

• saAmfSGAutoAdjust is the attribute name,
60 SAI-Overview-B.02.01 Section 4.2 Overview

Service AvailabilityTM Interface Specification
Information Model

1

5

10

15

20

25

30

35

40
 • SaBoolT is the typedef defined in this document on Section 3.3.1. The valid val-
ues for this attribute are the values of the typedef definition,

• [0..1] = 0 (SA_FALSE) indicates that this attribute can only take a single value but
that the value is optional. If the value is not defined for this attribute, a default
value of 0 must be taken.

• {CONFIG, WRITABLE,SAUINT32T} is the list of constraints for this attribute and
indicates in this case that the attribute is a configuration attribute and that its
value can be updated dynamically after the object has been created.
SAUINT32T indicates that this attribute must be implemented as an
SA_IMM_ATTR_SAUINT32T IMM attribute.
Overview SAI-Overview-B.02.01 Section 4.2 61

Service AvailabilityTM Interface Specification

Information Model

1

5

10

15

20

25

30

35

40
4.3 HPI View

SaHpiInventoryDataRepository

SaHpiManagementInstrument

SaHpiEntity

SaHpiDomain

SaHpiResource

SaHpiIWatchdogTimer SaHpiAnnunciatorSaHpiSensor SaHpiControl

Represents

0..*

1

Managed through

0..*

1..*

Represents

11

1

0..*

1

0..*
62 SAI-Overview-B.02.01 Section 4.3 Overview

Service AvailabilityTM Interface Specification
Information Model

1

5

10

15

20

25

30

35

40
 4.4 Cluster View

SaAmfApplication

SaClmNode

SaClmCluster SaAmfCluster

SaAmfNodeSaHpiEntity

SaHpiDomain

Maps On

0..1 0..1

Maps On

0..1 0..1

Maps On

0..* 0..*

Maps on

0..*0..*

1

0..*

1

1..*

1

0..*

1..*

0..*
Overview SAI-Overview-B.02.01 Section 4.4 63

Service AvailabilityTM Interface Specification

Information Model

1

5

10

15

20

25

30

35

40
4.5 AMF View

SaAmfCSI

SaAmfSI

SaAmfApplication

SaAmfSU

SaAmfSG

SaAmfCSIAssignment

SaAmfSIDependency

SaAmfSIAssignment

SaAmfComp

SaAmfHealthcheck

SaAmfSIRankedSU

SaAmfCSIAttribute

SaAmfNode

SaAmfCSType

1

0..*

Protects

0..1

0..*

Assigned To0..* 0..*

0..* 0..*

Assigned To0..* 0..*

Hosted On

0..*

0..1

1

1..*

1

1..*

Hosted On

0..*

0..1

Depends On

0..*

0..*

1

1..*

Depends On

0..*
0..*

1

1..*

0..*

1

1

0..*

1

0..*
64 SAI-Overview-B.02.01 Section 4.5 Overview

Service AvailabilityTM Interface Specification
Information Model

1

5

10

15

20

25

30

35

40
 4.6 AMF Cluster and Node Classes

<<CONFIG>>

SaAmfCluster

saAmfClusterAdminState : SaAmfAdminStateT [1]{RUNTIME, CACHED, PERSISTENT, SAUINT32T}
saAmfClusterStartupTimeout : SaTimeT [1]{CONFIG, WRITABLE}
saAmfClusterClmCluster : SaNameT [0..1] = Empty{CONFIG}
safAmfCluster : SaStringT [1]{ RDN, CONFIG}

SA_AMF_ADMIN_UNLOCK_INSTANTIATION()
SA_AMF_ADMIN_LOCK_INSTANTIATION()

SA_AMF_ADMIN_SHUTDOWN()

SA_AMF_ADMIN_RESTART()

SA_AMF_ADMIN_UNLOCK()

SA_AMF_ADMIN_LOCK()

saAmfNodeRebootOnInstantiationFailure : SaBoolT [0..1] = 0 (SA_FALSE){CONFIG, WRITABLE, SAUINT32
saAmfNodeRebootOnTerminationFailure : SaBoolT [0..1] = 0 (SA_FALSE){CONFIG, WRITABLE, SAUINT32T}

saAmfNodeAdminState : SaAmfAdminStateT [1]{RUNTIME, CACHED, PERSISTENT, SAUINT32T}

saAmfNodeAutoRepair : SaBoolT [1] = 1 (SA_TRUE){CONFIG, WRITABLE, SAUINT32T}

saAmfNodeOperState : SaAmfOperationalStateT [1]{RUNTIME, CACHED, SAUINT32T}

saAmfNodeClmNode : SaNameT [0..1] = Empty{CONFIG, WRITABLE}

saAmfNodeSuFailoverMax : SaUint32T [1]{CONFIG, WRITABLE}
saAmfNodeSuFailOverProb : SaTimeT [1]{CONFIG, WRITABLE}

safAmfNode : SaStringT [1]{ RDN, CONFIG}

<<CONFIG>>

SaAmfNode

SA_AMF_ADMIN_UNLOCK_INSTANTIATION()
SA_AMF_ADMIN_LOCK_INSTANTIATION()

SA_AMF_ADMIN_SHUTDOWN()

SA_AMF_ADMIN_REPAIRED()
SA_AMF_ADMIN_RESTART()

SA_AMF_ADMIN_UNLOCK()

SA_AMF_ADMIN_LOCK()
Overview SAI-Overview-B.02.01 Section 4.6 65

Service AvailabilityTM Interface Specification

Information Model

1

5

10

15

20

25

30

35

40
4.7 AMF Application/SG Classes

<<CONFIG>>

SaAmfApplication

saAmfApplicationAdminState : SaAmfAdminStateT [1]{RUNTIME, CACHED, PERSISTENT, SAUINT32T}
saAmfApplicationCurrNumSG : SaUint32T [1]{RUNTIME}

safApp : SaStringT [1]{ RDN, CONFIG}

SA_AMF_ADMIN_UNLOCK_INSTANTIATION()
SA_AMF_ADMIN_LOCK_INSTANTIATION()

SA_AMF_ADMIN_SHUTDOWN()

SA_AMF_ADMIN_RESTART()

SA_AMF_ADMIN_UNLOCK()

SA_AMF_ADMIN_LOCK()

<<CONFIG>>

SaAmfSG

saAmfSGNumPrefAssignedSUs : SaUint32T [0..1] = saAmfSGNumPrefInserviceSUs{CONFIG, WRITABLE}

saAmfSGAdminState : SaAmfAdminStateT [1]{RUNTIME, CACHED, PERSISTENT, SAUINT32T}

saAmfSGNumPrefInserviceSUs : SaUint32T [0..1] = Number of SUs{CONFIG, WRITABLE}

saAmfSGAutoAdjust : SaBoolT [0..1] = 0 (SA_FALSE){CONFIG, WRITABLE, SAUINT32T}

saAmfSGAutoRepair : SaBoolT [0..1] = 1 (SA_TRUE){CONFIG, WRITABLE, SAUINT32T}

saAmfSGRedundancyModel : SaAmfRedundancyModelT [1]{CONFIG, SAUINT32T}

saAmfSGMaxStandbySIsperSUs : SaUint32T [0..1] = No limit{CONFIG, WRITABLE}
saAmfSGMaxActiveSIsperSUs : SaUint32T [0..1] = No limit{CONFIG, WRITABLE}

saAmfSGNumPrefStandbySUs : SaUint32T [0..1] = 1{CONFIG, WRITABLE}
saAmfSGNumPrefActiveSUs : SaUint32T [0..1] = 1{CONFIG, WRITABLE}

saAmfSGNumCurrNonInstantiatedSpareSUs : SaUint32T [1]{RUNTIME}
saAmfSGNumCurrInstantiatedSpareSUs : SaUint32T [1]{RUNTIME}

SaAmfSGCompRestartMax : SaUint32T [1]{CONFIG, WRITABLE}
SaAmfSGCompRestartProb : SaTimeT [1]{CONFIG, WRITABLE}

saAmfSGSuRestartMax : SaUint32T [1]{CONFIG, WRITABLE}
saAmfSGAutoAdjustProb : SaTimeT [1]{CONFIG, WRITABLE}

saAmfSGSuRestartProb : SaTimeT [1]{CONFIG, WRITABLE}

saAmfSGNumCurrAssignedSUs : SaUint32T [1]{RUNTIME}

safSg : SaStringT [1]{ RDN, CONFIG}

SA_AMF_ADMIN_UNLOCK_INSTANTIATION()
SA_AMF_ADMIN_LOCK_INSTANTIATION()

SA_AMF_ADMIN_SHUTDOWN()

SA_AMF_ADMIN_SG_ADJUST()

SA_AMF_ADMIN_UNLOCK()

SA_AMF_ADMIN_LOCK()
66 SAI-Overview-B.02.01 Section 4.7 Overview

Service AvailabilityTM Interface Specification
Information Model

1

5

10

15

20

25

30

35

40
 4.8 AMF SU Class

saAmfSUAdminState : SaAmfAdminStateT [1]{RUNTIME, CACHED, PERSISTENT, SAUINT32T}
saAmfSUReadinessState : SaAmfReadinessStateT [1]{RUNTIME, CACHED, SAUINT32T}
saAmfSUPresenceState : SaAmfPresenceStateT [1]{RUNTIME, CACHED, SAUINT32T}

saAmfSUFailover : SaBoolT [0..1] = 1 (SA_TRUE){CONFIG, WRITABLE, SAUINT32T}

saAmfSUOperState : SaAmfOperationalStateT [1]{RUNTIME, CACHED, SAUINT32T}

saAmfSUIsExternal : SaBoolT [0..1] = 0 (SA_FALSE){CONFIG, SAUINT32T}

saAmfSUHostedByNode : SaNameT [0..1]{RUNTIME, CACHED}

saAmfSUPreInstantiable : SaBoolT [1]{RUNTIME, CACHED}

saAmfSUAssignedSIs : SaNameT [0..*] = Empty{RUNTIME}

saAmfSURank : SaUint32T [0..1] = 0{CONFIG, WRITABLE}

saAmfSUNumCurrStandbySIs : SaUint32T [1]{RUNTIME}
saAmfSUNumCurrActiveSIs : SaUint32T [1]{RUNTIME}

saAmfSUNumComponents : SaUint32T [1]{CONFIG}

saAmfSURestartCount : SaUint32T [1]{RUNTIME}

safSu : SaStringT [1]{ RDN, CONFIG}

<<CONFIG>>

SaAmfSU

SA_AMF_ADMIN_UNLOCK_INSTANTIATION()
SA_AMF_ADMIN_LOCK_INSTANTIATION()

SA_AMF_ADMIN_SHUTDOWN()

SA_AMF_ADMIN_EAM_START()
SA_AMF_ADMIN_EAM_STOP()

SA_AMF_ADMIN_REPAIRED()
SA_AMF_ADMIN_RESTART()

SA_AMF_ADMIN_UNLOCK()

SA_AMF_ADMIN_LOCK()
Overview SAI-Overview-B.02.01 Section 4.8 67

Service AvailabilityTM Interface Specification

Information Model

1

5

10

15

20

25

30

35

40
4.9 AMF Component

<<CONFIG>>

SaAmfComp

saAmfCompTerminateCallbackTimeout : SaTimeT [0..1] = saAmfCompDefaultCallbackTimeout{CONFIG, WRITABLE}

saAmfCompCSIRmvCallbackTimeout : SaTimeT [0..1] = saAmfCompDefaultCallbackTimeout{CONFIG, WRITABLE}

saAmfCompCSISetCallbackTimeout : SaTimeT [0..1] = saAmfCompDefaultCallbackTimeout{CONFIG, WRITABLE}

saAmfCompInstantiateTimeout : SaTimeT [0..1] = saAmfCompDefaultClcCliTimeout{CONFIG, WRITABLE}

saAmfCompTerminateTimeout : SaTimeT [0..1] = saAmfCompDefaultClcCliTimeout{CONFIG, WRITABLE}

saAmfCompCleanupTimeout : SaTimeT [0..1] = saAmfCompDefaultClcCliTimeout{CONFIG, WRITABLE}

saAmfCompAmStopTimeout : SaTimeT [0..1] = saAmfCompDefaultClcCliTimeout{CONFIG, WRITABLE}

saAmfCompRecoveryOnError : SaAmfRecommendedRecoveryT [1]{CONFIG, WRITABLE, SAUINT32T}

saAmfCompAmStartTimeout : SaTimeT [1] = saAmfCompDefaultClcCliTimeout{CONFIG, WRITABLE}

saAmfCompDisableRestart : SaBoolT [0..1] = 0 (SA_FALSE){CONFIG, WRITABLE, SAUINT32T}

saAmfCompReadinessState : SaAmfReadinessStateT [1]{RUNTIME, CACHED, SAUINT32T}
saAmfCompPresenceState : SaAmfPresenceStateT [1]{RUNTIME, CACHED, SAUINT32T}

saAmfCompNumMaxInstantiateWithoutDelay : SaUint32T [0..1] = 2{CONFIG, WRITABLE}

saAmfCompDelayBetweenInstantiateAttempts : SaTimeT [0..1] = 0{CONFIG, WRITABLE}

saAmfCompOperState : SaAmfOperationalStateT [1]{RUNTIME, CACHED, SAUINT32T}

saAmfCompNumMaxInstantiateWithDelay : SaUint32T [0..1] = 0{CONFIG, WRITABLE}

saAmfCompNumMaxAmStartAttempt : SaUint32T [0..1] = 2{CONFIG, WRITABLE}

saAmfCompNumMaxAmStopAttempt : SaUint32T [0..1] = 2{CONFIG, WRITABLE}

saAmfCompCapability : SaAmfCompCapabilityModelT [1]{CONFIG, SAUINT32T}

saAmfCompInstantiateCmdArgv : SaStringT [0..*] = Empty{CONFIG, WRITABLE}

saAmfCompTerminateCmdArgv : SaStringT [0..*] = Empty{CONFIG, WRITABLE}

saAmfCompCleanupCmdArgv : SaStringT [0..*] = Empty{CONFIG, WRITABLE}

saAmfCompAmStartCmdArgv : SaStringT [0..*] = Empty{CONFIG, WRITABLE}

saAmfCompAmStopCmdArgv : SaStringT [0..*] = Empty{CONFIG, WRITABLE}

saAmfCompQuiescingCompleteTimeout : SaTimeT [1]{CONFIG, WRITABLE}

saAmfCompInstantiateCmd : SaStringT [0..1] = Empty{CONFIG, WRITABLE}

saAmfCompTerminateCmd : SaStringT [0..1] = Empty{CONFIG, WRITABLE}

saAmfCompInstantiationLevel : SaUint32T [0..1] = 0{CONFIG, WRITABLE}

saAmfCompDefaultCallbackTimeOut : SaTimeT [1]{CONFIG, WRITABLE}

saAmfCompAmStartCmd : SaStringT [0..1] = Empty{CONFIG, WRITABLE}

saAmfCompAmStopCmd : SaStringT [0..1] = Empty{CONFIG, WRITABLE}

saAmfCompCategory : SaAmfCompCategoryT [1]{CONFIG, SAUINT32T}

saAmfCompNumMaxStandbyCsi : SaUint32T [1]{CONFIG, WRITABLE}

saAmfCompDefaultClcCliTimeout : SaTimeT [1]{CONFIG, WRITABLE}

saAmfCompProxyCsi : SaNameT [0..1] = Empty{CONFIG, WRITABLE}

saAmfCompCurrProxiedNames : SaNameT [0..*] = Empty{RUNTIME}

saAmfCompCmdEnv : SaStringT [0..*] = Empty{CONFIG, WRITABLE}

saAmfCompNumMaxActiveCsi : SaUint32T [1]{CONFIG, WRITABLE}

saAmfCompCleanupCmd : SaStringT [1]{CONFIG, WRITABLE}

saAmfCompAssignedCsi : SaNameT [0..*] = Empty{RUNTIME}

saAmfCompCsTypes : SaNameT [1..*]{CONFIG, WRITABLE}

saAmfCompNumCurrStandbyCsi : SaUint32T [1]{RUNTIME}
saAmfCompNumCurrActiveCsi : SaUint32T [1]{RUNTIME}

saAmfCompCurrProxyName : SaNameT [1]{RUNTIME}

saAmfCompRestartCount : SaUint32T [1]{RUNTIME}

safComp : SaStringT [1]{ RDN, CONFIG}

SA_AMF_ADMIN_EAM_START()
SA_AMF_ADMIN_EAM_STOP()

SA_AMF_ADMIN_RESTART()

<<CONFIG>>

SaAmfHealthcheck

safHealthcheckKey : SaAmfHealthcheckKeyT [1]{RDN,CONFIG,SASTRINGT}

saAmfHealthcheckMaxDuration : SaTimeT [1]{CONFIG, WRITABLE}
saAmfHealthcheckPeriod : SaTimeT [1]{CONFIG, WRITABLE}
68 SAI-Overview-B.02.01 Section 4.9 Overview

Service AvailabilityTM Interface Specification
Information Model

1

5

10

15

20

25

30

35

40
 4.10 AMF SI Classes

SA_AMF_ADMIN_SHUTDOWN()

SA_AMF_ADMIN_SI_SWAP()
SA_AMF_ADMIN_UNLOCK()

SA_AMF_ADMIN_LOCK()

<<CONFIG>>

SaAmfSI

saAmfSIAdminState : SaAmfAdminStateT [1]{RUNTIME, CACHED, PERSISTENT, SAUINT32T}
saAmfSIAssignmentState : SaAmfAssignmentStateT [1]{RUNTIME, CACHED, SAUINT32T}

saAmfSIPrefStandbyAssignment : SaUint32T [0..1] = 1{CONFIG, WRITABLE}
saAmfSIPrefActiveAssignments : SaUint32T [0..1] = 1{CONFIG, WRITABLE}

saAmfSIProtectedbySG : SaNameT [0..1] = Empty{CONFIG, WRITABLE}

saAmfSINumICurrStandbyAssignments : SaUint32T [1]{RUNTIME}
saAmfSINumCurrActiveAssignments : SaUint32T [1]{RUNTIME}

saAmfSIRank : SaUint32T [0..1] = 0{CONFIG, WRITABLE}
saAmfSINumCSIs : SaUint32T [1]{CONFIG, WRITABLE}

safSi : SaStringT [1]{ RDN, CONFIG}

<<CONFIG>>

SaAmfSIRankedSU

saAmfRank : SaUint32T [1]{CONFIG, WRITABLE}
safRankedSu : SaNameT [1]{ RDN, CONFIG}

<<CONFIG>>

SaAmfSIDependency

saAmfToleranceTime : SaTimeT [0..1] = 0{CONFIG, WRITABLE}
safDepend : SaNameT [1]{ RDN, CONFIG}

<<RUNTIME>>

SaAmfSIAssignment

saAmfSISUHAState : SaAmfHAStateT [1]{RUNTIME, CACHED, SAUINT32T}
safSISU : SaNameT [1]{RDN, RUNTIME, CACHED}
Overview SAI-Overview-B.02.01 Section 4.10 69

Service AvailabilityTM Interface Specification

Information Model

1

5

10

15

20

25

30

35

40
4.11 AMF CSI Classes

<<CONFIG>>

SaAmfCSI

saAmfCSIDependencies : SaNameT [0..*] = Empty{CONFIG, WRITABLE}
saAmfCSTypeName : SaNameT [1]{CONFIG}
safCsi : SaStringT [1]{ RDN, CONFIG}

<<CONFIG>>

SaAmfCSType

saAmfCSAttrName : SaStringT [0..*] = Empty{CONFIG, WRITABLE}
safCSType : SaStringT [1]{ RDN, CONFIG}

<<RUNTIME>>

SaAmfCSIAssignment

saAmfCSICompHASate : SaAmfHAStateT [1]{RUNTIME, CACHED, SAUINT32T}
safCSIComp : SaNameT [1]{RDN, RUNTIME, CACHED}

<<CONFIG>>

SaAmfCSIAttribute

saAmfCSIAttriValue : SaStringT [0..*] = Empty{CONFIG, WRITABLE}
safCsiAttr : SaStringT [1]{ RDN, CONFIG}
70 SAI-Overview-B.02.01 Section 4.11 Overview

Service AvailabilityTM Interface Specification
Information Model

1

5

10

15

20

25

30

35

40
 4.12 CKPT Classes

<<RUNTIME>>

SaCkptCheckpoint

saCkptCheckpointCreationFlags : SaCkptCheckpointCreationFlagsT [1]{RUNTIME, CACHED, SAUINT32T}
saCkptCheckpointCreationTimestamp : SaTimeT [1]{RUNTIME, CACHED}

saCkptCheckpointMaxSectionIdSize : SaUint64T [1]{RUNTIME, CACHED}
saCkptCheckpointMaxSectionSize : SaUint64T [1]{RUNTIME, CACHED}
saCkptCheckpointMaxSections : SaUint32T [1]{RUNTIME, CACHED}

saCkptCheckpointNumCorruptSections : SaUint32T [1]{RUNTIME}

saCkptCheckpointNumReplicas : SaUint32T [1]{RUNTIME}

saCkptCheckpointNumOpeners : SaUint32T [1]{RUNTIME}
saCkptCheckpointNumReaders : SaUint32T [1]{RUNTIME}

saCkptCheckpointNumSections : SaUint32T [1]{RUNTIME}

saCkptCheckpointNumWriters : SaUint32T [1]{RUNTIME}

saCkptCheckpointRetDuration : SaTimeT [1]{RUNTIME}

saCkptCheckpointUsedSize : SaUint64T [1]{RUNTIME}

safCkpt : SaStringT [1]{RDN, RUNTIME, CACHED}
saCkptCheckpointSize : SaUint64T [1]{RUNTIME}

<<RUNTIME>>

SaCkptReplica

saCkptReplicaIsActive : SaBoolT [1]{RUNTIME, SAUINT32T}
safReplica : SaNameT [1]{RUNTIME}
Overview SAI-Overview-B.02.01 Section 4.12 71

Service AvailabilityTM Interface Specification

Information Model

1

5

10

15

20

25

30

35

40
4.13 CLM Classes

<<CONFIG>>

SaClmCluster

saClmClusterInitTimestamp : SaTimeT [1]{RUNTIME, CACHED}
saClmClusterNumNodes : SaUint32T [1]{RUNTIME, CACHED}
safCluster : SaStringT [1]{ RDN, CONFIG}

<<CONFIG>>

SaClmNode

saClmNodeCurrAddressFamily : SaClmNodeAddressFamilyT [1]{RUNTIME, CACHED, SAUINT32T}

saClmNodeAddressFamily : SaClmNodeAddressFamilyT [0..1]{CONFIG, WRITABLE, SAUINT32T}

saClmNodeIsMember : SaBoolT [1]{RUNTIME, CACHED, SAUINT32T}

saClmNodeInitialViewNumber : SaUint64T [1]{RUNTIME, CACHED}
saClmNodeBootTimeStamp : SaTimeT [1]{RUNTIME, CACHED}

saClmNodeEntityPaths : SaNameT [1..*]{RUNTIME, CACHED}

saClmNodeCurrAddress : SaStringT [1]{RUNTIME, CACHED}

saClmNodeAddress : SaStringT [0..1]{CONFIG, WRITABLE}
saClmNodeID : SaUint32T [1]{RUNTIME, CACHED}

safNode : SaStringT [1]{ RDN, CONFIG}
72 SAI-Overview-B.02.01 Section 4.13 Overview

Service AvailabilityTM Interface Specification
Information Model

1

5

10

15

20

25

30

35

40
 4.14 EVT Classes

<<RUNTIME>>

SaEvtChannel

saEvtChannelCreationTimestamp : SaTimeT [1]{RUNTIME, CACHED}

saEvtChannelLostEventsEventCount : SaUint32T [1]{RUNTIME}
saEvtChannelNumRetainedEvents : SaUint32T [1]{RUNTIME}

saEvtChannelNumSubscribers : SaUint32T [1]{RUNTIME}
saEvtChannelNumPublishers : SaUint32T [1]{RUNTIME}

saEvtChannelNumOpeners : SaUint32T [1]{RUNTIME}

safChnl : SaStringT [1]{RDN, RUNTIME, CACHED}
Overview SAI-Overview-B.02.01 Section 4.14 73

Service AvailabilityTM Interface Specification

Information Model

1

5

10

15

20

25

30

35

40
4.15 LCK Classes

<<RUNTIME>>

SaLckResource

saLckResourceCreationTimestamp : SaTimeT [1]{RUNTIME, CACHED}

saLckResourceIsOrphaned : SaBoolT [1]{RUNTIME, SAUINT32T}
saLckResourceStrippedCount : SaUint32T [1]{RUNTIME}

saLckResourceNumOpeners : SaUint32T [1]{RUNTIME}

safLock : SaStringT [1]{RDN, RUNTIME, CACHED}
74 SAI-Overview-B.02.01 Section 4.15 Overview

Service AvailabilityTM Interface Specification
Information Model

1

5

10

15

20

25

30

35

40
 4.16 LOG Classes

saLogStreamLogFullAction : SaLogFileFullActionT [1]{RUNTIME, CACHED}

saLogStreamFixedLogRecordSize : SaUint32T [1]{RUNTIME, CACHED}

saLogStreamCreationTimestamp : SaTimeT [1]{RUNTIME, CACHED}

saLogStreamMaxFilesRotated : SaUint32T [1]{RUNTIME, CACHED}

saLogStreamMaxLogFileSize : SaUint64T [1]{RUNTIME, CACHED}

saLogStreamLogFileFormat : SaStringT [1]{RUNTIME, CACHED}
saLogStreamSeverityFilter : SaUint32T [1]{RUNTIME, CACHED}

saLogStreamPathName : SaStringT [1]{RUNTIME, CACHED}
saLogStreamFileName : SaStringT [1]{RUNTIME, CACHED}

saLogStreamHaProperty : SaBoolT [1]{RUNTIME, CACHED}

saLogStreamNumOpeners : SaUint32T [1]{RUNTIME}

safLgStr : SaStringT [1]{RDN, RUNTIME, CACHED}

SA_LOG_ADMIN_CHANGE_FILTER()

<<RUNTIME>>

SaLogStream

SA_LOG_ADMIN_CHANGE_FILTER()

<<CONFIG>>

SaLogStreamConfig

saLogStreamLogFullAction : SaLogFileFullActionT [1] = 3 (SA_LOG_FILE_FULL_ACTION_ROTATE){CONFIG}

saLogStreamCreationTimestamp : SaTimeT [1]{RUNTIME, CACHED}

saLogStreamFixedLogRecordSize : SaUint32T [0..1] = 150{CONFIG}
saLogStreamMaxLogFileSize : SaUint64T [0..1] = 500000{CONFIG}

saLogStreamLogFileFormat : SaStringT [0..1] = Empty{CONFIG}
saLogStreamSeverityFilter : SaUint32T [0..1] = Empty{CONFIG}

saLogStreamMaxFilesRotated : SaUint32T [0..1] = 4{CONFIG}

saLogStreamNumOpeners : SaUint32T [1]{RUNTIME}

saLogStreamPathName : SaStringT [1]{CONFIG}
saLogStreamFileName : SaStringT [1]{CONFIG}
safLgStr : SaStringT [1]{ RDN, CONFIG}
Overview SAI-Overview-B.02.01 Section 4.16 75

Service AvailabilityTM Interface Specification

Information Model

1

5

10

15

20

25

30

35

40
4.17 MSG Classes

saMsgQueueNumMemberQueueGroups : SaUint32T [1]{RUNTIME, CACHED}

saMsgQueueIsPersistent : SaBoolT [1]{RUNTIME, CACHED, SAUINT32T}

saMsgQueueCreationTimestamp : SaTimeT [1]{RUNTIME, CACHED}

saMsgQueueRetentionTime : SaTimeT [1]{RUNTIME, CACHED}

saMsgQueueNumMsgs : SaUint32T [1]{RUNTIME, CACHED}

saMsgQueueIsOpened : SaBoolT [1]{RUNTIME, SAUINT32T}

saMsgQueueUsedSize : SaUint64T [1]{RUNTIME, CACHED}
saMsgQueueSize : SaUint64T [1]{RUNTIME, CACHED}

safMq : SaStringT [1]{RDN, RUNTIME, CACHED}

<<RUNTIME>>

SaMsgQueue

<<RUNTIME>>

SaMsgQueueGroup

saMsgQueueGroupPolicy : SaMsgQueueGroupPolicyT [1]{RUNTIME, CACHED, SAUINT32T}
saMsgQueueGroupNumQueues : SaUint32T [1]{RUNTIME}

safMqg : SaStringT [1]{RDN, RUNTIME, CACHED}

<<RUNTIME>>

SaMsgQueuePriority

saMsgQueuePriorityQNumMessages : SaUint32T [1]{RUNTIME}
saMsgQueuePriorityQNumFullErrors : SaUint32T [1]{RUNTIME}

saMsgQueuePriorityQSize : SaUint64T [1]{RUNTIME, CACHED}
saMsgQueuePriorityQUsedSize : SaUint64T [1]{RUNTIME}

safMqPrio : SaUint32T [1]{RDN, RUNTIME, CACHED}
76 SAI-Overview-B.02.01 Section 4.17 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
5 AIS Abbreviations, Concepts, and Terminology
This chapter presents the main abbreviations, concepts and terms used in the SA AIS docu-
ments. A reasonable understanding of basic computing and high availability terminology is
assumed of the reader.

Active

Providing a service.

Active HA State

This is one of the HA states that can be assumed by a component or a service unit.
Refer to “HA State”.

Active Replica

An active replica is only defined for checkpoints created with the asynchronous
update option. For these checkpoints, checkpoint data is read from an active replica,
and checkpoint data is first written synchronously to an active replica and asynchro-
nously replicated to other replicas.

Active Service Unit

This is a service unit having the active HA state for all service instances assigned to
it.

Administrative State

The administrative state is manipulated by the system administrator and refers to the
ITU X.731 state management model (see [2]). It is used by the Availability
Management Framework to determine whether a service unit, a service group, a ser-
vice instance, a node, or the cluster are administratively allowed to provide the ser-
vice. Valid values of the administrative state are unlocked, locked, locked-
instantiation, and shutting-down.

Application

AIS defines an application as a logical entity that contains one or more service
groups. An application combines the individual functionalities of the constituent ser-
vice groups to provide a higher level service. This aggregation provides the Availabil-
ity Management Framework with a further scope for fault isolation and fault recovery.

From a software administration point of view, this grouping into application reflects
the set of service units and contained components that are delivered as a consistent
Overview SAI-Overview-B.02.01 Section 5 77

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
set of software packages, which results in tighter dependency with respect to their
upgrade.

Area

A functionality specified by the SA Forum (Availability Management Framework,
Cluster Membership Service, etc.).

Area Server

The area server is an abstraction that represents the server that provides services for
a specification area (Availability Management Framework, Cluster Membership Ser-
vice, etc.).

Assigned Service Unit

These are service units that have at least one service instance assigned to them.

Assignment

Besides its normal use in English, the term assignment is used in the following con-
structions in the description of the Availability Management Framework:

• Assignment of a service instance to a service unit
• Assignment of a component service instance to a component
• Assignment of an HA state to a service unit for a service instance
• Assignment of an HA state to a component for a component service instance
• HA state assignment of/for a service instance, or simply HA state assignment, if

the context makes it clear which service instance is meant.
• HA state assignment of/for a component service instance, or simply HA state

assignment, if the context makes it clear which component service instance is
meant.

Refer to the description of the Availability Management Framework for details.

Assignment State

This state is defined for service instances. It indicates whether the service repre-
sented by this service instance is being provided or not by some service unit. Valid
values for the assignment state of a service instance are "unassigned", "fully-
assigned” and “partially-assigned”.
78 SAI-Overview-B.02.01 Section 5 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Asynchronous Checkpoint Update

When a checkpoint has been created with the asynchronous update option, write
calls return immediately when the active checkpoint replica has been updated. Other
replicas are updated asynchronously. To guarantee that a process does not read
stale data, the SA Checkpoint Service always reads from an active checkpoint rep-
lica. There are two variants of the asynchronous update: For the first one, either a
replica is updated with all data of a write call or not at all; the second variant does not
provide the atomicity guarantee of the first one, but the SA Checkpoint Service marks
sections that are modified by the write call as corrupt when a fault occurs while a
checkpoint replica is being updated.

Auto-Adjust

This notion indicates that it is required that the service instance assignments to the
service units in a service group are transferred back to the most preferred service
assignments in which the highest ranked available service units are assigned the
active or standby HA states for those service instances. If the auto-adjust option is
not set, even when a higher ranked service unit becomes eligible to take assignments
(for example after a new node joining the cluster), the HA assignments to service
units are kept unchanged.

Auto Repair

A configuration attribute at node and service group level that determines if the Avail-
ability Management Framework engages in automatic repair or not.

Availability Management Framework

The Availability Management Framework is the software entity that manages the
resources in the system to deliver availability. The Availability Management Frame-
work provides a view of one logical cluster consisting of a number of cluster nodes.
The Availability Management Framework provides availability by coordinating redun-
dant resources within the cluster to deliver a system with no single point of failure.

Checkpoint

The Checkpoint Service provides a facility for processes to record checkpoint data
incrementally, which can be used to protect an application against failures. When pro-
cesses restart, or a set of other processes take over the work of the failed processes
(through a fail-over procedure), the Checkpoint Service can be used to restore the
saved checkpoint data and resume execution from the state recorded before the fail-
ure, minimizing the impact of the failure.
Overview SAI-Overview-B.02.01 Section 5 79

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Checkpoint Replica

A checkpoint replica is a copy of the data that is stored in a checkpoint. At most one
checkpoint replica for a particular checkpoint may reside on a given node. A given
checkpoint may have several checkpoint replicas (copies) on different nodes.

Checkpoint Section

Each checkpoint is structured as a set of sections that can be created and deleted
dynamically by processes. Each section is identified by a unique identifier, the section
identifier. Sections contain raw data provided by processes. Sections have an expira-
tion time.

Checkpoint Service

The Checkpoint Service is an SA Service that provides a facility for a process to
retrieve and transfer its state on one or more nodes. Recording the state of a process
in checkpoints protects the application against failure of the process. To recover from
the failure of a process, the process taking over the service can retrieve the previous
checkpoint from the SA Checkpoint Service and resume execution from that check-
point recorded before the failure, minimizing the impact of the failure on the process’s
clients.

CLC

CLC is an acronym for Component Life Cycle. It is used in the Availability Manage-
ment Framework for instantiating, terminating, cleaning up and actively monitoring
local components.

CLC-CLI

In the context of the Availability Management Framework, this is a set of command
line interfaces (CLI) provided by local components to enable the Availability Manage-
ment Framework to control the life cycle of these components.

CLI

CLI is an acronym for Command Line Interfaces.

Cluster

A cluster is a collection of cluster nodes (see “Cluster Node”) that may change
dynamically as nodes join or leave the cluster.
80 SAI-Overview-B.02.01 Section 5 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Cluster Membership

The cluster membership is the set of cluster nodes that take part in the cluster. A
membership transition is a change in the membership of the cluster. A “view number”
is associated with each membership transition.

Cluster Membership Service

The Cluster Membership Service is an SA Service that provides processes a means
of retrieving information about the cluster membership and the cluster member
nodes. It also enables a process to register a callback function to receive member-
ship change notifications as they occur.

Cluster Node

A cluster node is the logical representation of a physical node (see “Physical Node”).

Cluster-Wide

The attribute 'cluster-wide' is used to indicate logical entities that span one or more
nodes and that are designated by names unique in the entire cluster. Depending on
the particular entity, it can be accessible from all nodes of the cluster or only from a
subset of the nodes of the cluster.

Collocated Checkpoint

A collocated checkpoint is a type of checkpoint for which the application has full
responsibilities for replica creation and for deciding which replica is the active one.
The replicas of a collocated checkpoint are only created by the applications via open
calls, provided that no local replica already exists.

Component

A component is the logical entity that represents a set of resources to the Availability
Management Framework. The resources represented by the component encapsulate
specific application functionality. This set can include hardware resources, software
resources or a combination of the two.

A component is the smallest logical entity on which the Availability Management
Framework performs error detection and isolation, recovery, and repair.

Component Healthcheck Monitoring

A component (or more specifically each of its processes) is allowed to dynamically
start and stop a specific healthcheck. Each healthcheck has an identification (key)
that is associated with a set of configuration attributes. Healthchecks can be invoked
Overview SAI-Overview-B.02.01 Section 5 81

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
by the Availability Management Framework (Framework-invoked healthchecks) or by
the component (component-invoked heathchecks). It is up to the component to start
and terminate the healthcheck monitoring. See also “Component Monitoring”.

Component Capability Model

To accommodate possible simplifications in component development, whereby com-
ponents may implement only restricted capabilities, the Availability Management
Framework defines the Component Capability Model. For details, refer to the Avail-
ability Management Framework specification.

Component Monitoring

The Availability Management Framework supports three types of component monitor-
ing:

• Passive Monitoring: The component is not involved in the monitoring, and mostly
operating system features are used to assess the health of a component. This
includes monitoring the death of processes, which are part of the component
(but it could also be extended to also monitor crossing some thresholds in
resource usage such as memory usage).

• External Active Monitoring: The component does not include any special code to
monitor its health but some entity external to the component (usually called a
monitor) assesses the health of the component by submitting some service
requests to the component and checking that the service is provided in a timely
fashion.

• Internal Active Monitoring: The component includes code (often called audits) to
monitor its own health and to discover latent errors. This internal monitoring
code is invoked periodically to assess the component health from inside the
component. This type of monitoring is also known as “component healthcheck
monitoring”.

Component Service Instance

A component service instance is a particular service (workload) that the Availability
Management Framework has assigned to a component in a service unit. See “Ser-
vice Instance”.

Component Service Instance Type

All component service instances of the same type share the same list of attribute
names. Several attributes with the same name may appear in the set of attributes of a
component service instance, thus, providing support for multi-valued attributes.
82 SAI-Overview-B.02.01 Section 5 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Component State

The overall state of a component is a combination of a number of underlying states.
Each component in a service unit has presence, operational and readiness states, as
well as an HA state on behalf of each component service instance assigned to the
component.

Component Registration

A component registers with the Availability Management Framework to inform the
Availability Management Framework that it is ready to provide service for component
service instances by receiving assignment of HA states for these component service
instances. After registration, the Availability Management Framework can invoke call-
back functions provided by the component.

Configuration Objects and Attributes

Configuration objects and attributes are the means by which system management
applications provide input on the desired sets of objects and their handling that an
Object Implementer should implement. The set of configuration objects and attributes
constitute the prescriptive part of the information model.

CSI

CSI is an acronym for component service instance.

Disabled State

This is one of the operational states that can be assumed by a component, a service
unit, or a cluster node. Refer to the description of the Availability Management
Framework for more details.

Enabled State

This is one of the operational states that can be assumed by a component, a service
unit, or a cluster node. Refer to the description of the Availability Management
Framework for more details.

Error

Incorrect information provided by a component or process, or the lack of correct infor-
mation at the correct time, where such incorrect information or lack of information will
lead to a failure in the absence of error detection and recovery mechanisms.
Overview SAI-Overview-B.02.01 Section 5 83

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Error Detection

Error detection is the responsibility of all entities in the system. Errors are reported to
the Availability Management Framework through the saAmfComponentErrorReport()
API. Components play an important part in error detection and should report their
own errors or the errors of other components with which they interact. The Availability
Management Framework itself also generates error reports on components when it
detects errors while interacting with components.

Event

An event consists of a set of event attributes (sometimes called the event header)
and zero or more bytes of event data. Refer to “Event Attributes” and “Event Service”
for more details.

Event Attributes

These are event pattern array, event priority, event publish time, event retention time,
event publisher name, and event id.

Event Filters

These are filters, which are used by an application process to specify the events the
application is interested in. If the filters match the event patterns, the application pro-
cess is notified of these events. See also “Event Pattern”.

Event Channel

An event channel is a mechanism provided by the SA Event Service for publishers
and subscribers to communicate via events. A process can open the event channel to
publish events and to subscribe to receive events. Publishers can also be subscribers
on the same event channel.

Event Pattern

An event pattern is an event attribute used to organize events into various categories.
An event pattern can be used for filtering out the events that a subscriber is not inter-
ested it. All publishers/subscribers of an event channel must share the same conven-
tions regarding the number of patterns being used, their ordering and contents, as
well as meaning.

Event Publisher

A process that publishes events on an event channel.
84 SAI-Overview-B.02.01 Section 5 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Event Service

The Event Service is an SA Service that provides a publish/subscribe communication
mechanism based on event channels and asynchronous communication between
publishers and subscribers. Subscribers are anonymous, which means that they may
join and leave an event channel at any time without involving the publisher(s). The
primary usage of the SA Event Service is the reporting of generic events in the sys-
tem.

Event Subscriber

A process that is interested in receiving published events on a specific event channel.

External Active Monitoring

This is a type of component monitoring supported by the Availability Management
Framework. The component does not include any special code to monitor its health
but some entity external to the component (usually called a monitor) assesses the
health of the component by submitting some service requests to the component and
checking that the service is provided in a timely fashion.

External Component

An external component represents a set of resources that are external to the cluster
nodes.

External Resource

Any resource that is not a local resource, i.e., that is not contained within a physical
node.

External Service Unit

A service unit containing only external components.

Fail-over

The term fail-over is used to designate a recovery procedure performed by the Avail-
ability Management Framework when a component with the active HA state for a
component service instance fails (when, for instance, its operational state becomes
disabled), and the Availability Management Framework decides to reassign the active
HA state for the component service instance to another component.
Overview SAI-Overview-B.02.01 Section 5 85

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Failure

The event of a component or a service unit not providing service at the level that the
component or service unit is required to provide.

Fault

The cause of an error, typically a failure of a component or process.

Fully-Assigned

A service instance is said to be fully-assigned if and only if

• the number of service units having the active or quiescing HA state for the ser-
vice instance is equal to the preferred number of active assignments for the ser-
vice instance, and

• the number of service units having the standby HA state for the service instance
is equal to the preferred number of standby assignments for the service
instance.

HA State

This state is maintained at the component level on behalf of a component service
instance, and at service unit level on behalf of a service instance. It can take the val-
ues: active, standby, quiescing, or quiesced.

Refer to the description of the Availability Management Framework for more details.

Healthcheck Key

The key of the healthcheck to be executed. Using this key, the Availability Manage-
ment Framework can retrieve the corresponding healthcheck parameters.

Information Model

The SA Forum information model (IMM) is specified in UML and represents through
its objects the various entities, which constitute an SA Forum system. The SA Forum
IM also specifies the attributes of these objects and administrative operations that
can be performed on the entities through system management interfaces.

IMM

IMM is an acronym for Information Model Management.
86 SAI-Overview-B.02.01 Section 5 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Information Model Management Service

The Information Model Management (IMM) Service is the SA service managing all
objects of the SA Information Model and provides the APIs to access and manage
these objects.

In-Service Service Unit

This is a service unit that has a readiness state of either in-service or stopping.

In-Service State

This is one of the readiness states. Refer to “Readiness State”.

Instantiable Service Unit

These service units have the following characteristics:

• Configured in the Availability Management Framework.
• Contained in a node that is currently a member of the cluster.
• The service unit’s presence state is uninstantiated.
• The service unit’s instantiation has not been administratively prevented. Note

that this is different from the lock/unlock administrative operations.

Instantiated Service Unit

These are service units with the presence state of either instantiated or restarting.

Internal Active Monitoring

Refer to “Component Healthcheck Monitoring”.

Local Component

A local component represents a subset of the local resources contained within a sin-
gle physical cluster node.

Local Replica

This is a checkpoint replica located on the node where the checkpoint is opened.

Local Resource

A resource that is contained, from a fault containment point of view, within a physical
node. Local resources can be either software abstractions implemented by programs
running on the physical node, or hardware equipment attached to the node (such as
I/O devices), or the node itself.
Overview SAI-Overview-B.02.01 Section 5 87

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Local Service Unit

This is a service unit containing only local components.

Lock

A lock is a protected access to a lock resource requested through the SA Lock Ser-
vice. See also “Lock Resource”. Locks can be requested in either exclusive or shared
read mode.

Lock Administrative Operation

This operation applies to a service unit, a service group, a cluster node, a service
instance, an application, and the cluster. It sets the administrative state of a logical
entity to locked, which results in the removal of workload from the logical entity.

Lock-Instantiation Administrative Operation

This operation applies to a service unit, a service group, a cluster node, a service
instance, an application, and the cluster. It sets the administrative state of a logical
entity to locked-instantiation, which results in the termination of this logical entity.

Locked State

One of the administrative states that are maintained for service units, service groups,
cluster nodes, service instances, applications, and the cluster. An entity in this state
has been administratively prevented from participating in providing service. See also
“Lock Administrative Operation”.

Locked-instantiation State

One of the administrative states that are maintained for service units, service groups,
cluster nodes, service instances, applications, and the cluster. An entity in this state
has been administratively prevented from being instantiated. See also “Lock-Instanti-
ation Administrative Operation”.

Locked Service Unit

In the description of the Availability Management Framework, saying that a service
unit is locked without further specification implies that its administrative state or one of
the administrative states of the following entities is locked: service group containing it,
cluster node containing it (for local service units), enclosing application (if any), and
cluster (for local service units).
88 SAI-Overview-B.02.01 Section 5 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Lock Mode

The SA Lock Service supports two lock modes:

• Protected Read (PR) - A shared read, i.e., any number of lock owners may hold a
read lock and no one may hold an exclusive lock.

• Exclusive (EX) - Only a single lock owner may hold the lock.

Lock Owner

The process holding a lock in the exclusive mode or one or more processes holding a
lock in the shared read mode. Refer to “Lock” and “Lock Service” for details.

Lock Resource

A lock resource is an entity, supported by the SA Lock Service, that is used to syn-
chronize access to shared resources between application processes.

Lock Service

The Lock Service is an SA Service that provides entities, called lock resources, that
synchronize access to shared resources between application processes.

Log Stream

A conceptual flow of log records that travel from any number of sources to a destina-
tion output such as a log file.

Log Record

A log record is the unit of thing logged by some process called a Logger.

Log Filter

A log filter specifies criteria for determining if a log record is allowed on a log stream.
These criteria are based on severity level values.

Log Record Output Formatting Rules

Log record output formatting rules consist of a well-known set of log record format
tokens that can be ordered into well-formed log record format expressions. The log
record output format rules govern the output properties of each log record at an out-
put destination.

Logical Node

See “Cluster Node”.
Overview SAI-Overview-B.02.01 Section 5 89

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Message

A message is a byte array of a certain size. In addition to the data contained in the
byte array, a message also has a type, version and priority.

Message Queue

A message queue is a software abstraction for buffering messages. A message
queue consists of a collection of separate data areas that are used to store messages
of different priorities. Messages are read from, and written to, a message queue.

Message Queue Group

A message queue group is a collection of message queues that are addressed as a
single entity. A message queue group is global to a cluster, and it is identified by a
unique name in the same name space used for the names of message queues. A
message queue can be a member of different message queue groups. Messages
sent to a message queue group are directed to one or more of the message queues
in the group. See also “Unicast Message Queue Group” and “Multicast Message
Queue Group”.

Message Service

The Message Service is an SA Service that provides a buffered message passing
system based on the concept of a message queue and that also supports load bal-
ancing via message queue groups.

Multicast Message Queue Group

A multicast message queue group is one such that a message can be sent to multiple
message queues in the group simultaneously.

Node

See “Cluster Node”.

Node Id

Node identifier that is unique in the cluster. A given node id identifies a node only for
as long as the node is a member of the cluster membership.

Node Name

The name of a node that is unique in the cluster.
90 SAI-Overview-B.02.01 Section 5 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Non-Collocated Checkpoints

Checkpoints created without the collocated attribute are called non-collocated check-
points. The management of replicas of non-collocated checkpoints and whether they
are active or not is mainly the duty of the SA Checkpoint Service.

Non-Pre-Instantiable Components

Such components provide service as soon as they are instantiated. Hence, the Avail-
ability Management Framework cannot instantiate them in advance as spare entities.
All non-proxied, non-SA-aware components are non-pre-instantiatable components.

Non-Pre-Instantiable Service Unit

This is a service unit containing no pre-instantiable component.

Non-SA-Aware Component

A non-SA-aware component is a component that provides no specific support for SA
functionality provided by the Availability Management Framework. Such components
do not use any Availability Management Framework API.
Typically, non-SA-aware components are registered with the Availability Manage-
ment Framework by dedicated SA-aware components, which act as proxies between
the Availability Management Framework and the non-SA-aware components.
These dedicated SA-aware components are called proxy components. The non-SA-
aware components for which a proxy component mediates are called proxied compo-
nents.
For non-proxied, non-SA-aware local components, the role of the Availability Man-
agement Framework is limited to the management of the component life cycle via
CLC-CLI commands.

Notification

In the context of the Notification Service, notifications are data containers informing
consumers about an event that has occurred. There are various notification types
defined. A set of notification attributes is common to all notification types. Additionally,
there are also attributes specific to the notification types.

Notification Consumer

In the context of the Notification Service, notification consumers are notification read-
ers or subscribers.
Overview SAI-Overview-B.02.01 Section 5 91

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Notification Filter

Notification filters can be specified for the operations of the reader API and subscriber
API of the Notification Service.

Notification Producer

A notification producer generates notifications using the producer API of the Notifica-
tion Service.

Notification Reader

A notification reader retrieves persistently logged notifications using the reader API of
the Notification Service.

Notification Service

The Notification Service is an SA Service that allows notifications to be produced and
consumed. In contrast to the Event Service, the Notification Service has the following
characteristics:

Notification types and attributes of the notifications are closely related to objects
defined in the ITU-T X.73x recommendations.

The Notification Service provides guaranteed delivery for notifications forwarded to
subscribers.

Notification Subscriber

A notification subscriber gets notifications forwarded as they occur using the sub-
scriber API of the Notification Service.

Notification Type

The Notification Service defines the following notification types:

• object creation and deletion,
• attribute change,
• state change,
• alarm, and
• security alarm.

Object Implementer

Services and applications that implement the IMM objects are called Object Imple-
menters. This is a term used in the SA IMM Service.
92 SAI-Overview-B.02.01 Section 5 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Object Implementer API

The Object Implementer API (OI-API) is defined in the SA IMM Service, and its use is
restricted to Object Implementers.

Object Management API

The Object Management API (OM-API) is defined in the SA IMM Service and
exposed typically to system management applications.

Operational State

The operational state is supported for components, service units, and cluster nodes.
It is used by the Availability Management Framework to determine whether one of
these entities is capable of taking a role in providing the service. The operational
states are enabled and disabled.

Orphan Locks

These are locks that are held by a process when the process terminates. Usually, the
SA Lock Service strips the orphan locks from the holding process. However, for SA
Lock Service implementations supporting the orphan lock feature, the user can dis-
able the stripping of locks. Orphan locks need to be freed with a purge call.

Out-of-Service State

This is one of the readiness states. Refer to “Readiness State”.

Partial Checkpoint Update

A checkpoint with the partial update option is a checkpoint with the asynchronous
update option and with no guarantee for the atomicity of an update. The SA Check-
point Service marks sections that are modified by the write call as corrupt when a
fault occurs while a checkpoint replica is being updated. For an asynchronous check-
point without the partial update option, it is guaranteed that a replica is either updated
with all data specified in the write call or is not updated at all.

Partially-Assigned

A configured service instance that is neither unassigned nor fully-assigned is said to
be partially-assigned.

Passive Monitoring

This is a type of component monitoring supported by the Availability Management
Framework. Refer to “Component Monitoring” for details.
Overview SAI-Overview-B.02.01 Section 5 93

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Persistent and Non-Persistent Message Queues

A message queue can be defined as non-persistent, meaning that the SA Message
Service removes the message queue automatically from the cluster-wide name
space if it is not open by a process for a configurable amount of time, called the reten-
tion time. The retention time starts after a static creation or after a close.

A persistent message queue is like a non-persistent message queue with an infinite
retention time. Thus, its life cycle is not tied to the life cycle of the process that cre-
ated it. A persistent message queue can only be removed by using the
saMsgQueueUnlink() call.

Pre-Instantiable Component

Such a component has the ability to stay idle when it gets instantiated by the Avail-
ability Management Framework. It only starts to provide a particular service when
instructed to do so (directly or indirectly) by the Availability Management Framework.

Pre-Instantiable Service Unit

This is a service unit that contains at least one pre-instantiatable component.

Presence State

The presence state is supported at the component and service unit levels and reflects
the component life cycle. Its values are: Uninstantiated, Instantiating, Instantiated,
Terminating, Restarting, Instantiation-failed, Termination-failed.

Process

The term process, in this document, can be regarded as equivalent to a process
defined by the POSIX standard. However, use of the term process does not mandate
a POSIX process, but rather any equivalent entity that a system provides to manage
executing software.

Protection Group

A protection group for a component service instance is the group of components the
component service instance has been assigned to. The name of a protection group is
the name of the component service instance that it protects. A protection group is a
dynamic entity that changes as component service instances are assigned to, and
removed from, components.
94 SAI-Overview-B.02.01 Section 5 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Proxy Component

This is an SA-aware component that mediates for non-SA-aware components. A
proxy component registers the non-SA-aware component, called proxied component,
with the Availability Management Framework and receives instructions from the
Availability Management Framework on behalf of the proxied component.

Proxied Component

This is a non-SA-aware component that is mediated by a proxy component. It does
not interact directly with the Availability Management Framework via API interfaces;
requests from the Availability Management Framework for proxied components are
directed to the proxy component acting on behalf of the proxied component.

Quiesced HA State

This is one of the HA states that can be assumed by a component or a service unit.
Refer to “HA State”.

Quiescing HA State

This is one of the HA states that can be assumed by a component or a service unit.
Refer to “HA State”.

Readiness State

This state is applicable to service units and components.

At the service unit level, this is a compound state determined by the administrative
and operational state of the service unit as well as the administrative state of the ser-
vice group containing it, cluster node containing it (for local service units), enclosing
application (if any), and cluster (for local service units).

At the component level, this is a compound state that is a combination of the enclos-
ing service unit's readiness state and the component's own operational state.

The valid values for the readiness state are in-service, out-of-service and stopping.

Readiness is the one and only state that determines the ability of service units to
receive service instance assignments and the ability of components to receive com-
ponent service instance assignments.

Recommended Recovery

The type of recovery recommended to the Availability Management Framework to
recover from an error of a component. The recovery taken by the Availability Man-
agement Framework is not necessarily the recovery recommended by the error
Overview SAI-Overview-B.02.01 Section 5 95

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
report, because the Availability Management Framework may decide to escalate to a
higher recovery level.

Recovery

This is an automatic action taken by the Availability Management Framework (no
human intervention) after an error occurred to a component to ensure that all compo-
nent service instances that were assigned to this component are reassigned to non-
erroneous components. This applies to all component service instances regardless of
the component’s HA state on their behalf. Note that the Availability Management
Framework may have to (or chooses to) reassign these component service instances
to non-erroneous components with a different HA state than the HA state of the erro-
neous component. Recovery actions include different levels of restart and different
levels of fail-over.

Recovery Escalation

When an error is reported on a component, the error report also contains a recom-
mended recovery action. The Availability Management Framework, by default, imple-
ments the recommended recovery action; however, to cover cases in which the
recovery action is not appropriate and does not prevent the error from occurring
again, the Availability Management Framework also implements an escalation recov-
ery policy. The underlying principle of the escalation is to progressively extend the
scope of the error from component to service unit, from service unit to node and from
node to application or cluster.

Redundancy Level of a Service Instance

The number of service units being assigned an HA state for this service instance.

Redundant Service Unit

A redundant service unit is a service unit that can be used if the original service unit
fails.

Registered Process

The process of an SA-aware component that is linked to the Availability Management
Framework library, and that registered a component with the Availability Management
Framework. The registered component can be the component the process belongs to
or a proxied component. The registered process executes the requests of the Avail-
ability Management Framework on behalf of the component and conveys such
requests to other processes and the hardware equipment of the local component,
where necessary.
Note that the “registered” refers to the component and not to the process.
96 SAI-Overview-B.02.01 Section 5 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Repair

This is the action performed by the Availability Management Framework to bring
some erroneous components back into a healthy state. Note that in case of HW,
repair may require human intervention (to replace a board for example).
Repair actions include restarting a component, restarting all components in a service
unit, and rebooting a node.
Note that a restart action is both a recovery and a repair action. Sometimes, restart is
used only as a repair action. For example, if the recovery action is to fail over the
erroneous component, the repair action can be to restart the component.

Resource

Any physical entity managed by the Availability Management Framework is a
resource. Physical entities are either hardware equipment or software abstractions
implemented by programs running on that hardware. These software abstractions
include but are not limited to software processes, operating system features or oper-
ating system abstractions such as IP addresses or file systems like NFS.

Restart

Restarting a component means that the component is terminated and then reinstanti-
ated.

Runtime Objects and Runtime Attributes

Runtime objects and attributes are the means by which Object Implementers reflect
the current state of the objects they implement in the information model. The set of
runtime objects and attributes constitute the descriptive part of the information model.
Runtime objects and attributes are typically under the control of Object Implementers.

SA-Aware Component

An SA-aware component is a local component that supports the SA functionality pro-
vided by the Availability Management Framework and is under direct control of the
Availability Management Framework. The Availability Management Framework
directs operations to the component as to what it should do and when to do it. The
component then reacts appropriately to these operations.

Service Availability Services

Service Availability (SA) Services are components of this specification that provide
core underlying services for the Availability Management Framework and applica-
tions.
Overview SAI-Overview-B.02.01 Section 5 97

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Service Group

A service group (SG) is a logical entity that groups one or more service units in order
to provide service availability for a particular set of service instances. To participate in
a service group, a service unit must support the redundancy model (see below)
defined for the service group and be able to receive the assignment of any service
instance protected by the service group.

Service Group Redundancy Model

A service group has associated with it, by configuration, a service group redundancy
model. The service units within a service group provide service availability to the ser-
vice instances that they support, according to the particular service group redun-
dancy model.

This specification defines the following service group redundancy models:

• 2N redundancy model: In a service group with the 2N redundancy model, at most
one service unit will have the active HA state for all service instances (usually
called the active service unit) and at most one service unit will have the standby
HA state for all service instances (usually called the standby service unit). Some
other service units are considered spare service units for the service group. The
components in the active service unit execute the service, while the components
in the standby service unit are prepared to take over the active role, if the active
service unit fails.

• N+M redundancy model: This redundancy model has the following characteris-
tics: A service unit can be
(i) active for all SIs assigned to it or
(ii) standby for all SIs assigned to it.
In other words, a service unit cannot be active for some SIs and standby for
some other SIs at the same time.
At any given time, there can be several service units instantiated for a service
group: some service units are active for some SIs, some service units are
standby for some SIs, and possibly some other service units are considered
spare service units for the service group.

• N-Way redundancy model: In a service group with the N-way redundancy model,
a service unit can simultaneously
(i) be assigned the active HA state for some SIs and
(ii) the standby HA state for some other SIs.
At most one service unit may have the active HA state for an SI, and zero, one or
multiple service units may have the standby HA state for the same SI.

• N-Way Active redundancy model: In the N-way active redundancy model, the
service group contains N service units. The characteristics of this redundancy
model are:
98 SAI-Overview-B.02.01 Section 5 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
• Each service unit has to be active for all the SIs assigned to it.
• A service unit is never assigned the standby state for any SI.
• For each SI, there may be zero, one, or multiple service units assigned the

active HA state for that SI.
• “No Redundancy” redundancy model: In the no redundancy model, the service

group contains one or more service units. This redundancy model is typically
used with non-critical components, when the failure of a component does not
cause any severe impact on the overall system.This redundancy model has the
following characteristics:
• A service unit is assigned the active HA state for at most one SI. In other

words, no service unit will have more than one SI assigned to it.
• A service unit is never assigned the standby HA state for an SI. The Availabil-

ity Management Framework can recover from a fault only by restarting a ser-
vice unit, or as an escalation, by restarting the node containing the service
unit.

• No two service units exist having the same SI assigned to them.

Service Instance

A service instance is a particular service (workload) that the Availability Management
Framework has assigned to a service unit. A service instance is made up of a set of
component service instances that correspond to the service assigned to each compo-
nent in the service unit. A single service unit may support multiple service instances
at a given time.

Service Unit

A service unit is a logical entity that aggregates a set of components combining their
individual functionalities to provide a higher level service. Aggregating components
into a logical entity managed by the Availability Management Framework as a single
unit provides system administrators with a simplified, coarser grained view. Adminis-
trative operations are directed at service units as opposed to individual components.
From the Availability Management Framework’s perspective, a service unit is the unit
of redundancy. A service unit can comprise any number of components, but a given
component can exist in only one service unit at a time. External and local compo-
nents cannot be mixed in the same service unit.

Service Unit State

The overall state of a service unit is a combination of a number of underlying states.
Each service unit has presence, administrative, operational and readiness states, as
well as an HA state on behalf of the service instances assigned to the service unit.
Overview SAI-Overview-B.02.01 Section 5 99

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
SG

SG is an acronym for service group.

Shutting Down Administrative Operation

This operation is derived from the ITU X.731 state management model (see [2]). It
applies to a service unit, a service group, a cluster node, a service instance, an appli-
cation, and the cluster.

SI

SI is an acronym for service instance.

Spare Service Unit

This is an instantiated service unit having no service instance assigned to it.

Standby

Not currently providing service but prepared to take over the active state.

Standby HA State

This is one of the HA states that can be assumed by a component or a service unit.
Refer to “HA State”.

Standby Service Unit

This is a service unit having the standby HA state for all service instances assigned to
it.

SU

SU is an acronym for service unit.

Synchronous Checkpoint Update

When a checkpoint has been created with the synchronous update option, write calls
return only when all checkpoint replicas have been updated. In addition, the SA
Checkpoint Service guarantees that there are no partial updates in a replica: A rep-
lica is either updated with all data specified in the write call or is not updated at all.
See also “Asynchronous Checkpoint Update”.
100 SAI-Overview-B.02.01 Section 5 Overview

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
Switch-Over

The term switch-over is used to designate circumstances where the Availability Man-
agement Framework moves the active HA state assignment of a particular compo-
nent service instance from one component to another component while the first
component is still healthy and capable of providing the service. Switch-over opera-
tions are usually the consequence of administrative operations (such as lock of a ser-
vice unit) or escalation of recovery procedures.

Unassigned

A service instance is said to be unassigned if there is no service unit having the active
or quiescing HA state for this service instance.

Unicast Message Queue Group

A unicast message queue group is one such that a message is sent to only one mes-
sage queue in the group, whereas a multicast message queue group is one such that
a message can be sent to multiple message queues in the group simultaneously.

Unlock Administrative Operation

This operation is derived from the ITU X.731 state management model (see [2]). It
applies to a service unit, a service group, a cluster node, a service instance, an appli-
cation, and the cluster.

Unlocked Service Unit

In the description of the Availability Management Framework, saying that a service
unit is unlocked without further specification implies that its administrative state and
the administrative states of the following entities is Unlocked: service group contain-
ing it, cluster node containing it (for local service units), enclosing application, and
cluster (for local service units). If only the administrative state of the service unit is
meant, this will be explicitly stated.

Unlocked State

This is one of the administrative states that are maintained for service units, service
groups, nodes, service instances, applications, and the cluster. An entity in this state
may be elected to participate in providing service if its operational state is enabled.
Refer to “Unlock Administrative Operation” for further details.

Unregistered Process

Any process of an SA-aware component other than the registered process.
Overview SAI-Overview-B.02.01 Section 5 101

Service AvailabilityTM Interface Specification
Glossary

1

5

10

15

20

25

30

35

40
View Number

A view number is associated with each transition of the cluster membership. For a
given view number, all processes obtain the same view of the cluster membership.
The view number increases with each membership transition, although not necessar-
ily by one.
102 SAI-Overview-B.02.01 Section 5 Overview

	1 Document Introduction
	1.1 Document Purpose
	1.2 Documents Organization
	1.2.1 Hardware Interface Specification (HPI) Documents
	1.2.2 Application Interface Specification (AIS) Documents

	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Changes

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview of the Application Interface Specification
	2.1 AIS Availability Management Framework
	2.2 AIS Services
	2.2.1 Cluster Membership Service
	2.2.2 Checkpoint Service
	2.2.3 Event Service
	2.2.4 Message Service
	2.2.5 Lock Service
	2.2.6 Information Model Management Service
	2.2.7 Notification Service
	2.2.8 Log Service
	2.2.9 Modeling AIS Services

	2.3 Dependencies
	2.4 SNMP MIBs

	3 AIS Programming Model and Naming Conventions
	3.1 Programming Model and Usage Overview
	3.1.1 Synchronous and Asynchronous Programming Models
	3.1.1.1 Asynchronous APIs
	3.1.1.2 Synchronous APIs

	3.1.2 Library Life Cycle
	3.1.2.1 Initialization
	3.1.2.2 Finalization
	3.1.2.3 Dispatching

	3.1.3 Interaction Between AIS and POSIX APIs
	3.1.4 Memory Management
	3.1.4.1 Usage of [in], [out], and [in/out] in Parameters
	3.1.4.2 Memory Allocation and Deallocation
	3.1.4.3 Handling Pointers in a Process and an Area Service

	3.1.5 Track APIs
	3.1.5.1 Track an Object
	3.1.5.2 Callback Notification
	3.1.5.3 Stop Tracking an Object
	3.1.5.4 Deallocating Memory Allocated for Tracking an Object

	3.2 Naming Conventions
	3.2.1 Case Sensitivity
	3.2.2 Global Function Declarations
	3.2.3 Global Variable Declarations
	3.2.4 Type Declarations
	3.2.5 Macro Declarations
	3.2.6 Enumeration Type Declarations

	3.3 Standard Predefined Types and Constants
	3.3.1 Boolean Type
	3.3.2 Signed and Unsigned Integer Types
	3.3.2.1 Signed Types
	3.3.2.2 Unsigned Types

	3.3.3 Floating Point Types
	3.3.4 String Type
	3.3.5 Size Type
	3.3.6 Offset Type
	3.3.7 Time Type
	3.3.7.1 Timestamps
	3.3.7.2 Time Durations

	3.3.8 Sequence of Octets Type
	3.3.9 Name Type
	3.3.9.1 Note on AIS Object Names
	3.3.9.1.1 Recommendations on RDN Values
	3.3.9.1.2 Values for the safApp Application RDN of AIS Services

	3.3.10 SaServicesT
	3.3.11 Version Type
	3.3.11.1 Notes on Backward Compatibility

	3.3.12 Track Flags
	3.3.13 Dispatch Flags
	3.3.14 Selection Object
	3.3.15 Invocation
	3.3.16 Error Codes

	4 SA Forum Information Model
	4.1 DN formats
	4.2 Mapping from UML to the IMM Service
	4.3 HPI View
	4.4 Cluster View
	4.5 AMF View
	4.6 AMF Cluster and Node Classes
	4.7 AMF Application/SG Classes
	4.8 AMF SU Class
	4.9 AMF Component
	4.10 AMF SI Classes
	4.11 AMF CSI Classes
	4.12 CKPT Classes
	4.13 CLM Classes
	4.14 EVT Classes
	4.15 LCK Classes
	4.16 LOG Classes
	4.17 MSG Classes

	5 AIS Abbreviations, Concepts, and Terminology

