
Service AvailabilityTM Forum
Application Interface Specification

Message Service SAI-AIS-MSG-B.02.01

The Service AvailabilityTM solution is high availability and more; it is the delivery of ultra-dependable
communication services on demand and without interruption.

This Service AvailabilityTM Forum Application Interface Specification document might contain
design defects or errors known as errata, which might cause the product to deviate from
published specifications. Current characterized errata are available on request.

.

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40
 SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT

The Service Availability™ Specification(s) (the "Specification") found at the URL http://www.saforum.org (the
"Site") is generally made available by the Service Availability Forum (the "Licensor") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions, which govern the
use of the Specification are set forth in this agreement (this "Agreement").

IMPORTANT – PLEASE READ THE TERMS AND CONDITIONS PROVIDED IN THIS AGREEMENT BEFORE DOWN-
LOADING OR COPYING THE SPECIFICATION. IF YOU AGREE TO THE TERMS AND CONDITIONS OF THIS AGREE-
MENT, CLICK ON THE "ACCEPT" BUTTON. BY DOING SO, YOU AGREE TO BE BOUND BY THE TERMS AND
CONDITIONS STATED IN THIS AGREEMENT. IF YOU DO NOT WISH TO AGREE TO THESE TERMS AND CONDITIONS,
YOU SHOULD PRESS THE "CANCEL"BUTTON AND THE DOWNLOAD PROCESS WILL NOT PROCEED.

1. LICENSE GRANT. Subject to the terms and conditions of this Agreement, Licensor hereby grants you a non-
exclusive, worldwide, non-transferable, revocable, but only for breach of a material term of the license granted in
this section 1, fully paid-up, and royalty free license to:

a. reproduce copies of the Specification to the extent necessary to study and understand the
Specification and to use the Specification to create products that are intended to be compatible
with the Specification;
b. distribute copies of the Specification to your fellow employees who are working on a project or
product development for which this Specification is useful; and
c. distribute portions of the Specification as part of your own documentation for a product you have
built, which is intended to comply with the Specification.

2. DISTRIBUTION. If you are distributing any portion of the Specification in accordance with Section 1(c), your
documentation must clearly and conspicuously include the following statements:

a. Title to and ownership of the Specification (and any portion thereof) remain with Service Avail-
ability Forum ("SA Forum").
b. The Specification is provided "As Is." SA Forum makes no warranties, including any implied
warranties, regarding the Specification (and any portion thereof) by Licensor.
c. SA Forum shall not be liable for any direct, consequential, special, or indirect damages (includ-
ing, without limitation, lost profits) arising from or relating to the Specification (or any portion
thereof).
d. The terms and conditions for use of the Specification are provided on the SA Forum website.

3. RESTRICTION. Except as expressly permitted under Section 1, you may not (a) modify, adapt, alter, translate,
or create derivative works of the Specification, (b) combine the Specification (or any portion thereof) with another
document, (c) sublicense, lease, rent, loan, distribute, or otherwise transfer the Specification to any third party, or
(d) copy the Specification for any purpose.

4. NO OTHER LICENSE. Except as expressly set forth in this Agreement, no license or right is granted to you, by
implication, estoppel, or otherwise, under any patents, copyrights, trade secrets, or other intellectual property by
virtue of your entering into this Agreement, downloading the Specification, using the Specification, or building prod-
ucts complying with the Specification.

5. OWNERSHIP OF SPECIFICATION AND COPYRIGHTS. The Specification and all worldwide copyrights therein
are the exclusive property of Licensor. You may not remove, obscure, or alter any copyright or other proprietary
rights notices that are in or on the copy of the Specification you download. You must reproduce all such notices on
all copies of the Specification you make. Licensor may make changes to the Specification, or to items referenced
AIS Specification SAI-AIS-MSG-B.02.01 3

Service AvailabilityTM Application Interface Specification

Legal Notice

1

5

10

15

20

25

30

35

40
therein, at any time without notice. Licensor is not obligated to support or update the Specification.

6. WARRANTY DISCLAIMER. THE SPECIFICATION IS PROVIDED "AS IS." LICENSOR DISCLAIMS ALL
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY, NONINFRINGEMENT OF THIRD-PARTY RIGHTS, FITNESS FOR ANY PARTICULAR PUR-
POSE, OR TITLE. Without limiting the generality of the foregoing, nothing in this Agreement will be construed as
giving rise to a warranty or representation by Licensor that implementation of the Specification will not infringe the
intellectual property rights of others.

7. PATENTS. Members of the Service Availability Forum and other third parties [may] have patents relating to the
Specification or a particular implementation of the Specification. You may need to obtain a license to some or all of
these patents in order to implement the Specification. You are responsible for determining whether any such
license is necessary for your implementation of the Specification and for obtaining such license, if necessary.
[Licensor does not have the authority to grant any such license.] No such license is granted under this Agreement.

8. LIMITATION OF LIABILITY. To the maximum extent allowed under applicable law, LICENSOR DISCLAIMS
ALL LIABILITY AND DAMAGES, INCLUDING DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, AND INCI-
DENTAL DAMAGES, ARISING FROM OR RELATING TO THIS AGREEMENT, THE USE OF THE SPECIFICA-
TION OR ANY PRODUCT MANUFACTURED IN ACCORDANCE WITH THE SPECIFICATION, WHETHER
BASED ON CONTRACT, ESTOPPEL, TORT, NEGLIGENCE, STRICT LIABILITY, OR OTHER THEORY. NOT-
WITHSTANDING ANYTHING TO THE CONTRARY, LICENSOR’S TOTAL LIABILITY TO YOU ARISING FROM
OR RELATING TO THIS AGREEMENT OR THE USE OF THE SPECIFICATION OR ANY PRODUCT MANU-
FACTURED IN ACCORDANCE WITH THE SPECIFICATION WILL NOT EXCEED ONE HUNDRED DOLLARS
($100). YOU UNDERSTAND AND AGREE THAT LICENSOR IS PROVIDING THE SPECIFICATION TO YOU AT
NO CHARGE AND, ACCORDINGLY, THIS LIMITATION OF LICENSOR’S LIABILITY IS FAIR, REASONABLE,
AND AN ESSENTIAL TERM OF THIS AGREEMENT.

9. TERMINATION OF THIS AGREEMENT. Licensor may terminate this Agreement, effective immediately upon
written notice to you, if you commit a material breach of this Agreement and do not cure the breach within ten (30)
days after receiving written notice thereof from Licensor. Upon termination, you will immediately cease all use of
the Specification and, at Licensor’s option, destroy or return to Licensor all copies of the Specification and certify in
writing that all copies of the Specification have been returned or destroyed. Parts of the Specification that are
included in your product documentation pursuant to Section 1 prior to the termination date will be exempt from this
return or destruction requirement.

10. ASSIGNMENT. You may not assign, delegate, or otherwise transfer any right or obligation under this Agree-
ment to any third party without the prior written consent of Licensor. Any purported assignment, delegation, or
transfer without such consent will be null and void.

11. GENERAL. This Agreement will be construed in accordance with, and governed in all respects by, the laws of
the State of Delaware (without giving effect to principles of conflicts of law that would require the application of the
laws of any other state). You acknowledge that the Specification comprises proprietary information of Licensor and
that any actual or threatened breach of Section 1 or 3 will constitute immediate, irreparable harm to Licensor for
which monetary damages would be an inadequate remedy, and that injunctive relief is an appropriate remedy for
such breach. All waivers must be in writing and signed by an authorized representative of the party to be charged.
Any waiver or failure to enforce any provision of this Agreement on one occasion will not be deemed a waiver of
any other provision or of such provision on any other occasion. This Agreement may be amended only by binding
written instrument signed by both parties. This Agreement sets forth the entire understanding of the parties relating
to the subject matter hereof and thereof and supersede all prior and contemporaneous agreements, communica-
tions, and understandings between the parties relating to such subject matter.
4 SAI-AIS-MSG-B.02.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
Table of Contents Message Service
1 Document Introduction . 9
 1.1 Document Purpose . 9
 1.2 AIS Documents Organization . 9
 1.3 History . 9
 1.3.1 New Topics . 9
 1.3.2 Clarifications . 10
 1.3.3 Changes in Return Values of API Functions . 11
 1.3.4 Other Changes . 11
 1.4 References . 12
 1.5 How to Provide Feedback on the Specification . 12
 1.6 How to Join the Service Availability™ Forum . 12
 1.7 Additional Information . 13
 1.7.1 Member Companies . 13
 1.7.2 Press Materials . 13

2 Overview . 15
 2.1 Message Service . 15

3 SA Message Service API . 17

 3.1 Message Service Model . 17
 3.1.1 Messages . 17
 3.1.2 Message Queues . 17
 3.1.3 Message Queue Groups . 17
 3.1.4 Properties of Message Queues . 18
 3.1.4.1 Non-persistent and Persistent Message Queues . 18
 3.1.4.2 Message Preservation Property of a Queue . 19
 3.1.5 Associating Processes with Message Queues . 19
 3.1.6 Message Delivery Properties . 20
 3.2 Include File and Library Name . 21
 3.3 Type Definitions . 21
 3.3.1 Handles . 21
 3.3.1.1 SaMsgHandleT . 21
 3.3.1.2 SaMsgQueueHandleT . 21
 3.3.2 SaMsgSenderIdT . 21
 3.3.3 SaMsgCallbacksT . 22
 3.3.4 SaMsgAckFlagsT . 22
 3.3.5 Message Queue Creation Flags and Creation Attributes . 22
 3.3.5.1 SaMsgQueueCreationFlagsT . 23
 3.3.5.2 SaMsgQueueCreationAttributesT . 23
 3.3.6 SaMsgQueueOpenFlagsT . 23
 3.3.7 Message Priority . 24
AIS Specification SAI-AIS-MSG-B.02.01 5

Service AvailabilityTM Application Interface Specification

Table of Contents

1

5

10

15

20

25

30

35

40
 3.3.8 Message Queue Usage and Status . 24
 3.3.8.1 SaMsgQueueUsageT . 25
 3.3.8.2 SaMsgQueueStatusT . 25
 3.3.9 SaMsgQueueGroupPolicyT . 26
 3.3.10 Types for Tracking Message Queue Group Changes . 26
 3.3.10.1 SaMsgQueueGroupChangesT . 26
 3.3.10.2 SaMsgQueueGroupMemberT . 27
 3.3.10.3 SaMsgQueueGroupNotificationT . 27
 3.3.10.4 SaMsgQueueGroupNotificationBufferT . 27
 3.3.11 SaMsgMessageT . 28
 3.3.12 saMsgMessageCapacityStatusT . 29
 3.3.13 saMsgStateT . 30
 3.4 Library Life Cycle . 30
 3.4.1 saMsgInitialize() . 30
 3.4.2 saMsgSelectionObjectGet() . 33
 3.4.3 saMsgDispatch() . 34
 3.4.4 saMsgFinalize() . 35
 3.5 Message Queue Operations . 36
 3.5.1 saMsgQueueOpen() and saMsgQueueOpenAsync() . 36
 3.5.2 SaMsgQueueOpenCallbackT . 40
 3.5.3 saMsgQueueClose() . 42
 3.5.4 saMsgQueueStatusGet() . 44
 3.5.5 saMsgQueueRetentionTimeSet() . 45
 3.5.6 saMsgQueueUnlink() . 46
 3.6 Management of Message Queue Groups . 48
 3.6.1 saMsgQueueGroupCreate() . 48
 3.6.2 saMsgQueueGroupInsert() . 49
 3.6.3 saMsgQueueGroupRemove() . 51
 3.6.4 saMsgQueueGroupDelete() . 52
 3.6.5 saMsgQueueGroupTrack() . 53
 3.6.6 SaMsgQueueGroupTrackCallbackT . 56
 3.6.7 saMsgQueueGroupTrackStop() . 58
 3.6.8 saMsgQueueGroupNotificationFree() . 59
 3.7 Message Send and Receive Operations . 61
 3.7.1 saMsgMessageSend() and saMsgMessageSendAsync() . 61
 3.7.2 SaMsgMessageDeliveredCallbackT . 64
 3.7.3 saMsgMessageGet() . 67
 3.7.4 saMsgMessageDataFree() . 70
 3.7.5 SaMsgMessageReceivedCallbackT . 71
 3.7.6 saMsgMessageCancel() . 72
 3.8 Request-Reply Operations . 73
 3.8.1 saMsgMessageSendReceive() . 73
 3.8.2 saMsgMessageReply() and saMsgMessageReplyAsync() . 77

4 Alarms and Notifications . 81
6 SAI-AIS-MSG-B.02.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 4.1 Setting Common Attributes . 81
 4.2 Message Service Notifications . 82
 4.2.1 Message Service Alarms . 82
 4.2.2 Message Service State Change Notifications . 83
AIS Specification SAI-AIS-MSG-B.02.01 7

Service AvailabilityTM Application Interface Specification

Table of Contents

1

5

10

15

20

25

30

35

40
8 SAI-AIS-MSG-B.02.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document defines the Message Service of the Application Interface Specification
(AIS) of the Service AvailabilityTM Forum (SA Forum). It is intended for use by
implementers of the Application Interface Specification and by application developers
who would use the Application Interface Specification to develop applications that
must be highly available. The AIS is defined in the C programming language, and
requires substantial knowledge of the C programming language.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be
used in conjunction with the Service AvailabilityTM Forum Hardware Interface
Specification (HPI) and with the Service AvailabilityTM Forum System Management
Specification.

1.2 AIS Documents Organization
The Application Interface Specification is organized into several volumes. For a list of
all Application Interface Specification documents, refer to the SA Forum Overview
document ([1]).

1.3 History
Previous releases of the Message Service specification:

(1) SAI-AIS-MSG-A.01.01
(2) SAI-AIS-MSG-B.01.01

This section presents the changes of the current release, SAI-AIS-MSG-B.02.01, with
respect to the SAI-AIS-MSG-B.01.01 release. Editorial changes are not mentioned
here.

1.3.1 New Topics
• Section 3.3.12 on page 29 for the saMsgMessageCapacityStatusT data type.
• Section 3.3.13 on page 30 for the SaMsgStateT data type.
• Section 3.5.5 on page 45 for the saMsgQueueRetentionTimeSet() function.
• Section 3.6.8 on page 59 for the saMsgQueueGroupNotificationFree() function,

which is used to free memory allocated by the Message Service library in the
saMsgQueueGroupTrack() function.
AIS Specification SAI-AIS-MSG-B.02.01 Section 1 9

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
• Section 3.7.4 on page 70 for the saMsgMessageDataFree() function, which is
used to free memory allocated by the Message Service library in the
saMsgMessageGet() or saMsgMessageSendReceive() functions.

• Chapter 4 Alarms and Notifications on page 81.

1.3.2 Clarifications
• The behavior of the local equal load queue distribution is clarified on page 18.
• Section 3.1.5 on page 19 clarifies that while a process has a message queue

open, the message queue cannot be opened again by the same process or by
any other process.

• Section 3.1.6 on page 20 clarifies that the SA_AIS_ERR_QUEUE_FULL error
code is only delivered for a process sending messages to a queue if the process
requested an acknowledgement for its send operation.

• The description of the SA_MSG_QUEUE_RECEIVE_CALLBACK flag in
SaMsgQueueOpenFlagsT (see Section 3.3.6 on page 23) clarifies that a mes-
sage can be retrieved by calling saMsgMessageGet() during the invocation of
the saMsgMessageReceivedCallback() callback function.

• Section 3.3.11 on page 28 clarifies the setting of the senderName in the
SaMsgMessageT structure.

• The description of the functions saMsgMessageSendAsync() in Section 3.7.1 on
page 61, saMsgMessageReplyAsync() in Section 3.8.2 on page 77, and
SaMsgMessageDeliveredCallbackT in Section 3.7.2 on page 64 clarify that a
process may deallocate the memory for the data in the message buffer passed
to saMsgMessageSendAsync() or saMsgMessageReplyAsync() also during the
invocation of the corresponding saMsgMessageDeliveredCallback() function.
10 SAI-AIS-MSG-B.02.01 Section 1.3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1.3.3 Changes in Return Values of API Functions

1.3.4 Other Changes
• The name spaces for message queues and message queue groups are now dis-

tinct. This is explained in Section 3.1.3 on page 17.
• The definition of the enum values SA_MSG_QUEUE_GROUP_NO_CHANGE

and SA_MSG_QUEUE_GROUP_STATE_CHANGED in Section 3.3.10.1 on
page 26 have been changed. The meaning of the
SA_MSG_QUEUE_GROUP_NO_CHANGE enum has been clarified. The
SA_MSG_QUEUE_GROUP_STATE_CHANGED enum value is no longer used
and is now reserved for future use.

Table 1 Changes in Return Values of API Functions

API Function Return Value Change Type

SaMsgMessageDeliveredCallbackT SA_AIS_ERR_BAD_HANDLE
SA_AIS_ERR_INVALID_PARAM
SA_AIS_ERR_BAD_FLAGS

new

saMsgMessageGet() SA_AIS_ERR_NO_MEMORY new

saMsgMessageReply()
saMsgMessageReplyAsync()

SA_AIS_ERR_BUSY
SA_AIS_ERR_NOT_EXIST

clarified

saMsgMessageReplyAsync() SA_AIS_ERR_INIT new

saMsgQueueGroupCreate() SA_AIS_ERR_INVALID_PARAM extended

saMsgQueueGroupTrack() SA_AIS_ERR_INIT
SA_AIS_ERR_NO_SPACE

clarified

SaMsgQueueGroupTrackCallbackT SA_AIS_ERR_BAD_HANDLE
SA_AIS_ERR_INVALID_PARAM
SA_AIS_ERR_BAD_FLAGS

new

saMsgQueueOpen() and
saMsgQueueOpenAsync()

SA_AIS_ERR_INVALID_PARAM
SA_AIS_ERR_EXIST

extended

saMsgQueueOpen() and
saMsgQueueOpenAsync()

SA_AIS_ERR_BUSY clarified

SaMsgQueueOpenCallbackT SA_AIS_ERR_BAD_HANDLE
SA_AIS_ERR_INVALID_PARAM
SA_AIS_ERR_BAD_FLAGS

new

SaMsgQueueOpenCallbackT SA_AIS_ERR_BUSY clarified
AIS Specification SAI-AIS-MSG-B.02.01 Section 1.3.3 11

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
• The description of the creationAttributes parameter in the saMsgQueueOpen()
and saMsgQueueOpenAsync() functions (see Section 3.5.1 on page 36) states
now that retentionTime is ignored when the creationAttributes parameter is not
NULL, and the message queue already exists.

• Memory allocated by the Message Service library in the
saMsgQueueGroupTrack() function (see Section 3.6.5 on page 53) must now be
freed by invoking the saMsgQueueGroupNotificationFree() function (see Section
3.6.8 on page 59).

• Memory allocated by the Message Service library in the functions
saMsgMessageGet() (see Section 3.7.3 on page 67) or
saMsgMessageSendReceive() (see Section 3.8.1 on page 73) must now be
freed by invoking the saMsgMessageDataFree() function (see Section 3.7.4 on
page 70).

1.4 References
The following documents contain information that is relevant to the specification:

[1] Service AvailabilityTM Forum, Application Interface Specification, Overview,
SAI-Overview-B.02.01

[2] Service AvailabilityTM Forum, Application Interface Specification, Notification
Service, SAI-AIS-NTF-A.01.01

[3] Service AvailabilityTM Forum, Application Interface Specification, Availability
Management Framework, SAI-AIS-AMF-B.02.01

[4] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function

References to these documents are made by putting the number of the document in
brackets.

1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum website (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to
participate in the Forum complete a membership application. Once completed, a
representative of the Service Availability™ Forum will contact you to discuss your
12 SAI-AIS-MSG-B.02.01 Section 1.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
membership in the Forum. The Service Availability™ Forum Membership Application
can be completed online by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by
using the links provided on the Forum’s website
(http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).
AIS Specification SAI-AIS-MSG-B.02.01 Section 1.7 13

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
14 SAI-AIS-MSG-B.02.01 Section 1.7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
 2 Overview
This specification defines the Message Service within the Application Interface Spec-
ification (AIS).

2.1 Message Service
The Message Service specifies a buffered message passing system based on the
concept of a message queue for processes on the same or on different nodes1. Mes-
sages are written to and read from message queues. A single message queue per-
mits a multipoint-to-point communication. Message queues are persistent or non-
persistent. The Message Service must preserve messages that have not yet been
consumed when the message queue is closed.

Processes sending messages to a message queue are unaware that the process,
which was originally processing these messages, has been replaced by another pro-
cess acting as a standby in case the original process fails or switches over.

Message queues can be grouped together to form message queue groups. Message
queue groups permit multipoint-to-multipoint communication. They are identified by
logical names, so that a process is unaware of the number of message queues and of
the physical location of the message queues to which it is communicating. The
sender addresses message queue groups using the same mechanisms that it uses to
address single message queues. The message queue groups can be used to distrib-
ute messages among message queues pertaining to the message queue group.
Regardless of the number of message queues to which messages are distributed, the
message queue group remains accessible under the same name.

Message queue groups can be used to maintain transparency of the sender process
to faults in the receiver processes, represented by the message queues in the mes-
sage queue groups. The sender process communicates with the message queue
group. If a receiver process fails, the sender process continues to communicate with
the message queue group and is unaware of the fault, because it continues to obtain
service from the other receiver processes.

With message queues, the Message Service uses the model of n senders to one
receiver whereas, with message queue groups, the Message Service uses the model
of m senders to n receivers.

1. The term “node” is used in this document in the sense of a “member node”, as defined in the Cluster Mem-
bership Service specification.
AIS Specification SAI-AIS-MSG-B.02.01 Section 2 15

Service AvailabilityTM Application Interface Specification

Overview

1

5

10

15

20

25

30

35

40
16 SAI-AIS-MSG-B.02.01 Section 2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3 SA Message Service API

3.1 Message Service Model

3.1.1 Messages

A message is a byte array of a certain size. In addition to the data contained in the
byte array, a message also has a type, version, priority, and sender name. The
contents of a message are opaque to the Message Service.

3.1.2 Message Queues

A message queue is a software abstraction for buffering messages. A message
queue consists of a collection of separate data areas that are used to store messages
of different priorities. These data areas are called the priority areas of the message
queue. Each priority area holds messages of the same priority. The priority areas of a
message queue have individual sizes.

A message queue is global to a cluster and is identified by a unique name in the
name space of all message queues. A message queue can be configured either stat-
ically or dynamically. The static configuration interfaces are not part of this standard.

3.1.3 Message Queue Groups

A message queue group is a collection of message queues that are addressed as a
single entity. A message queue group is global to a cluster and is identified by a
unique name. Message queues and message queue groups have distinct name
spaces. A message queue can be a member of more than one message queue
group. If a message queue is removed from the cluster, it is automatically removed
from all message queue groups it is a member of.
The names, properties and members of a message queue group are specified either
statically or dynamically. The static configuration interfaces are not defined by this
specification.

Messages sent to a message queue group are directed to one or more of its member
message queues. In a unicast message queue group, each message is sent to only
one of the message queues in the group. In a multicast message queue group, a
message can be sent to more than one message queue in the group and, thus, can
be received by more than one process.

There are several different unicast and multicast policies (defined below) that an
implementation may support. The Equal Load Distribution is mandatory.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3 17

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
In the unicast and multicast policies given below, a local member is a message
queue that is opened by a process residing on the same node as the sending pro-
cess. In contrast, a remote member is a message queue that is opened by a process
not residing on the same node as the sending process.

• Equal Load Distribution (unicast)

The message is sent to a single member. The members are addressed
one-by-one in a round-robin fashion. If an error occurs when sending to a
member, it is implementation-dependent whether the error is returned imme-
diately or whether the Message Service chooses the next member in turn and
for how many members this is repeated. This policy is mandatory.

• Local Equal Load Distribution (unicast)

The message is sent to a single member. The local member message queues
are addressed one-by-one in a round-robin fashion. If there is no local mem-
ber, the behavior is the same as for the equal load distribution policy. If an
error occurs when sending to a member, it is implementation-dependent
whether the error is immediately returned, or the Message Service chooses
the next member in turn and for how many members this is repeated.

• Local Best Queue (unicast)

The message is sent to a single member. The local member message queue
with the largest amount of available space is selected. If several members ful-
fill this condition, they are addressed one-by-one in a round-robin fashion. If
there is no local member, a remote member, or a member that is not opened
by any process, is selected according to the equal load distribution policy. If
an error occurs when sending to a member, it is implementation-dependent
whether the error is returned immediately, or the Message Service chooses
the next member in turn and for how many members this is repeated.

• Broadcast (multicast)

The message is sent to all members of the message queue group that have
sufficient space to hold the message.

3.1.4 Properties of Message Queues

3.1.4.1 Non-persistent and Persistent Message Queues

A message queue can be defined as non-persistent, meaning that the Message
Service removes the message queue automatically from the cluster-wide name
space, if it is not opened by a process for a configurable amount of time, called the
18 SAI-AIS-MSG-B.02.01 Section 3.1.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
retention time. The retention time starts each time when the corresponding mes-
sage queue is closed.

A persistent message queue is like a non-persistent message queue with an infinite
retention time. A persistent message queue can only be removed by using the
saMsgQueueUnlink() call.

If no process has the message queue opened when saMsgQueueUnlink() is called,
the Message Service removes the message queue immediately, even if it is persis-
tent; otherwise, the Message Service removes the message queue when it is closed.

3.1.4.2 Message Preservation Property of a Queue

If a persistent message queue or a message queue with non-zero retention time is
closed, the Message Service must preserve all messages in the message queue that
have not yet been consumed.

Example: In node switch-over situations, the Message Service must preserve mes-
sages in a queue, which have not yet been consumed. For example, assume a ser-
vice unit, (for details, refer to [3]) containing a component cx, which retrieves
messages from a message queue Q for the service assigned to this service unit.
Assume further that this service switches over to another service unit, located on
another node and containing the component cy that works as standby for cx's ser-
vice. If cy reopens the queue Q, and it does not specify that it wants existing mes-
sages to be deleted, the Message Service must preserve the messages that were not
retrieved by cx when cx closed Q as well as the messages that arrived at Q after cx
closed it and before cy reopened it.

If message queues are implemented as node-local resources, it is not required that
the Message Service preserve messages in case of node failures.

3.1.5 Associating Processes with Message Queues

Messages are sent and received by processes. The Message Service is a coopera-
tive model where any process may write to any message queue or message queue
group.

A process can retrieve (receive) messages from a message queue. For this purpose,
a process can open a message queue, obtain a handle to it, and receive messages
from it. While a process has a message queue open, the message queue cannot be
opened again by the same process or by any other process.

If a process terminates abnormally, the Message Service automatically closes all of
its open message queues.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.1.4.2 19

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.1.6 Message Delivery Properties
• Priority - When a process receives a message from a message queue via an

invocation of saMsgMessageGet(), it receives messages in a higher priority
area before messages in a lower priority area. It receives messages of the
same priority from a given process in the order in which that process sent
them. It might not receive messages of different priorities from a given process
in the same order in which that process sent them.

• Integrity of messages - The Message Service guarantees that messages
sent by a process to a message queue are neither altered nor duplicated. Only
complete messages are stored in a message queue.

• At-most-once delivery - The Message Service guarantees that a message
sent to a message queue is delivered at most once to that message queue.
For a message sent to a unicast message queue group, the message is deliv-
ered at most once to one of the member message queues. For a message
sent to a multicast message queue group, the message is delivered at most
once to each of the member message queues.

• Delivery guarantees - If a process sends a message to a message queue or
to a unicast message queue group, and there is no space in the destination
message queue for the entire message, the error code
SA_AIS_ERR_QUEUE_FULL is returned, given that the process requested an
acknowledgement for its send operation. It is expected that an implementation,
for correctly constructed sending calls, returns errors other than
SA_AIS_ERR_QUEUE_FULL only under exceptional and extremely rare con-
ditions. For instance, it is not acceptable to drop packets due to a network that
is momentarily congested. Therefore, the Message Service does not define a
return value, such as communication error, for the sending API calls. Instead,
it uses only a specific SA_AIS_ERR_TIMEOUT. If a process sends a message
to a multicast message queue group, and it requests an acknowledgment, the
sending call returns success if the message can be sent successfully to at
least one member of the message queue group.

• Acknowledgment - A process sending messages can request the Message
Service to notify the process whether the sending was successful. A process
can ask only for an acknowledgment that the message has been stored in the
destination message queue (refer to send operations in Section 3.7.1), or that
the reply to a sending process has been received by the sending process
(refer to send/reply operations in Section 3.8).

• Persistence of messages - Messages are kept in message queues. A mes-
sage never expires in a message queue. When a message is retrieved suc-
cessfully from a message queue through an invocation of
saMsgMessageGet(), the message is removed from the message queue. The
physical representation of a message queue may reside on disk, on a cluster
20 SAI-AIS-MSG-B.02.01 Section 3.1.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
file system, on global shared memory, on shared memory of each node with or
without replication, etc. However, the choice of persistence can have negative
effects on the performance of the Message Service. Therefore, this specifica-
tion does not require that the physical representation of a message queue be
durably stored to survive node failures or shutting down the entire cluster.

3.2 Include File and Library Name
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the Message Service API:

#include <saMsg.h>

To use the Message Service API, an application must be bound with the following
library:

libSaMsg.so

3.3 Type Definitions
The Message Service uses the types described in the following sections.

3.3.1 Handles

3.3.1.1 SaMsgHandleT

typedef SaUint64T SaMsgHandleT;

The type of the handle supplied by the Message Service to a process during initializa-
tion of the Message Service library and used by a process when it invokes functions
of the Message Service API so that the Message Service can recognize the process.

3.3.1.2 SaMsgQueueHandleT

typedef SaUint64T SaMsgQueueHandleT;

The type of a handle to a message queue.

3.3.2 SaMsgSenderIdT

typedef SaUint64T SaMsgSenderIdT;

The type used internally by the Message Service to identify the thread that called
saMsgMessageSendReceive(); it must not be changed by the invoking thread.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.2 21

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.3.3 SaMsgCallbacksT

The SaMsgCallbacksT structure is defined as follows:

typedef struct {

SaMsgQueueOpenCallbackT saMsgQueueOpenCallback;

SaMsgQueueGroupTrackCallbackT saMsgQueueGroupTrackCallback;

SaMsgMessageDeliveredCallbackT saMsgMessageDeliveredCallback;

SaMsgMessageReceivedCallbackT saMsgMessageReceivedCallback;

} SaMsgCallbacksT;

The callbacks structure supplied by a process to the Message Service that contains
the callback functions that the Message Service may invoke.

3.3.4 SaMsgAckFlagsT

The SaMsgAckFlagsT type is used in the saMsgMessageSendAsync() and
saMsgMessageReplyAsync() calls. A parameter of the type SaMsgAckFlagsT indi-
cates the kind of the required acknowledgment and can either be set to zero or
SA_MSG_MESSAGE_DELIVERED_ACK:

#define SA_MSG_MESSAGE_DELIVERED_ACK 0x1

typedef SaUint32T SaMsgAckFlagsT;

SA_MSG_MESSAGE_DELIVERED_ACK - This flag indicates that the caller requires
an acknowledgment to confirm whether the message can be stored in the destination
message queue or reply buffer. If there is no space for the entire message in the des-
tination message queue or reply buffer, the error SA_AIS_ERR_QUEUE_FULL is
returned in case of a message queue, and SA_AIS_ERR_NO_SPACE is returned in
case of a reply buffer.
If SA_MSG_MESSAGE_DELIVERED_ACK is not set, the caller does not require an
acknowledgment.

3.3.5 Message Queue Creation Flags and Creation Attributes

This section defines the creation flags and the creation attributes of a message
queue used in the saMsgQueueOpen() or saMsgQueueOpenAsync() calls.
22 SAI-AIS-MSG-B.02.01 Section 3.3.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.3.5.1 SaMsgQueueCreationFlagsT

#define SA_MSG_QUEUE_PERSISTENT 0x1

typedef SaUint32T SaMsgQueueCreationFlagsT;

SA_MSG_QUEUE_PERSISTENT - If this flag is set, the message queue is persis-
tent, that is, it can be removed only by an explicit call to saMsgQueueUnlink(). If this
flag is not set, the message queue is non-persistent, that is, the Message Service
removes the message queue automatically if it is not opened by a process for a
retentionTime amount of time after its closure.

3.3.5.2 SaMsgQueueCreationAttributesT

typedef struct {

SaMsgQueueCreationFlagsT creationFlags;

SaSizeT size[SA_MSG_MESSAGE_LOWEST_PRIORITY+1];

SaTimeT retentionTime;

} SaMsgQueueCreationAttributesT;

The fields of the SaMsgQueueCreationAttributesT structure have the following inter-
pretation:

• creationFlags - Zero or SA_MSG_QUEUE_PERSISTENT. Refer also to
retentionTime below.

• size - The size in bytes of the priority area of the message queue to contain
messages with the specified priority. For the meaning of
SA_MSG_MESSAGE_LOWEST_PRIORITY, refer to Section 3.3.7 on page
24.

• retentionTime - The time duration after a process closes the message queue
until the Message Service removes the message queue. This parameter
applies only to non-persistent message queues.

3.3.6 SaMsgQueueOpenFlagsT

The following values specify the open attributes used in the saMsgQueueOpen() or
saMsgQueueOpenAsync() calls.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.3.5.1 23

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
#define SA_MSG_QUEUE_CREATE 0x1

#define SA_MSG_QUEUE_RECEIVE_CALLBACK 0x2

#define SA_MSG_QUEUE_EMPTY 0x4

typedef SaUint32T SaMsgQueueOpenFlagsT;

A value of the SaMsgQueueOpenFlagsT type is zero or the bitwise OR of one or
more of the flags in the following list:

• SA_MSG_QUEUE_CREATE - This flag requests to create a message queue
if the message queue does not already exist.

• SA_MSG_QUEUE_RECEIVE_CALLBACK - This flag requests the Message
Service to notify the process about the arrival of messages via the
saMsgMessageReceivedCallback() call. The message can be retrieved by
invoking saMsgMessageGet(). If this flag is not set, the callback function for
the arrival of messages is not called, but the user can still use the
saMsgMessageGet() call to receive messages.

• SA_MSG_QUEUE_EMPTY - This flag requests the Message Service to
delete existing messages when opening a message queue. If it is not set, the
Message Service must preserve existing messages when opening the mes-
sage queue. However, in a fail-over situation the Message Service cannot
guarantee that messages will be preserved.

3.3.7 Message Priority

Messages can have a priority between SA_MSG_MESSAGE_LOWEST_PRIORITY
and SA_MSG_MESSAGE_HIGHEST_PRIORITY.

#define SA_MSG_MESSAGE_HIGHEST_PRIORITY 0

#define SA_MSG_MESSAGE_LOWEST_PRIORITY 3

3.3.8 Message Queue Usage and Status

This section defines the structures SaMsgQueueUsageT and SaMsgQueueStatusT
that are used to obtain information about a message queue.
24 SAI-AIS-MSG-B.02.01 Section 3.3.7 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.3.8.1 SaMsgQueueUsageT

typedef struct {

SaSizeT queueSize;

SaSizeT queueUsed;

SaUint32T numberOfMessages;

} SaMsgQueueUsageT;

The fields of the SaMsgQueueUsageT structure are valid for a given priority area of a
message queue. They have the following interpretation:

• queueSize - The size in bytes of the priority area to hold messages of a partic-
ular priority.

• queueUsed - The current number of bytes of the priority area of the message
queue occupied by messages of a particular priority.

• numberOfMessages - The current number of messages of a particular priority
in the message queue.

3.3.8.2 SaMsgQueueStatusT

typedef struct {

SaMsgQueueCreationFlagsT creationFlags;

SaTimeT retentionTime;

SaTimeT closeTime;

SaMsgQueueUsageT saMsgQueueUsage
[SA_MSG_MESSAGE_LOWEST_PRIORITY+1];

} SaMsgQueueStatusT;

The fields of the SaMsgQueueStatusT structure have the following interpretation:
• creationFlags - Zero or SA_MSG_QUEUE_PERSISTENT, which was defined

in Section 3.3.5 on page 22.
• retentionTime - The time duration after a process closed the message queue

until the Message Service removes it. This field applies only to non-persistent
message queues.

• closeTime - The absolute time when the message queue was last closed. If
the message queue is currently open for a process, this field contains zero.

• saMsgQueueUsage - An array containing the message queue usage data for
each priority area of the message queue.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.3.8.1 25

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.3.9 SaMsgQueueGroupPolicyT

typedef enum {

SA_MSG_QUEUE_GROUP_ROUND_ROBIN = 1,

SA_MSG_QUEUE_GROUP_LOCAL_ROUND_ROBIN = 2,

SA_MSG_QUEUE_GROUP_LOCAL_BEST_QUEUE = 3,

SA_MSG_QUEUE_GROUP_BROADCAST = 4

} SaMsgQueueGroupPolicyT;

The only mandatory message queue group policy in this version is
SA_MSG_QUEUE_GROUP_ROUND_ROBIN. For the description of message
queue group policies, refer to Section 3.1.3 on page 17.

3.3.10 Types for Tracking Message Queue Group Changes

This section defines the types needed for tracking message queue group changes.

3.3.10.1 SaMsgQueueGroupChangesT

typedef enum {

SA_MSG_QUEUE_GROUP_NO_CHANGE = 1,

SA_MSG_QUEUE_GROUP_ADDED = 2,

SA_MSG_QUEUE_GROUP_REMOVED = 3,

SA_MSG_QUEUE_GROUP_STATE_CHANGED = 4

} SaMsgQueueGroupChangesT;

The values of the SaMsgQueueGroupChangesT enumeration type have the following
interpretation:

• SA_MSG_QUEUE_GROUP_NO_CHANGE - This value is used when the
trackFlags parameter of the saMsgQueueGroupTrack() function, defined in
Section 3.6.5, is either

• SA_TRACK_CURRENT or
• SA_TRACK_CHANGES and

• the message queue was already a member of the message queue
group in the previous saMsgQueueGroupTrackCallback() callback call,

• and it has not been removed from the message queue group.
• SA_MSG_QUEUE_GROUP_ADDED - The message queue has been added

to the message queue group since the last callback.
26 SAI-AIS-MSG-B.02.01 Section 3.3.9 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
• SA_MSG_QUEUE_GROUP_REMOVED - The message queue has been
removed from the message queue group since the last callback.

• SA_MSG_QUEUE_GROUP_STATE_CHANGED - This value is reserved for
future use.

3.3.10.2 SaMsgQueueGroupMemberT

typedef struct {

SaNameT queueName;

} SaMsgQueueGroupMemberT;

The field queueName is the name of a message queue in the message queue group.

3.3.10.3 SaMsgQueueGroupNotificationT

typedef struct {

SaMsgQueueGroupMemberT member;

SaMsgQueueGroupChangesT change;

} SaMsgQueueGroupNotificationT;

The fields of the SaMsgQueueGroupNotificationT structure have the following inter-
pretation:

• member - Information about a message queue group member.
• change - The type of change since the last callback.

3.3.10.4 SaMsgQueueGroupNotificationBufferT

typedef struct {

SaUint32T numberOfItems;

SaMsgQueueGroupNotificationT *notification;

SaMsgQueueGroupPolicyT queueGroupPolicy,

} SaMsgQueueGroupNotificationBufferT;

The fields of the SaMsgQueueGroupNotificationBufferT structure have the following
interpretation:

• numberOfItems - Number of elements of type
SaMsgQueueGroupNotificationT in the notification buffer.

• notification - Start address of the notification buffer.
• queueGroupPolicy - The load distribution policy of the message queue group.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.3.10.2 27

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.3.11 SaMsgMessageT

This structure describes a message to be used when sending and receiving mes-
sages.

typedef struct {

SaUint32T type;

SaUint32T version;

SaSizeT size;

SaNameT *senderName;

void *data;

SaUint8T priority;

} SaMsgMessageT;

The fields of the SaMsgMessageT structure have the following interpretation:
• type - Message type that is specified by a process when it sends a message.
• version - Version of the message, used to distinguish different versions of

messages with the same message type. It is the responsibility of the applica-
tion program to set this field and to ensure that the application program can
handle messages with appropriate different versions.

• size - Size of the message data in bytes that is set by a process when it sends
a message, and by the Message Service when it receives a message.

• senderName - This field identifies the sender of the message. It can be pro-
vided by a process sending the message. If the process sending the message
is part of a component under the control of the Availability Management
Framework, this field should contain the name of that component (in future, it
is expected that in such cases it shall be mandatory to pass the LDAP DN of a
component); otherwise, any octet string (including zeros) may be used as the
sender name. If the sending process does not provide the sender name, but a
receiving process expects it, the Message Service sets senderName->length
to zero when the message is retrieved.

• data - A pointer to an area containing the message data. The message data is
provided by a process when it sends a message. The Message Service
passes the message data to a process when the process retrieves the mes-
sage.

• priority - Priority of the message. This field is set by a process when it sends a
message. For the possible values of this field, refer to Section 3.3.7 on page
24.
28 SAI-AIS-MSG-B.02.01 Section 3.3.11 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.3.12 saMsgMessageCapacityStatusT

The following enum describes the various states of a message queue or a message
queue group that need to be notified to a system administrator in form of a state
change notification. For details on notifications, refer to Chapter 4 and [2].

For semantic clarity and flexibility regarding when such notifications are generated,
the concept of a critical capacity per priority area within a message queue is intro-
duced.

The critical capacity of a priority area is either its size or an implementation-depen-
dent value pair which defines the low and high threshold values to use as definition of
when critical capacity is reached; the high value defines entry into critical capacity
status and the lower value when to leave critical capacity status. These values may
be lower than the priority area size.

In future specifications, the critical capacity of a message queue is intended to be
defined through Message Service configuration parameters.

typedef enum {

SA_MSG_QUEUE_CAPACITY_REACHED = 1,

SA_MSG_QUEUE_CAPACITY_AVAILABLE = 2,

SA_MSG_QUEUE_GROUP_CAPACITY_REACHED = 3,

SA_MSG_QUEUE_GROUP_CAPACITY_AVAILABLE = 4

} SaMsgMessageCapacityStatusT;

The values of the SaMsgMessageCapacityStatusT enumeration type have the follow-
ing interpretation:

• SA_MSG_QUEUE_CAPACITY_REACHED - All priority areas of a message
queue are at critical capacity, and this condition is potentially affecting the capa-
bility of the message queue to accept new messages in any of its priority areas.

• SA_MSG_QUEUE_CAPACITY_AVAILABLE - At least one priority area in the
message queue is no longer filled up to its critical capacity and is available to
accept new messages after having recovered from a preceding
SA_MSG_QUEUE_CAPACITY_REACHED condition.

• SA_MSG_QUEUE_GROUP_CAPACITY_REACHED - All priority areas of all the
message queues within a message queue group are filled up to their critical
capacities, and this is potentially affecting the capability of the message queue
group to accept new messages.

• SA_MSG_QUEUE_GROUP_CAPACITY_AVAILABLE - At least one data area in
one message queue within the queue group is no longer filled up to its critical
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.3.12 29

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
capacity and is available to accept new messages after having recovered from a
previous SA_MSG_QUEUE_GROUP_CAPACITY_REACHED condition.

3.3.13 saMsgStateT

The following enum holds all the message queue state types. Currently, there is only
one such state:

typedef enum {

SA_MSG_DEST_CAPACITY_STATUS = 1

} SaMsgStateT;

3.4 Library Life Cycle
General remark: If a library call of the Message Service does not complete due to a
crash of a process, or if a timeout indicated by SA_AIS_ERR_TIMEOUT is returned
to the process, it is unspecified whether the corresponding function succeeded or
whether it did not.

3.4.1 saMsgInitialize()

Prototype

SaAisErrorT saMsgInitialize(

SaMsgHandleT *msgHandle,

const SaMsgCallbacksT *msgCallbacks,

SaVersionT *version

);

Parameters

msgHandle - [out] A pointer to the handle designating this particular initialization of
the Message Service.

msgCallbacks - [in] - If msgCallbacks is set to NULL, no callback is registered; other-
wise, it is a pointer to an SaMsgCallbacksT structure, containing the callback func-
tions of the process that the Message Service may invoke. Only non-NULL callback
functions in this structure will be registered.

version - [in/out] As an input parameter, version is a pointer to the required Message
Service version. In this case, minorVersion is ignored and should be set to 0x00.
30 SAI-AIS-MSG-B.02.01 Section 3.3.13 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
As an output parameter, the version actually supported by the Message Service is
delivered.

Description

This function initializes the Message Service for the invoking process and registers
the various callback functions. This function must be invoked prior to the invocation of
any other Message Service functionality. The handle msgHandle handle is returned
as the reference to this association between the process and the Message Service.
The process uses this handle in subsequent communication with the Message Ser-
vice.

If the implementation supports the required releaseCode, and a major version >= the
required majorVersion, SA_AIS_OK is returned. In this case, the version parameter is
set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation can

support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation can

support for the required value of releaseCode and the returned value of
majorVersion

If the above mentioned condition cannot be met, SA_AIS_ERR_VERSION is
returned, and the version parameter is set to:
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.4.1 31

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the least value of the supported release codes that is
higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that is
less than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_VERSION - The version parameter is not compatible with the version
of the Message Service implementation.
32 SAI-AIS-MSG-B.02.01 Section 3.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
See Also

saMsgSelectionObjectGet(), saMsgDispatch(), saMsgFinalize()

3.4.2 saMsgSelectionObjectGet()

Prototype

SaAisErrorT saMsgSelectionObjectGet(

SaMsgHandleT msgHandle,

SaSelectionObjectT *selectionObject

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

selectionObject - [out] A pointer to the operating system handle that the invoking pro-
cess can use to detect pending callbacks.

Description

This function returns the operating system handle, selectionObject, associated with
the handle msgHandle. The invoking process can use this handle to detect pending
callbacks, instead of repeatedly invoking saMsgDispatch() for this purpose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.

The selectionObject returned by saMsgSelectionObjectGet() is valid until
saMsgFinalize() is invoked on the same handle msgHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.4.2 33

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are not enough resources (other than
memory).

See Also

saMsgInitialize(), saMsgDispatch(), saMsgFinalize()

3.4.3 saMsgDispatch()

Prototype

SaAisErrorT saMsgDispatch(

 SaMsgHandleT msgHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saMsgDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING, as defined in the SA Forum
Overview document.

Description

This function invokes, in the context of the calling thread, pending callbacks for the
handle msgHandle in a way that is specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
34 SAI-AIS-MSG-B.02.01 Section 3.4.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.

See Also

saMsgInitialize(), saMsgSelectionObjectGet(), saMsgFinalize()

3.4.4 saMsgFinalize()

Prototype

SaAisErrorT saMsgFinalize(

SaMsgHandleT msgHandle

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

Description

The saMsgFinalize() function closes the association, represented by the msgHandle
parameter, between the invoking process and the Message Service. The process
must have invoked saMsgInitialize() before it invokes this function. A process must
invoke this function once for each handle it acquired by invoking saMsgInitialize().

If the saMsgFinalize() function returns successfully, the saMsgFinalize() function
releases all resources acquired when saMsgInitialize() was called. Moreover, it
closes all message queues that are open for the particular handle. Furthermore, it
stops any tracking associated with the particular handle and cancels all pending call-
backs related to the particular handle. Note that because the callback invocation is
asynchronous, it is still possible that some callback calls are processed after this call
returns successfully.

After saMsgFinalize() is called, the selection object is no longer valid.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.4.4 35

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saMsgInitialize(), saMsgSelectionObjectGet(), saMsgDispatch()

3.5 Message Queue Operations

In the following description, when it is said that a process is receiving from the
destination message queue, it also includes the case of a process receiving from a
message queue that is a member of a destination message queue group.

3.5.1 saMsgQueueOpen() and saMsgQueueOpenAsync()

The saMsgQueueOpen() and saMsgQueueOpenAsync() functions create and open a
new message queue, or open an existing message queue. The saMsgQueueOpen()
function is a synchronous blocking operation that returns a new message queue han-
dle. The saMsgQueueOpenAsync() function is an asynchronous operation; the corre-
sponding saMsgQueueOpenCallback() returns the new message queue handle to
the invoking process.

When opening a message queue, a process can specify how it will receive mes-
sages:

• Arrival notified by a callback - The process can wait for an indication of a
message arrival using the operating system handle associated with the call-
back. After being notified, the process can invoke saMsgDispatch(), which, in
turn, calls saMsgMessageReceivedCallback(). In the callback, or after its com-
pletion, the process can invoke saMsgMessageGet() to receive the message.
36 SAI-AIS-MSG-B.02.01 Section 3.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
• Through a blocking call - The process can call saMsgMessageGet() directly
without using the selection object. The call will complete successfully if a mes-
sage can be retrieved from the message queue within a specified time limit.

Prototype

SaAisErrorT saMsgQueueOpen(

SaMsgHandleT msgHandle,

const SaNameT *queueName,

const SaMsgQueueCreationAttributesT *creationAttributes,

SaMsgQueueOpenFlagsT openFlags,

SaTimeT timeout,

SaMsgQueueHandleT *queueHandle

);

SaAisErrorT saMsgQueueOpenAsync(

SaMsgHandleT msgHandle,

SaInvocationT invocation,

const SaNameT *queueName,

const SaMsgQueueCreationAttributesT *creationAttributes,

SaMsgQueueOpenFlagsT openFlags

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

invocation - [in] The invoking process supplies the invocation parameter and the Mes-
sage Service uses this invocation when it invokes the corresponding
saMsgQueueOpenCallback() function to enable the invoking process to associate the
callback with the appropriate invocation of saMsgQueueOpenAsync().

queueName - [in] A pointer to the name of the message queue to be opened.

creationAttributes - [in] A pointer to the creation attributes of a message queue.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.5.1 37

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
If the intent is only to open an existing message queue, creationAttributes must be set
to NULL and the SA_MSG_QUEUE_CREATE flag in openFlags must not be set. If
the intent is to open and create a message queue if it does not exist,
creationAttributes must contain the attributes for the message queue and the
SA_MSG_QUEUE_CREATE flag in openFlags must be set. If the message queue
already exists, it is not re-created, and the call only succeeds if the creation attributes
match the ones used at creation time, excluding creationAttributes->retentionTime,
which is ignored, as it may be independently modified by invoking the
saMsgQueueRetentionTimeSet() function.

• creationFlags - The creationFlags field of the creationAttributes parameter
must be set to zero or to SA_MSG_QUEUE_PERSISTENT, which was
defined in Section 3.3.5 on page 22.

• size - The size in bytes of all priority areas of the message queue.
• retentionTime - The time duration after a process closed the message queue

and until it is removed by the Message Service. The retentionTime applies
only to non-persistent message queues.

openFlags - [in] This parameter is evaluated at open time, and it is the bitwise OR of
the SA_MSG_QUEUE_CREATE, SA_MSG_QUEUE_RECEIVE_CALLBACK, and
SA_MSG_QUEUE_EMPTY flags, defined in Section 3.3.6 on page 23.

timeout - [in] The saMsgQueueOpen() invocation is considered to have failed if it
does not complete within the duration specified.

queueHandle - [out] A pointer to the handle assigned by the Message Service to the
message queue. The invoking process must allocate space for the handle before it
invokes the saMsgQueueOpen() function.

Description

The saMsgQueueOpen() and saMsgQueueOpenAsync() functions open a message
queue. If the message queue does not exist and the SA_MSG_QUEUE_CREATE
flag is set in the openFlags parameter, the message queue is created first.

After completion of the invocation of saMsgQueueOpen(), which is a blocking call, the
Message Service returns a message queue handle to the message queue in the
queueHandle parameter.

For saMsgQueueOpenAsync(), the Message Service returns a message queue han-
dle when it invokes the saMsgQueueOpenCallback() function, which must have been
supplied when the process invoked the saMsgInitialize() call. The process invoking
saMsgQueueOpenAsync() sets the invocation parameter and the Message Service
uses it in the corresponding callback call.
38 SAI-AIS-MSG-B.02.01 Section 3.5.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
Both for the saMsgQueueOpen() and saMsgQueueOpenAsync() functions, if the
message queue open flag SA_MSG_QUEUE_RECEIVE_CALLBACK is specified,
the saMsgMessageReceivedCallback() callback function must have been supplied
when invoking saMsgInitialize() previously.

The open operation is needed to receive messages from the message queue.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout defined by the timeout parameter occurred before the call could complete. It
is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - One or more callback functions were not supplied in the previ-
ous initialization with saMsgInitialize(). These callback functions can be either
saMsgMessageReceivedCallback(), if the message queue open flag
SA_MSG_QUEUE_RECEIVE_CALLBACK is specified or
saMsgQueueOpenCallback(). The latter case only applies to
saMsgQueueOpenAsync().

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
value is returned if one of the cases below apply:

• The SA_MSG_QUEUE_CREATE flag is not set, and creationAttributes is not
NULL.

• The SA_MSG_QUEUE_CREATE flag is set, and creationAttributes is NULL.
• The SA_MSG_QUEUE_CREATE flag is set in openFlags, and queueName is

not a DN or the type of its first RDN is not safMq.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are not enough resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The SA_MSG_QUEUE_CREATE flag is not set, and
the message queue, designated by queueName, does not exist.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.5.1 39

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_EXIST - The message queue, designated by queueName, already
exists, and one or both of the values creationAttributes->creationFlags or
creationAttributes->size are different from the corresponding values used at creation
time.

SA_AIS_ERR_BUSY - The message queue, designated by queueName, is already
open.

SA_AIS_ERR_BAD_FLAGS - The creationFlags field of the creationAttributes
parameter or the openFlags parameter is invalid.

See Also

saMsgQueueClose(), SaMsgQueueOpenCallbackT,
SaMsgMessageReceivedCallbackT, saMsgQueueRetentionTimeSet()

3.5.2 SaMsgQueueOpenCallbackT

Prototype

typedef void(*SaMsgQueueOpenCallbackT)(

SaInvocationT invocation,

SaMsgQueueHandleT queueHandle,

SaAisErrorT error

);

Parameters

invocation - [in] A designator that associates this invocation to a previous call to the
saMsgQueueOpenAsync() function.

queueHandle - [in] The handle to the opened message queue.

error - [in] The error parameter specifies whether the corresponding invocation of
saMsgQueueOpenAsync() succeeded or not. The possible values of the error param-
eter are:

• SA_AIS_OK - The open completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.
40 SAI-AIS-MSG-B.02.01 Section 3.5.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

• SA_AIS_ERR_BAD_HANDLE - The handle msgHandle in the corresponding
invocation of the saMsgQueueOpenAsync() function is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

• SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly in the cor-
responding invocation of the saMsgQueueOpenAsync() function. In particular,
this value is returned if one of the cases below apply:
• The SA_MSG_QUEUE_CREATE flag is not set, and creationAttributes is

not NULL.
• The SA_MSG_QUEUE_CREATE flag is set, and creationAttributes is

NULL.
• The SA_MSG_QUEUE_CREATE flag is set in openFlags, and queueName

is not a DN or the type of its first RDN is not safMq.
• SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the pro-

vider of the service is out of memory and cannot provide the service.
• SA_AIS_ERR_NO_RESOURCES - There are not enough resources (other

than memory).
• SA_AIS_ERR_NOT_EXIST - In the corresponding invocation of the

saMsgQueueOpenAsync() function, the SA_MSG_QUEUE_CREATE flag is
not set, and the message queue, designated by queueName, does not exist.

• SA_AIS_ERR_EXIST - The message queue, designated by queueName in
the corresponding invocation of the saMsgQueueOpenAsync() function,
already exists, and one or both of the values creationAttributes->creationFlags
or creationAttributes->size are different from the corresponding values used at
creation time.

• SA_AIS_ERR_BUSY - The message queue, designated by queueName in the
corresponding invocation of the saMsgQueueOpenAsync() function, is already
open.

• SA_AIS_ERR_BAD_FLAGS - In the corresponding invocation of the
saMsgQueueOpenAsync() function, the creationFlags field of the
creationAttributes parameter or the openFlags parameter is invalid.

Description

The Message Service invokes this callback function when the operation requested by
the invocation of saMsgQueueOpenAsync() completes. This callback is invoked in
the context of a thread issuing an saMsgDispatch() call on the handle msgHandle,
which was specified in the saMsgQueueOpenAsync() call. The reference to the
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.5.2 41

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
opened/created message queue is returned in queueHandle only if error is
SA_AIS_OK; If the call is not successful, an error is returned in the error parameter.

Return Values

None

See Also

saMsgQueueOpenAsync(), saMsgQueueClose(), saMsgDispatch()

3.5.3 saMsgQueueClose()

Prototype

SaAisErrorT saMsgQueueClose(

SaMsgQueueHandleT queueHandle

);

Parameters

queueHandle - [in] The handle to the message queue to be closed.

Description

This API function closes the message queue specified by queueHandle. After this
call, the handle queueHandle is no longer valid.

The Message Service will immediately delete the message queue in the following
cases:

• saMsgQueueUnlink() has been invoked for the message queue while it was
open.

• The message queue is non-persistent, and its retention time is zero.

If the message queue is non-persistent with a retention time greater than zero, the
retention time starts when the saMsgQueueClose() call completes successfully. If the
message queue is not opened again before this time elapses, the Message Service
deletes the message queue.

The deletion of a message queue frees all resources allocated by the Message Ser-
vice for it.

When a message queue is deleted, it is also deleted from all message queue groups
it is a member of.
42 SAI-AIS-MSG-B.02.01 Section 3.5.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
If a process terminates, the Message Service implicitly closes all message queues
that are open for this process.

This call cancels all pending callbacks that refer directly or indirectly to the handle
queueHandle. Note that because the callback invocation is asynchronous, it is still
possible that some callback calls are processed after this call returns successfully.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle queueHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained via the saMsgQueueOpen() or
saMsgQueueOpenCallback() functions, or the corresponding message queue
has already been closed.

• The handle msgHandle that was passed to the functions saMsgQueueOpen() or
saMsgQueueOpenAsync() has already been finalized.

See Also

saMsgQueueOpen(), saMsgQueueOpenAsync(), SaMsgQueueOpenCallbackT
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.5.3 43

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.5.4 saMsgQueueStatusGet()

Prototype

SaAisErrorT saMsgQueueStatusGet(

SaMsgHandleT msgHandle,

const SaNameT *queueName,

SaMsgQueueStatusT *queueStatus

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

queueName - [in] A pointer to the name of the message queue whose communication
status is to be retrieved.

queueStatus - [out] A pointer to the structure, allocated by the invoking process, that
contains status information on the message queue identified by queueName supplied
by the Message Service.

Description

This function retrieves information about the status of a message queue.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
44 SAI-AIS-MSG-B.02.01 Section 3.5.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The message queue, designated by queueName, can-
not be found.

See Also

-

3.5.5 saMsgQueueRetentionTimeSet()

Prototype

SaAisErrorT saMsgQueueRetentionTimeSet(

SaMsgQueueHandleT queueHandle,

SaTimeT *retentionTime

);

Parameters

queueHandle - [in] The handle to the message queue for which the retention time is
set.

retentionTime - [in] The value of the retention time to be set for the message queue
designated by queueHandle.

Description

The saMsgQueueRetentionTimeSet() function sets the retention time of the message
queue, designated by queueHandle, to retentionTime. When the message queue is
closed and not reopened by any process within the duration given by retentionTime,
the Message Service deletes the message queue. The retention time can only be set
for non-persistent message queues.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.5.5 45

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle queueHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained via the saMsgQueueOpen() or
saMsgQueueOpenCallback() functions, or the corresponding message queue
has already been closed.

• The handle msgHandle that was passed to the functions saMsgQueueOpen(), or
saMsgQueueOpenAsync() has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_BAD_OPERATION - The retention time of the message queue desig-
nated by queueHandle cannot be changed as the message queue has been unlinked
or the message queue is persistent.

See Also

saMsgQueueOpen(), saMsgQueueOpenAsync(), saMsgQueueClose(),
saMsgQueueOpenCallbackT, saMsgQueueUnlink()

3.5.6 saMsgQueueUnlink()

Prototype

SaAisErrorT saMsgQueueUnlink(

SaMsgHandleT msgHandle,

const SaNameT *queueName

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

queueName - [in] A pointer to the name of the message queue to be unlinked.

Description

This function deletes an existing message queue, identified by queueName, from the
cluster.

After completion of the invocation:
46 SAI-AIS-MSG-B.02.01 Section 3.5.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
• The name queueName is no longer valid, that is, any invocation of a function of
the Message Service API that uses the message queue name returns an error,
unless a message queue is re-created with this name. The message queue is
re-created by specifying the same name of the message queue to be unlinked in
an saMsgQueueOpen() or an saMsgQueueOpenAsync() call with the
SA_MSG_QUEUE_CREATE flag set. This way, a new instance of the message
queue is created while the old instance of the message queue is possibly not yet
finally deleted.
Note that this is similar to the way POSIX treats files.

• If no process has the message queue open when saMsgQueueUnlink() is
invoked, the message queue is immediately deleted, even if its creation attribute
is SA_MSG_QUEUE_PERSISTENT.

• The process that has the message queue open can still continue to access it.
Deletion of the message queue will occur when the message queue is closed.

The deletion of a message queue frees all resources allocated by the Message Ser-
vice for it.

When saMsgQueueUnlink() has successfully completed, the message queue has
been removed from all message queue groups it is a member of.

This API can be invoked by any process and the invoking process need not be the
creator or opener of the message queue.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_NOT_EXIST - The message queue, designated by queueName, can-
not be found.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.5.6 47

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
See Also

saMsgQueueOpen(), saMsgQueueOpenAsync(), saMsgQueueClose()

3.6 Management of Message Queue Groups

3.6.1 saMsgQueueGroupCreate()

Prototype

SaAisErrorT saMsgQueueGroupCreate(

SaMsgHandleT msgHandle,

const SaNameT *queueGroupName,

SaMsgQueueGroupPolicyT queueGroupPolicy

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

queueGroupName -[in] A pointer to the name of a message queue group to be cre-
ated.

queueGroupPolicy - [in] The message queue group policy. Currently, only the
SA_MSG_QUEUE_GROUP_ROUND_ROBIN policy is mandatory.

Description

This function creates a message queue group of a particular policy. The current ver-
sion of the specification only requires round robin load distribution to be supported.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.
48 SAI-AIS-MSG-B.02.01 Section 3.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
value is returned if queueGroupName is not a DN, or the type of its first RDN is not
safMqg.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_EXIST - The message queue group, identified by queueGroupName,
exists already.

SA_AIS_ERR_NOT_SUPPORTED - The specified queueGroupPolicy is not sup-
ported by the implementation.

See Also

saMsgQueueGroupDelete(), saMsgQueueGroupInsert(),
saMsgQueueGroupRemove()

3.6.2 saMsgQueueGroupInsert()

Prototype

SaAisErrorT saMsgQueueGroupInsert(

SaMsgHandleT msgHandle,

const SaNameT *queueGroupName,

const SaNameT *queueName

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

queueGroupName - [in] A pointer to the name of the message queue group into
which the message queue, indicated by queueName, is to be inserted.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.6.2 49

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
queueName - [in] A pointer to the name of the message queue to be inserted into the
message queue group queueGroupName.

Description

This function inserts a message queue into a message queue group.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The message queue, designated by queueName, or
the message queue group, designated by queueGroupName, cannot be found.

SA_AIS_ERR_EXIST - The message queue, identified by queueName, is already a
member of the message queue group, identified by queueGroupName.

See Also

saMsgQueueGroupRemove(), saMsgQueueGroupCreate(),
saMsgQueueGroupDelete()
50 SAI-AIS-MSG-B.02.01 Section 3.6.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.6.3 saMsgQueueGroupRemove()

Prototype

SaAisErrorT saMsgQueueGroupRemove(

SaMsgHandleT msgHandle,

const SaNameT *queueGroupName,

const SaNameT *queueName

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

queueGroupName - [in] A pointer to the name of the message queue group from
which the message queue, indicated by queueName, is to be removed.

queueName - [in] A pointer to the name of the message queue to be removed from
the message queue group queueGroupName.

Description

This function removes a message queue from a message queue group.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - This error is returned in the two cases that follow:
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.6.3 51

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
• The message queue, designated by queueName, or the message queue group,
designated by queueGroupName, cannot be found.

• The message queue, designated by queueName, is not a member of the mes-
sage queue group designated by queueGroupName.

See Also

saMsgQueueGroupInsert(), saMsgQueueGroupCreate(),
saMsgQueueGroupDelete()

3.6.4 saMsgQueueGroupDelete()

Prototype

SaAisErrorT saMsgQueueGroupDelete(

SaMsgHandleT msgHandle,

const SaNameT *queueGroupName

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

queueGroupName - [in] A pointer to the name of a message queue group.

Description

An invocation of this function deletes a message queue group immediately. After this
call, it is no longer possible to send messages to the message queue group.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
52 SAI-AIS-MSG-B.02.01 Section 3.6.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - The message queue group, identified by
queueGroupName, cannot be found.

See Also

saMsgQueueGroupCreate(), saMsgQueueGroupInsert(),
saMsgQueueGroupRemove()

3.6.5 saMsgQueueGroupTrack()

Prototype

SaAisErrorT saMsgQueueGroupTrack(

SaMsgHandleT msgHandle,

const SaNameT *queueGroupName,

SaUint8T trackFlags,

SaMsgQueueGroupNotificationBufferT *notificationBuffer

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

queueGroupName - [in] A pointer to the name of the message queue group for which
tracking of membership is to start.

trackFlags - [in] The kind of tracking that is requested, which is the bitwise OR of one
or more of the flags SA_TRACK_CURRENT, SA_TRACK_CHANGES or
SA_TRACK_CHANGES_ONLY, defined in the SA Forum Overview document, which
have the following interpretation here:

• SA_TRACK_CURRENT - If notificationBuffer is NULL, information about all
members in the message queue group is returned by a single subsequent
invocation of the saMsgQueueGroupTrackCallback() notification callback; oth-
erwise, this information is returned in notificationBuffer when the
saMsgQueueGroupTrack() call completes successfully.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.6.5 53

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
• SA_TRACK_CHANGES - The notification callback is invoked each time a
change occurs in the membership of the message queue group. The callback
call provides an SaMsgQueueGroupNotificationT structure for all members
(changed and not changed) of the message queue group.

• SA_TRACK_CHANGES_ONLY - The notification callback is invoked each
time a change occurs in the membership of the message queue group. The
callback call provides an SaMsgQueueGroupNotificationT structure only for
members that have changed.

It is not permitted to set both SA_TRACK_CHANGES and
SA_TRACK_CHANGES_ONLY in an invocation of this function.

notificationBuffer - [in/out] - A pointer to a buffer of type
SaMsgQueueGroupNotificationBufferT. This parameter is ignored if
SA_TRACK_CURRENT is not set in trackFlags; otherwise, if notificationBuffer is not
NULL, the buffer will contain information about all members in the message queue
group when saMsgQueueGroupTrack() returns. The meaning of the fields of the
SaMsgQueueGroupNotificationBufferT buffer is:

• numberOfItems - [in/out] If notification is NULL, numberOfItems is ignored as
input parameter; otherwise, it specifies that the buffer pointed to by notification
provides memory for information about numberOfItems members in the mes-
sage queue group.
When saMsgQueueGroupTrack() returns with SA_AIS_OK or with
SA_AIS_ERR_NO_SPACE, numberOfItems contains the number of members in
the message queue group.

• notification - [in/out] If notification is NULL, memory for the message queue group
information is allocated by the Message Service library. The caller is responsible
for freeing the allocated memory by calling the
saMsgQueueGroupNotificationFree() function.

Description

This function starts tracking changes in the membership of a message queue group,
identified by queueGroupName. These changes are notified via the invocation of the
saMsgQueueGroupTrackCallback() callback function, which must have been sup-
plied when the process invoked the saMsgInitialize() call.

An application may call saMsgQueueGroupTrack() repeatedly for the same values of
msgHandle and queueGroupName, regardless of whether the call initiates a one-time
status request or a series of callback notifications. If saMsgQueueGroupTrack() is
called with trackFlags containing SA_TRACK_CHANGES_ONLY, while changes in
the membership of a message queue group are currently being tracked with
SA_TRACK_CHANGES for the same combination of msgHandle and
54 SAI-AIS-MSG-B.02.01 Section 3.6.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
queueGroupName, the Message Service will invoke further notification callbacks
according to SA_TRACK_CHANGES_ONLY. The same is true vice versa.
Once saMsgQueueGroupTrack() has been called with trackFlags containing either
SA_TRACK_CHANGES or SA_TRACK_CHANGES_ONLY, notification callbacks
can only be stopped by an invocation of the saMsgQueueGroupTrackStop() function.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saMsgInitialize() was incomplete,
since the saMsgQueueGroupTrackCallback() callback function is missing. This value
is not returned if trackFlags is set to SA_TRACK_CURRENT, and the
notificationBuffer is not NULL.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
applies if, in notificationBuffer, notification is not NULL, and numberOfItems is 0.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NO_SPACE - The SA_TRACK_CURRENT flag is set, and the
notification field in notificationBuffer is not NULL, but the numberOfItems field in
notificationBuffer indicates that the provided buffer is too small to hold information
about all members in the message queue group designated by queueGroupName.

SA_AIS_ERR_NOT_EXIST - The message queue group name, designated by
queueGroupName, cannot be found.

SA_AIS_ERR_BAD_FLAGS - The trackFlags parameter is invalid.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.6.5 55

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
See Also

saMsgQueueGroupTrackStop(), SaMsgQueueGroupTrackCallbackT,
saMsgQueueGroupNotificationFree(), saMsgQueueStatusGet()

3.6.6 SaMsgQueueGroupTrackCallbackT

Prototype

typedef void (*SaMsgQueueGroupTrackCallbackT) (

const SaNameT *queueGroupName,

const SaMsgQueueGroupNotificationBufferT *notificationBuffer,

SaUint32T numberOfMembers,

SaAisErrorT error

);

Parameters

queueGroupName - [in] A pointer to the name of the message queue group.

notificationBuffer - [in] A pointer to a notification buffer, which contains the requested
information about the members in the message queue group.

numberOfMembers - [in] The current number of members in the message queue
group given by queueGroupName.

error - [in] This parameter indicates whether the Message Service was able to per-
form the operation. The parameter error has one of the values:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry the saMsgQueueGroupTrack() call later.

• SA_AIS_ERR_BAD_HANDLE - The handle msgHandle in the corresponding
invocation of the saMsgQueueGroupTrack() function is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.
56 SAI-AIS-MSG-B.02.01 Section 3.6.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
• SA_AIS_ERR_INVALID_PARAM - In the corresponding invocation of the
saMsgQueueGroupTrack() function, a parameter is not set correctly.

• SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the pro-
vider of the service is out of memory and cannot provide the service. The pro-
cess that invoked saMsgQueueGroupTrack() might have missed one or more
notifications.

• SA_AIS_ERR_NO_RESOURCES - Either the Message Service library or the
provider of the service is out of resources (other than memory), and cannot
provide the service. The process that invoked saMsgQueueGroupTrack()
might have missed one or more notifications.

• SA_AIS_ERR_NOT_EXIST - The message queue group, designated by
queueGroupName, no longer exists. The Message Service has stopped the
tracking of the message queue group automatically.

• SA_AIS_ERR_BAD_FLAGS - The trackFlags parameter in the corresponding
invocation of the saMsgQueueGroupTrack() function is invalid.

If the error returned is SA_AIS_ERR_NO_MEMORY or
SA_AIS_ERR_NO_RESOURCES, the process that invoked
saMsgQueueGroupTrack() should invoke saMsgQueueGroupTrackStop(). It may
then invoke saMsgQueueGroupTrack() again.

Description

This callback is invoked in the context of a thread issuing an saMsgDispatch() call on
the handle msgHandle, which was specified when the process requested tracking of
membership in a message queue group, or changes in the
SaMsgQueueGroupMemberT structure of any member of the message queue group
via the saMsgQueueGroupTrack() call. If successful, the
saMsgQueueGroupTrackCallback() function returns information about the message
queue group members in the notificationBuffer parameter. The kind of information
returned depends on the setting of the trackFlags parameter of the
saMsgQueueGroupTrack() function.

The value of the numberOfItems attribute in the notificationBuffer parameter might be
greater than the value of the numberOfMembers parameter, because some message
queues may no longer be members of the message queue group: If the
SA_TRACK_CHANGES flag or the SA_TRACK_CHANGES_ONLY flag is set, the
notificationBuffer might contain information about the current members of the mes-
sage queue group and also about message queues that have recently left the mes-
sage queue group.

If an error occurs, it is returned in the error parameter.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.6.6 57

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
Return Values

None.

See Also

saMsgQueueGroupTrack(), saMsgQueueGroupTrackStop(),
saMsgQueueStatusGet(), saMsgDispatch()

3.6.7 saMsgQueueGroupTrackStop()

Prototype

SaAisErrorT saMsgQueueGroupTrackStop(

SaMsgHandleT msgHandle,

const SaNameT *queueGroupName

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

queueGroupName - [in] A pointer to the name of the message queue group.

Description

This function requests the Message Service to stop tracking changes for the mes-
sage queue group identified by queueGroupName.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.
58 SAI-AIS-MSG-B.02.01 Section 3.6.7 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - This value is returned if one or both cases below
occurred:

• The message queue group name, designated by queueGroupName, cannot be
found.

• No track of changes in the membership in queueGroupName was previously
started via saMsgQueueGroupTrack() with track flags SA_TRACK_CHANGES
or SA_TRACK_CHANGES_ONLY, and which is still in effect.

See Also

saMsgQueueGroupTrack(), SaMsgQueueGroupTrackCallbackT

3.6.8 saMsgQueueGroupNotificationFree()

Prototype

SaAisErrorT saMsgQueueGroupNotificationFree(

SaMsgHandleT msgHandle,

SaMsgQueueGroupNotificationT *notification

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

notification - [in] A pointer to the notification buffer that was allocated by the Message
Service library in the saMsgQueueGroupTrack() function and is to be deallocated.

Description

This function frees the memory pointed to by notification and that was allocated by
the Message Service library in a previous call to the saMsgQueueGroupTrack() func-
tion.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.6.8 59

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
For details, refer to the description of the notificationBuffer parameter in the corre-
sponding invocation of the saMsgQueueGroupTrack() function.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

See Also

saMsgQueueGroupTrack()
60 SAI-AIS-MSG-B.02.01 Section 3.6.8 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.7 Message Send and Receive Operations

3.7.1 saMsgMessageSend() and saMsgMessageSendAsync()

Prototype

SaAisErrorT saMsgMessageSend(

SaMsgHandleT msgHandle,

const SaNameT *destination,

const SaMsgMessageT *message,

SaTimeT timeout

);

SaAisErrorT saMsgMessageSendAsync(

SaMsgHandleT msgHandle,

SaInvocationT invocation,

const SaNameT *destination,

const SaMsgMessageT *message,

SaMsgAckFlagsT ackFlags

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

invocation - [in] This parameter associates this invocation of
saMsgMessageSendAsync() with a corresponding invocation of the
saMsgMessageDeliveredCallback() function. This parameter is ignored if ackFlags is
set to zero, meaning that the saMsgMessageDeliveredCallback() function is not
called, and the caller is not informed whether an error occurred or whether it did not.

destination - [in] A pointer to the name of a message queue or message queue group
the message, designated by message, is sent to.

message - [in] A pointer to the message structure specifying the message to be sent
and consisting of a data field (a buffer provided by the process that contains the data
to be sent), a size field that contains the size of the buffer, a type field that contains
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.7 61

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
the message type, a version field that is used to distinguish different versions of a
message of the same type, a priority field that gives the priority of the message, and a
senderName pointer. If senderName is not NULL, it points to an area containing the
sender name, which is supplied by the caller; if senderName is NULL, the sending
process does not provide its sender name, and a receiving process expecting a
sender name will get
a message->senderName->length set to zero.

ackFlags - [in] The kind of the required acknowledgment. This field must be set to
zero or to SA_MSG_MESSAGE_DELIVERED_ACK. In the latter case, the caller
requires to be acknowledged whether the message can be stored in the destination
message queue. If there is no space for the entire message in the destination mes-
sage queue, the error SA_AIS_ERR_QUEUE_FULL is returned.

timeout - [in] The saMsgMessageSend() invocation is considered to have failed if it
does not complete within the duration specified.

Description

The functions saMsgMessageSend() and saMsgMessageSendAsync() send the
message, designated by message, to the message queue or message queue group,
designated by destination.

The function saMsgMessageSend() waits synchronously (that is, it blocks) until the
message is delivered to the destination message queue or message queue group, or
an error occurs.
After the saMsgMessageSend() function returns, the invoking process may deallo-
cate the memory for the data in the message buffer.

The function saMsgMessageSendAsync() returns as soon as possible, without wait-
ing for delivery to the destination message queue. If the value of the ackFlags field is
zero, the saMsgMessageDeliveredCallback() is not invoked, and the caller is not
informed if an error occurs. If the value of the ackFlags field is set to
SA_MSG_MESSAGE_DELIVERED_ACK, and this call returns SA_AIS_OK,
saMsgMessageDeliveredCallback() is invoked to indicate whether the message was
sent to the destination, or whether an error occurred. For this purpose, the user must
have supplied the saMsgMessageDeliveredCallback() when invoking the
saMsgInitialize() function.
If saMsgMessageSendAsync() returns successfully, and ackFlags is not set to zero,
the sending process may deallocate the memory for the data in the message buffer
either during an invocation of saMsgMessageDeliveredCallback() or after
saMsgMessageDeliveredCallback() returns.
If saMsgMessageSendAsync() returns an error, or ackFlags is set to zero, meaning
that saMsgMessageDeliveredCallback() will not be called, the process may deallo-
62 SAI-AIS-MSG-B.02.01 Section 3.7.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
cate the memory for the data in the message buffer as soon as
saMsgMessageSendAsync() returns.

Message delivery properties:
These properties apply to either a destination message queue or a message queue
that is a member of a destination message queue group.

saMsgMessageSend():
• Message queue or a unicast message queue group - If the return value is

SA_AIS_OK, the message has been delivered to exactly one destination
message queue; otherwise, if the return value is neither
SA_AIS_ERR_LIBRARY nor SA_AIS_ERR_TIMEOUT, the message has
not been delivered to any destination message queue.

• Multicast message queue group - If the return value is SA_AIS_OK, the
message has been delivered to at least one member of the destination mes-
sage queue group; otherwise, if the return value is neither
SA_AIS_ERR_LIBRARY nor SA_AIS_ERR_TIMEOUT, the message has
not been delivered to any destination message queue.

saMsgMessageSendAsync():
If saMsgMessageSendAsync() returns SA_AIS_OK, and if the value of the ackFlags
field is set to SA_MSG_MESSAGE_DELIVERED_ACK, the Message Service will
invoke saMsgMessageDeliveredCallback(); otherwise, if the error code is neither
SA_AIS_ERR_LIBRARY nor SA_AIS_ERR_TIMEOUT, the Message Service will not
invoke saMsgMessageDeliveredCallback(), and will not deliver the message to any
destination message queue. Refer to the saMsgMessageDeliveredCallback() func-
tion for the message delivery properties.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout defined by the timeout parameter occurred before the call could complete. It
is unspecified whether the call succeeded or whether it did not. This error code
applies only to saMsgMessageSend().

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.7.1 63

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_INIT - The previous initialization with saMsgInitialize() was incomplete,
since the saMsgMessageDeliveredCallback() callback function is missing, and the
user specified SA_MSG_MESSAGE_DELIVERED_ACK in ackFlags of
saMsgMessageSendAsync().

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.This error applies only to
saMsgMessageSend().

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory). This error applies only to saMsgMessageSend().

SA_AIS_ERR_NOT_EXIST - The destination message queue name or message
queue group name, designated by destination, cannot be found.

SA_AIS_ERR_QUEUE_FULL - If destination is a message queue, it is full. If
destination is a unicast message queue group, the selected member queue is full. If
destination is a multicast message queue group, all selected member message
queues are full.

SA_AIS_ERR_QUEUE_NOT_AVAILABLE - The destination parameter designates a
message queue group, and the message queue group is empty.

SA_AIS_ERR_BAD_FLAGS - The ackFlags parameter is invalid.

See Also

saMsgMessageSendReceive(), saMsgMessageReply(),
saMsgMessageReplyAsync(), saMsgMessageGet(),
SaMsgMessageDeliveredCallbackT

3.7.2 SaMsgMessageDeliveredCallbackT

Prototype

typedef void (*SaMsgMessageDeliveredCallbackT)(

SaInvocationT invocation,

SaAisErrorT error

);

Parameters

invocation - [in] A designator that associates this invocation to a previous call to one
of the saMsgMessageSendAsync() or saMsgMessageReplyAsync() functions.
64 SAI-AIS-MSG-B.02.01 Section 3.7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
error - [in] This parameter specifies whether the message sent via the corresponding
invocation of saMsgMessageSendAsync() or saMsgMessageReplyAsync() has been
delivered to the destination message queue, or to the reply buffer supplied by the pro-
cess that invoked the saMsgMessageSendReceive() function.

• SA_AIS_OK - The message could be delivered successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

• SA_AIS_ERR_BAD_HANDLE - The handle msgHandle, specified in the corre-
sponding invocation of the saMsgMessageSendAsync() or
saMsgMessageReplyAsync() functions is invalid, since it is corrupted, unini-
tialized, or has already been finalized.

• SA_AIS_ERR_INVALID_PARAM - A parameter was not set correctly in the
corresponding invocation of the saMsgMessageSendAsync() or
saMsgMessageReplyAsync() functions.

• SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the pro-
vider of the service is out of memory and cannot provide the service.

• SA_AIS_ERR_NO_RESOURCES - Insufficient resources (other than mem-
ory)

• SA_AIS_ERR_NOT_EXIST - The destination message queue or message
queue group, designated by destination in the corresponding invocation of
saMsgMessageSendAsync(), cannot be found, or the reply buffer, identified by
senderId in the corresponding invocation of saMsgMessageReplyAsync(),
cannot be located.

• SA_AIS_ERR_NO_SPACE - The reply buffer, identified by senderId in the
corresponding invocation of saMsgMessageReplyAsync(), is not large
enough to contain the reply message.

• SA_AIS_ERR_QUEUE_FULL - If the destination message queue, designated
by destination in the corresponding invocation of the
saMsgMessageSendAsync() function, is a message queue, it is full. If it is a
unicast message queue group, the selected member message queue is full. If
it is a multicast message queue group, all selected member message queues
are full.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.7.2 65

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
• SA_AIS_ERR_QUEUE_NOT_AVAILABLE - The destination parameter in the
corresponding invocation of the saMsgMessageSendAsync() function desig-
nates a message queue group, and the message queue group is empty.

• SA_AIS_ERR_BAD_FLAGS - The ackFlags parameter in the corresponding
invocation of the saMsgMessageSendAsync() or
saMsgMessageReplyAsync() functions is invalid.

Description

The Message Service invokes this callback to indicate whether a previous call to
saMsgMessageSendAsync() or saMsgMessageReplyAsync() could deliver a mes-
sage to the destination successfully. This callback is invoked in the context of a
thread issuing an saMsgDispatch() call on the handle msgHandle, which was speci-
fied in the corresponding saMsgMessageSendAsync(() or
saMsgMessageReplyAsync() call.

If an error occurs, it is returned in the error parameter.

During this call or after this call returns, the process may deallocate the memory for
the data in the message buffer, which was passed previously to the corresponding
saMsgMessageSendAsync() or saMsgMessageReplyAsync() call.

Message delivery properties:
For saMsgMessageSendAsync(), the message delivery properties apply to either a
destination message queue or a message queue that is a member of a destination
message queue group.

• Message queue or a unicast message queue group: If error is SA_AIS_OK,
the message has been successfully delivered to exactly one message queue;
otherwise, if error is neither SA_AIS_ERR_LIBRARY nor
SA_AIS_ERR_TIMEOUT, the message has not been, and will not be, deliv-
ered to any destination message queue.

• Multicast message queue group: If error is SA_AIS_OK, the message has
been successfully delivered to at least one member of the message queue
group; otherwise, if error is neither SA_AIS_ERR_LIBRARY nor
SA_AIS_ERR_TIMEOUT, the message has not been, and will not be, deliv-
ered to any destination message queue.

For saMsgMessageReplyAsync(), the message delivery properties apply to the deliv-
ery of the reply message into the reply buffer supplied by the process that invoked the
saMsgMessageSendReceive() function.
If error is SA_AIS_OK, the message has been successfully delivered; otherwise, if
error is neither SA_AIS_ERR_LIBRARY nor SA_AIS_ERR_TIMEOUT, the message
has not been, and will not be, delivered.
66 SAI-AIS-MSG-B.02.01 Section 3.7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
Return Values

None.

See Also

saMsgMessageSendAsync(), saMsgMessageReplyAsync(),
saMsgMessageSendReceive(), saMsgDispatch()

3.7.3 saMsgMessageGet()

Prototype

SaAisErrorT saMsgMessageGet(

SaMsgQueueHandleT queueHandle,

SaMsgMessageT *message,

SaTimeT *sendTime,

SaMsgSenderIdT *senderId,

SaTimeT timeout

);

Parameters

queueHandle - [in] The handle of the message queue a message is to be received
from.

message - [in/out] A pointer to a message structure that contains the following fields:

• data - [in/out] A buffer, provided by the invoking process, for the message that
is to be received. If data is NULL, the value of size provided by the invoking
process is ignored, and the buffer is provided by the Message Service library.
The buffer must be deallocated by the calling process by invoking the
saMsgMessageDataFree() function.

• size - [in/out] The size of the buffer. After successful completion, size contains
the size of data. If the data buffer provided by the process is too small, an error
is returned, and size contains the size required to receive the message.

• type - [out] The message type.
• version - [out] Distinguishes different versions of a message of the same type.
• priority - [out] The priority of the received message.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.7.3 67

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
• senderName [in/out] If senderName as an in parameter is not NULL, it points
to an area to contain the sender name. If a sender name is available in the
received message, the Message Service places the sender name into this
area; otherwise, message->senderName->length is set to zero.
If senderName as an in parameter is NULL, no sender name is provided to the
caller.

sendTime - [in/out] If sendTime as an in parameter is not NULL, it points to a value of
type SaTimeT on return from saMsgMessageGet(). If saMsgMessageGet() returns
SA_AIS_OK, this value represents the absolute time when the received message
was stored in the destination message queue by the calls saMsgMessageSend(), or
saMsgMessageSendAsync(), or saMsgMessageSendReceive(). If sendTime as an in
parameter is NULL, it is ignored.

senderId - [in/out] This parameter must point to a value of type SaMsgSenderIdT,
defined in section 3.3.2 on page 21. If saMsgMessageGet() returns SA_AIS_OK and
the contents of senderId is not zero, then the receiving thread must reply to the
received message using saMsgMessageReply() or saMsgMessageReplyAsync(),
and it must provide a pointer to the unmodified contents of senderId in this call.

timeout - [in] The time that the saMsgMessageGet() function waits for the arrival of a
message before it issues a timeout error.
If timeout is set to 0, the call returns immediately; if there was a message in the mes-
sage queue, and no other error occurred, this message is returned, and the return
value is set to SA_AIS_OK; otherwise SA_AIS_ERR_TIMEOUT is returned.

Description

This function retrieves a message from the message queue designated by
queueHandle. This function will block until a message is available to be retrieved, or
the time specified by the timeout parameter elapses.

When receiving messages via an invocation of the saMsgMessageGet() function,
messages in a higher priority area are received before messages in a lower priority
area. Messages with the same priority are received in the order of their arrival in the
corresponding priority area associated with a priority. For more details, see Section
3.1.6 on page 20.

When the data buffer is allocated by the Message Service library, care must be taken
to ensure that the invoking process deallocates that buffer space by calling the
saMsgMessageDataFree() function.

If SA_AIS_OK is returned, the received message is removed from the message
queue.
If SA_AIS_ERR_LIBRARY or SA_AIS_ERR_TIMEOUT is returned, it is unspecified
68 SAI-AIS-MSG-B.02.01 Section 3.7.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
whether the message is removed from the message queue or whether it is not. For all
other error codes, the message is not removed from the message queue.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout defined by the timeout parameter occurred before the call could complete. It
is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle queueHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained via the saMsgQueueOpen() or
saMsgQueueOpenCallback() functions, or the corresponding message queue
has already been closed.

• The handle msgHandle that was passed to the functions saMsgQueueOpen() or
saMsgQueueOpenAsync() has already been finalized.

SA_AIS_ERR_INVALID_PARAM - One of the parameters is not set correctly. In par-
ticular, this value is returned if senderId is NULL.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NO_SPACE - The message could not be received because the buffer
provided was not large enough.

SA_AIS_ERR_INTERRUPT - This error code is returned if the call is terminated by a
call to saMsgMessageCancel().

See Also

saMsgMessageReply(), saMsgMessageReplyAsync(), saMsgMessageSend(),
saMsgMessageSendAsync(), saMsgMessageSendReceive(),
saMsgMessageDataFree(), saMsgMessageCancel()
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.7.3 69

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.7.4 saMsgMessageDataFree()

Prototype

SaAisErrorT saMsgMessageDataFree(

SaMsgHandleT msgHandle,

void *data

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

data - [in] A pointer to the buffer that was allocated by the saMsgMessageGet() func-
tion or by the saMsgMessageSendReceive() function and that is to be deallocated.

Description

This function frees the memory pointed to by data and that was allocated by the Mes-
sage Service library in a previous call to the saMsgMessageGet() or
saMsgMessageSendReceive() functions.

For details, refer to the description of the message parameter in the corresponding
invocation of the saMsgMessageGet() function and to the description of the
receiveMessage parameter in the corresponding invocation of the
saMsgMessageSendReceive() function.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

See Also

saMsgMessageGet(), saMsgMessageSendReceive()
70 SAI-AIS-MSG-B.02.01 Section 3.7.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.7.5 SaMsgMessageReceivedCallbackT

Prototype

typedef void (*SaMsgMessageReceivedCallbackT)(

SaMsgQueueHandleT queueHandle

);

Parameters

queueHandle - [in] The handle to the message queue from which the message can
be received.

Description

The Message Service invokes this callback function to notify a process that a mes-
sage can be received from the message queue, designated by queueHandle. This
callback is invoked in the context of a thread issuing an saMsgDispatch() call on the
handle msgHandle, which was specified in the saMsgQueueOpen() function or in the
saMsgQueueOpenAsync() function, leading to the handle queueHandle.

The process can receive this message by invoking the saMsgMessageGet() function.

This callback is invoked whenever a message is placed in the message queue, irre-
spective of its priority.

Return Values

None.

See Also

saMsgMessageGet(), saMsgQueueOpen(), saMsgQueueOpenAsync(),
saMsgMessageSend(), saMsgMessageSendAsync(),
saMsgMessageSendReceive(), saMsgMessageReply(),
saMsgMessageReplyAsync(), saMsgDispatch()
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.7.5 71

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.7.6 saMsgMessageCancel()

Prototype

SaAisErrorT saMsgMessageCancel(

SaMsgQueueHandleT queueHandle

);

Parameters

queueHandle - [in] The handle to the message queue from which a message is to be
received.

Description

This function cancels all blocking calls to saMsgMessageGet() for the message
queue, designated by queueHandle, in the invoking process.

This function is normally called during fault recovery.

The canceled call returns with the error code set to SA_AIS_ERR_INTERRUPT. If no
process is blocking in an saMsgMessageGet() call, the saMsgMessageCancel() call
has no effect and returns SA_AIS_ERR_NOT_EXIST.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle queueHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained via the saMsgQueueOpen() or
saMsgQueueOpenCallback() functions, or the corresponding message queue
has already been closed.

• The handle msgHandle that was passed to the functions saMsgQueueOpen() or
saMsgQueueOpenAsync() has already been finalized.
72 SAI-AIS-MSG-B.02.01 Section 3.7.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NOT_EXIST - No process was blocking in an saMsgMessageGet()
call.

See Also

saMsgMessageGet()

3.8 Request-Reply Operations

3.8.1 saMsgMessageSendReceive()

Prototype

SaAisErrorT saMsgMessageSendReceive(

SaMsgHandleT msgHandle,

const SaNameT *destination,

const SaMsgMessageT *sendMessage,

SaMsgMessageT *receiveMessage,

SaTimeT *replySendTime,

SaTimeT timeout

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating this particular initialization of the Message Service.

destination - [in] A pointer to the name of a message queue or a unicast message
queue group the message, designated by sendMessage, is to be sent to. It is not per-
mitted to specify a multicast message queue group in destination.

sendMessage - [in] A pointer to the message structure for the message to be sent,
consisting of a type field that contains the message type, a version field that is used
to distinguish different versions of a message of the same type, a data field for the
message to be sent, a size field that contains the size of the message, a priority field
that gives the priority of the message to be sent, and a senderName pointer. If
senderName is not NULL, it points to an area containing the sender name, which is
supplied by the caller; If senderName is NULL, the sending process does not provide
its sender name, and a receiving process expecting a sender name will get
message->senderName->length set to zero.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.8 73

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
receiveMessage - [in/out] A pointer to the message structure that contains the follow-
ing fields:

• data - [in/out] A buffer, provided by the invoking process, for the reply mes-
sage to be received. This buffer is called reply buffer. If data is NULL, the
value of size provided by the invoking process is ignored, and the reply buffer
is provided by the Message Service library. The reply buffer must be deallo-
cated by the calling process by invoking the saMsgMessageDataFree() func-
tion.

• size - [in/out] The size of the reply buffer. After successful completion, the size
field contains the size of the data in the message. If the data buffer provided by
the process is too small, an error is returned.

• type -[out] The message type.
• version - [out] Distinguishes different versions of a message of the same type.
• priority - [out] The priority of the received message.
• senderName [in/out] If senderName as an in parameter is not NULL, it points

to an area to contain the sender name of the process replying to this
saMsgMessageSendReceive() call. If a sender name is available in the
received message, the Message Service places the sender name into this
area; otherwise, receiveMessage->senderName->length is set to zero.
If senderName as an in parameter is NULL, no sender name is provided to the
caller.

replySendTime - [in/out] If replySendTime as an in parameter is not NULL, it points to
a value of type SaTimeT on return from saMsgMessageSendReceive(). This value
represents the timestamp when the reply message was written into the data field of
the structure pointed to by the receiveMessage parameter. If replySendTime as an in
parameter is NULL, it is ignored.

timeout -[in] The time that the saMsgMessageSendReceive() function must wait
before issuing a timeout error.

Description

This function enables the transmission of a message, designated by sendMessage,
as well as the receipt of a reply message, designated by receiveMessage, in a single
invocation. It sends the message, designated by sendMessage, to the message
queue or message queue group, designated by destination. The message is sent
synchronously, i.e., the process blocks waiting for a reply. The reply consists of the
receiveMessage message. It must be sent using either the saMsgMessageReply()
function or the saMsgMessageReplyAsync() function, and must arrive within a time
74 SAI-AIS-MSG-B.02.01 Section 3.8.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
interval specified by the timeout parameter; otherwise, the error
SA_AIS_ERR_TIMEOUT is returned.

In absence of errors, the thread that invoked saMsgMessageSendReceive() will
receive the corresponding reply, even when other threads are waiting for replies to
other saMsgMessageSendReceive() invocations. Moreover, the reply message, sent
via the saMsgMessageReply() or saMsgMessageReplyAsync() functions, is not
enqueued in a message queue.

After this call returns, the invoking process may deallocate the memory for the data in
sendMessage. When the data buffer referred to by the receiveMessage structure is
allocated by the Message Service library, care must be taken to ensure that the
invoking process deallocates that buffer space promptly by calling the
saMsgMessageDataFree() function.

Message delivery properties:
These properties apply when a message is sent to either a destination message
queue or to a message queue that is a member of a destination message queue
group.

If SA_AIS_ERR_QUEUE_FULL is returned, then the message has not been deliv-
ered to the process receiving from the destination message queue, because the mes-
sage queue was full.

If SA_AIS_ERR_NO_SPACE is returned, then the message has been delivered to a
process receiving from the destination message queue, because this error applies
only when receiving the reply.

If SA_AIS_ERR_TIMEOUT, SA_AIS_ERR_NO_MEMORY or
SA_AIS_ERR_NO_RESOURCES is returned, the message may or may not have
been delivered to a process receiving from the destination message queue, because
those errors apply to both the sending and receiving parts of this call.

For all other return values except SA_AIS_OK, the Message Service guarantees that
no process receiving from the destination message queue receives this message.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout defined by the timeout parameter occurred before the call could complete. It
is unspecified whether the call succeeded or whether it did not.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.8.1 75

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - One of the parameters is not set correctly. In par-
ticular, this applies if a multicast message queue group is specified in the destination
parameter.

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are not enough resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The destination message queue or message queue
group, designated by destination, cannot be found.

SA_AIS_ERR_NO_SPACE - The message could not be received because the reply
buffer, provided by the invoking process, is not large enough.

SA_AIS_ERR_QUEUE_FULL - If destination is a message queue, it is full. If
destination is a unicast message queue group, the selected member message queue
is full.

SA_AIS_ERR_QUEUE_NOT_AVAILABLE - The destination parameter designates a
message queue group, and the message queue group is empty.

See Also

saMsgMessageReply(), saMsgMessageReplyAsync(), saMsgMessageGet(),
saMsgMessageSend(), saMsgMessageSendAsync(), saMsgMessageDataFree()
76 SAI-AIS-MSG-B.02.01 Section 3.8.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
3.8.2 saMsgMessageReply() and saMsgMessageReplyAsync()

Prototype

SaAisErrorT saMsgMessageReply(

SaMsgHandleT msgHandle,

const SaMsgMessageT *replyMessage,

const SaMsgSenderIdT *senderId,

SaTimeT timeout

);

SaAisErrorT saMsgMessageReplyAsync(

SaMsgHandleT msgHandle,

SaInvocationT invocation,

const SaMsgMessageT *replyMessage,

const SaMsgSenderIdT *senderId,

SaMsgAckFlagsT ackFlags

);

Parameters

msgHandle - [in] The handle, obtained through the saMsgInitialize() function, desig-
nating a particular initialization of the Message Service.

invocation - [in] This parameter associates this invocation of
saMsgMessageReplyAsync() with a corresponding invocation of the
saMsgMessageDeliveredCallback() function. This parameter is ignored if ackFlags is
set to zero, meaning that the saMsgMessageDeliveredCallback() function is not
called, and the caller is not informed whether an error occurred or whether it did not.

replyMessage - [in] A pointer to a structure, defined by the SaMsgMessageT in Sec-
tion 3.3.11 on page 28, for the reply message to be sent that consists of the type,
version, data, size, priority, and senderName fields. The priority field is not used and
is set to zero by the Message Service. If senderName is not NULL, it points to an
area containing the sender name, which is supplied by the caller; if senderName is
NULL, the replying process does not provide its sender name, and the receiving pro-
cess (that is the process waiting for a reply in the saMsgMessageSendReceive() call)
expecting a sender name will get a receiveMessage->senderName->length set to
zero.
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.8.2 77

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
senderId - [in] The value that the saMsgMessageGet() call received in the senderId
field for the message that the caller is replying to.

ackFlags - [in] The kind of the required acknowledgment. This field must be set to
zero or to SA_MSG_MESSAGE_DELIVERED_ACK. In the latter case, the caller
requires to be acknowledged whether the message can be stored in the reply buffer
provided in the corresponding saMsgMessageSendReceive() call. If there is no
space for the entire message in the reply buffer, the error SA_AIS_ERR_NO_SPACE
is returned.

timeout - [in] The saMsgMessageReply() invocation is considered to have failed if it
does not complete within the duration specified.

Description

These functions are used to reply to a message that was sent using the
saMsgMessageSendReceive() function in which case the Message Service sets the
senderId for the message received by the saMsgMessageGet() function to a non-
zero value. In this case, the saMsgMessageReply() or saMsgMessageReplyAsync()
function must be used to reply to the received message, and they must supply as the
senderId parameter the same value as the senderId field, obtained through the
saMsgMessageGet() function.

A process may not reply to a message more than once.

The saMsgMessageReply() function waits synchronously (that is, it blocks) until the
reply message has been placed in the reply buffer provided by the process that
invoked saMsgMessageSendReceive().
After the saMsgMessageReply() function returns, the invoking process may deallo-
cate the memory for the data in replyMessage.

The function saMsgMessageReplyAsync() returns as soon as possible, without wait-
ing until the reply message has been placed in the reply buffer provided by the pro-
cess that invoked saMsgMessageSendReceive(). If the value of the ackFlags field is
zero, the saMsgMessageDeliveredCallback() is not invoked, and the caller is not
informed if an error occurs. If the value of the ackFlags field is set to
SA_MSG_MESSAGE_DELIVERED_ACK, and this call returns SA_AIS_OK,
saMsgMessageDeliveredCallback() is invoked to indicate whether the message was
delivered, or whether an error occurred. For this purpose, the user must have sup-
plied the saMsgMessageDeliveredCallback() when invoking the saMsgInitialize()
function.
If saMsgMessageReplyAsync() returns successfully, and ackFlags is not set to zero,
the sending process may deallocate the memory for the data in the message buffer
either during the invocation of saMsgMessageDeliveredCallback() or after
saMsgMessageDeliveredCallback() returns.
78 SAI-AIS-MSG-B.02.01 Section 3.8.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
If saMsgMessageReplyAsync() returns an error, or if ackFlags is set to zero, meaning
that saMsgMessageDeliveredCallback() will not be called, the process may deallo-
cate the memory for the data in the message buffer as soon as
saMsgMessageReplyAsync() returns.

If the process that invoked saMsgMessageSendReceive() exits or calls
saMsgFinalize() for its handle msgHandle before saMsgMessageReply() or
saMsgMessageReplyAsync() completes, the Message Service returns
SA_AIS_ERR_NOT_EXIST to the process that invoked saMsgMessageReply() or
saMsgMessageReplyAsync().

Message delivery properties:
saMsgMessageReply:
If the return value is SA_AIS_OK, the Message Service delivers the reply to the pro-
cess that invoked saMsgMessageSendReceive(). If the return value is
SA_AIS_ERR_LIBRARY, or SA_AIS_ERR_TIMEOUT, it is unspecified whether the
reply is delivered or not. In all other cases, the Message Service shall not deliver the
reply.

saMsgMessageReplyAsync():
If saMsgMessageReplyAsync() returns SA_AIS_OK, and if the value of the ackFlags
field is set to SA_MSG_MESSAGE_DELIVERED_ACK, the Message Service will
invoke saMsgMessageDeliveredCallback(); otherwise, if the error code is neither
SA_AIS_ERR_LIBRARY nor SA_AIS_ERR_TIMEOUT, the Message Service will not
invoke saMsgMessageDeliveredCallback(), and it will not deliver the reply. Refer to
the saMsgMessageDeliveredCallback() function for the message delivery properties.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - Before the call could complete, either an implementation-
dependent timeout occurred, or the timeout specified by the timeout parameter in the
saMsgMessageReply() call occurred. It is unspecified whether the
saMsgMessageReply() call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle msgHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saMsgInitialize() was incomplete,
since the saMsgMessageDeliveredCallback() callback function is missing, and the
AIS Specification SAI-AIS-MSG-B.02.01 Section 3.8.2 79

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
user specified SA_MSG_MESSAGE_DELIVERED_ACK in ackFlags of
saMsgMessageReplyAsync().

SA_AIS_ERR_INVALID_PARAM - One of the parameters is not set correctly, or the
message being replied to was not sent using saMsgMessageSendReceive().

SA_AIS_ERR_NO_MEMORY - Either the Message Service library or the provider of
the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - Either there is no thread waiting for a reply, or the
senderId parameter is invalid.

SA_AIS_ERR_NO_SPACE - The reply buffer, provided in the corresponding
saMsgMessageSendReceive() call, is not large enough for the reply message.

SA_AIS_ERR_BAD_FLAGS - The ackFlags parameter is invalid.

See Also

saMsgMessageSendReceive(), saMsgMessageGet(), saMsgMessageSend(),
saMsgMessageSendAsync()
80 SAI-AIS-MSG-B.02.01 Section 3.8.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
4 Alarms and Notifications
The Message Service produces certain alarms and notifications in order to convey
important information regarding its operational and functional state to an administra-
tor or a management system.

These reports vary in perceived severity and include alarms, which potentially require
an operator intervention and notifications that signify important state or object
changes. A management entity should regard notifications, but they do not necessar-
ily require an operator intervention.

The recommended vehicle to be used for producing alarms and notifications is the
Notification Service of the Service AvailabilityTM Forum (abbreviated to NTF, see [2]),
and hence the various notifications are partitioned into categories as described in this
service.

In some cases, this specification uses the word “Unspecified” for values of attributes,
which the vendor is at a liberty to set to whatever makes sense in the vendor’s con-
text, and the SA Forum has no specific recommendation regarding such values. Such
values are generally optional from the CCITT Recommendation X.733 perspective
(see [4]).

4.1 Setting Common Attributes

The tables presented in Section 4.2 refer to the attributes in the following list, but do
not describe them, as these attributes are described in the list in a generic manner.
For each attribute in this list, the specification provides recommendations regarding
how to populate the attribute.

• Correlation Ids - They are supplied to correlate two notifications that have been
generated because of a related cause. This attribute is optional. But in case of
alarms that are generated to clear certain conditions, i.e., produced with a per-
ceived severity of SA_NTF_SEVERITY_CLEARED, the correlation id shall be
populated by the application with the notification Id that was generated by the
Notification Service while invoking the saNtfNotificationSend() API during the
production of the actual alarm.

• Event Time - The application might pass a timestamp or optionally pass an
SA_TIME_UNKNOWN value in which case the timestamp is provided by the
Notification Service.

• NCI Id - The vendorId portion of the SaNtfClassIdT data structure must be set to
SA_NTF_VENDOR_ID_SAF always. The majorId and minorId will vary based
on the specific SA Forum service and the particular notification. Every SA Forum
AIS Specification SAI-AIS-MSG-B.02.01 Section 4 81

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
service shall have a majorId as described in the enumeration SaNtfSafServicesT
of the Notification Service specification.

• Notification Id - This attribute is obtained from the Notification Service when a
notification is generated, and hence need not be populated by an application.

• Notifying Object - DN of the entity generating the notification. This name must
conform to the SA Forum AIS naming convention and contain at least the safApp
RDN value portion of the DN set to the specified standard RDN value of the SA
Forum AIS service generating the notification. For details on the SA Forum AIS
naming convention, refer to the SA Forum Overview document.

4.2 Message Service Notifications
The following sections describe a set of notifications that a Message Service imple-
mentation shall produce.

The value of the majorId field in the notification class identifier (SaNtfClassIdT)
should be set as follows in all notifications generated by the Message Service.

• majorId = SA_SVC_MSG

The minorId field within the notification class identifier (SaNtfClassIdT) is set distinctly
for each individual notification as described below. This field is range-bound, and the
used ranges are:

• Alarms: (0x01 - 0x64)
• State change notifications: (0x65 - 0xC8)
• Object change notifications: (0xC9 - 0x12C)
• Attribute change notifications: (0x12D - 0x190)

4.2.1 Message Service Alarms

4.2.1.1 Message Service impaired

Description

The Message Service is currently unable to provide service or is in a degraded state
because of certain issues with memory, resources, communication, or other con-
straints.

Clearing Method

1) Manual, after taking appropriate administrative action or
82 SAI-AIS-MSG-B.02.01 Section 4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
2) Issue an implementation specific optional alarm with perceived severity
SA_NTF_SEVERITY_CLEARED to convey that the Message Service self-healed/
recovered and is again providing service.

4.2.2 Message Service State Change Notifications

4.2.2.1 Message Queue Capacity Reached

Description

All priority areas of the message queue are filled up to their critical capacities (see
Section 3.3.12 on page 29).

NTF Attribute Name

Attribute Type
(X.73Y

Recommendation
or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_ALARM_COMMUNICATION

Notification Object Mandatory MSG service, same as Notifying object
as specified above.

Notification Class Identi-
fier

NTF internal minorId = 0x01

Additional Text Optional “MSG service impaired.”

Additional Information ID Optional Unspecified

Probable Cause Mandatory Applicable value from enum
SaNtfProbableCauseT in [2]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum
SaNtfSeverityT in [2]

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified
AIS Specification SAI-AIS-MSG-B.02.01 Section 4.2.2 83

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
4.2.2.2 Message Queue Capacity Available

Description

At least one priority area of the message queue is no longer filled up to its critical
capacity after the Message Queue Group Capacity Reached condition has been noti-
fied for the message queue group before (see Section 3.3.12 on page 29).

NTF Attribute Name

Attribute Type
(X.73Y

Recommendation
or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the message queue, which
is full and cannot accept any more mes-
sages.

Notification Class Identifier NTF internal minorId = 0x65

Additional Text Optional Unspecified

Additional Information ID Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute ID Optional SA_MSG_DEST_CAPACITY_STATUS

Old Attribute Value Optional Unspecified

New Attribute Value Mandatory SA_MSG_QUEUE_CAPACITY_
REACHED
84 SAI-AIS-MSG-B.02.01 Section 4.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
4.2.2.3 Message Queue Group Capacity Reached

Description

All priority areas of all the message queues within a message queue group are filled
up to their critical capacities (see Section 3.3.12 on page 29).

NTF Attribute Name

Attribute Type
(X.73Y

Recommendation
or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the message queue, which
is available for receipt of messages.

Notification Class Identifier NTF internal minorId = 0x66

Additional Text Optional Unspecified

Additional Information ID Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute
ID

Optional SA_MSG_DEST_CAPACITY_STATUS

Old Attribute Value Optional SA_MSG_QUEUE_CAPACITY_
REACHED

New Attribute Value Mandatory SA_MSG_QUEUE_CAPACITY_
AVAILABLE
AIS Specification SAI-AIS-MSG-B.02.01 Section 4.2.2 85

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
4.2.2.4 Message Queue Group Capacity Available

Description

At least one priority area in one message queue in the message queue group is no
longer filled up to its critical capacity after the Message Queue Group Capacity
Reached condition has been notified for the message queue group before (see Sec-
tion 3.3.12 on page 29).

NTF Attribute Name

Attribute Type
(X.73Y

Recommendation
or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the message queue group,
which is full and cannot accept any more
messages.

Notification Class Identifier NTF internal minorId = 0x67

Additional Text Optional Unspecified

Additional Information ID Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute ID Optional SA_MSG_DEST_CAPACITY_STATUS

Old Attribute Value Optional Unspecified

New Attribute Value Mandatory SA_MSG_QUEUE_GROUP_CAPACITY_
REACHED
86 SAI-AIS-MSG-B.02.01 Section 4.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
NTF Attribute Name

Attribute Type
(X.73Y

Recommendation
or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the message queue group,
which is available to receive messages.

Notification Class Identifier NTF internal minorId = 0x68

Additional Text Optional Unspecified

Additional Information ID Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute
ID

Optional SA_MSG_DEST_CAPACITY_STATUS

Old Attribute Value Optional SA_MSG_QUEUE_GROUP_CAPACITY_
REACHED

New Attribute Value Mandatory SA_MSG_QUEUE_GROUP_CAPACITY_
AVAILABLE
AIS Specification SAI-AIS-MSG-B.02.01 Section 4.2.2 87

Service AvailabilityTM Application Interface Specification
Message Service

1

5

10

15

20

25

30

35

40
88 SAI-AIS-MSG-B.02.01 Section 4.2.2 AIS Specification

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Changes in Return Values of API Functions
	1.3.4 Other Changes

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Message Service

	3 SA Message Service API
	3.1 Message Service Model
	3.1.1 Messages
	3.1.2 Message Queues
	3.1.3 Message Queue Groups
	3.1.4 Properties of Message Queues
	3.1.4.1 Non-persistent and Persistent Message Queues
	3.1.4.2 Message Preservation Property of a Queue

	3.1.5 Associating Processes with Message Queues
	3.1.6 Message Delivery Properties

	3.2 Include File and Library Name
	3.3 Type Definitions
	3.3.1 Handles
	3.3.1.1 SaMsgHandleT
	3.3.1.2 SaMsgQueueHandleT

	3.3.2 SaMsgSenderIdT
	3.3.3 SaMsgCallbacksT
	3.3.4 SaMsgAckFlagsT
	3.3.5 Message Queue Creation Flags and Creation Attributes
	3.3.5.1 SaMsgQueueCreationFlagsT
	3.3.5.2 SaMsgQueueCreationAttributesT

	3.3.6 SaMsgQueueOpenFlagsT
	3.3.7 Message Priority
	3.3.8 Message Queue Usage and Status
	3.3.8.1 SaMsgQueueUsageT
	3.3.8.2 SaMsgQueueStatusT

	3.3.9 SaMsgQueueGroupPolicyT
	3.3.10 Types for Tracking Message Queue Group Changes
	3.3.10.1 SaMsgQueueGroupChangesT
	3.3.10.2 SaMsgQueueGroupMemberT
	3.3.10.3 SaMsgQueueGroupNotificationT
	3.3.10.4 SaMsgQueueGroupNotificationBufferT

	3.3.11 SaMsgMessageT
	3.3.12 saMsgMessageCapacityStatusT
	3.3.13 saMsgStateT

	3.4 Library Life Cycle
	3.4.1 saMsgInitialize()
	3.4.2 saMsgSelectionObjectGet()
	3.4.3 saMsgDispatch()
	3.4.4 saMsgFinalize()

	3.5 Message Queue Operations
	3.5.1 saMsgQueueOpen() and saMsgQueueOpenAsync()
	3.5.2 SaMsgQueueOpenCallbackT
	3.5.3 saMsgQueueClose()
	3.5.4 saMsgQueueStatusGet()
	3.5.5 saMsgQueueRetentionTimeSet()
	3.5.6 saMsgQueueUnlink()

	3.6 Management of Message Queue Groups
	3.6.1 saMsgQueueGroupCreate()
	3.6.2 saMsgQueueGroupInsert()
	3.6.3 saMsgQueueGroupRemove()
	3.6.4 saMsgQueueGroupDelete()
	3.6.5 saMsgQueueGroupTrack()
	3.6.6 SaMsgQueueGroupTrackCallbackT
	3.6.7 saMsgQueueGroupTrackStop()
	3.6.8 saMsgQueueGroupNotificationFree()

	3.7 Message Send and Receive Operations
	3.7.1 saMsgMessageSend() and saMsgMessageSendAsync()
	3.7.2 SaMsgMessageDeliveredCallbackT
	3.7.3 saMsgMessageGet()
	3.7.4 saMsgMessageDataFree()
	3.7.5 SaMsgMessageReceivedCallbackT
	3.7.6 saMsgMessageCancel()

	3.8 Request-Reply Operations
	3.8.1 saMsgMessageSendReceive()
	3.8.2 saMsgMessageReply() and saMsgMessageReplyAsync()

	4 Alarms and Notifications
	4.1 Setting Common Attributes
	4.2 Message Service Notifications
	4.2.1 Message Service Alarms
	4.2.2 Message Service State Change Notifications

