
Service AvailabilityTM Forum
Application Interface Specification

Availability Management Framework SAI-AIS-AMF-B.02.01

The Service AvailabilityTM solution is high availability and more; it is the delivery of ultra-dependable
communication services on demand and without interruption.

This Service AvailabilityTM Forum Application Interface Specification document might contain
design defects or errors known as errata, which might cause the product to deviate from
published specifications. Current characterized errata are available on request.

.

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40
 SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT

The Service Availability™ Specification(s) (the "Specification") found at the URL http://www.saforum.org (the
"Site") is generally made available by the Service Availability Forum (the "Licensor") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions, which govern the
use of the Specification are set forth in this agreement (this "Agreement").

IMPORTANT – PLEASE READ THE TERMS AND CONDITIONS PROVIDED IN THIS AGREEMENT BEFORE DOWN-
LOADING OR COPYING THE SPECIFICATION. IF YOU AGREE TO THE TERMS AND CONDITIONS OF THIS AGREE-
MENT, CLICK ON THE "ACCEPT" BUTTON. BY DOING SO, YOU AGREE TO BE BOUND BY THE TERMS AND
CONDITIONS STATED IN THIS AGREEMENT. IF YOU DO NOT WISH TO AGREE TO THESE TERMS AND CONDITIONS,
YOU SHOULD PRESS THE "CANCEL"BUTTON AND THE DOWNLOAD PROCESS WILL NOT PROCEED.

1. LICENSE GRANT. Subject to the terms and conditions of this Agreement, Licensor hereby grants you a non-
exclusive, worldwide, non-transferable, revocable, but only for breach of a material term of the license granted in
this section 1, fully paid-up, and royalty free license to:

a. reproduce copies of the Specification to the extent necessary to study and understand the
Specification and to use the Specification to create products that are intended to be compatible
with the Specification;
b. distribute copies of the Specification to your fellow employees who are working on a project or
product development for which this Specification is useful; and
c. distribute portions of the Specification as part of your own documentation for a product you have
built, which is intended to comply with the Specification.

2. DISTRIBUTION. If you are distributing any portion of the Specification in accordance with Section 1(c), your
documentation must clearly and conspicuously include the following statements:

a. Title to and ownership of the Specification (and any portion thereof) remain with Service Avail-
ability Forum ("SA Forum").
b. The Specification is provided "As Is." SA Forum makes no warranties, including any implied
warranties, regarding the Specification (and any portion thereof) by Licensor.
c. SA Forum shall not be liable for any direct, consequential, special, or indirect damages (includ-
ing, without limitation, lost profits) arising from or relating to the Specification (or any portion
thereof).
d. The terms and conditions for use of the Specification are provided on the SA Forum website.

3. RESTRICTION. Except as expressly permitted under Section 1, you may not (a) modify, adapt, alter, translate,
or create derivative works of the Specification, (b) combine the Specification (or any portion thereof) with another
document, (c) sublicense, lease, rent, loan, distribute, or otherwise transfer the Specification to any third party, or
(d) copy the Specification for any purpose.

4. NO OTHER LICENSE. Except as expressly set forth in this Agreement, no license or right is granted to you, by
implication, estoppel, or otherwise, under any patents, copyrights, trade secrets, or other intellectual property by
virtue of your entering into this Agreement, downloading the Specification, using the Specification, or building prod-
ucts complying with the Specification.

5. OWNERSHIP OF SPECIFICATION AND COPYRIGHTS. The Specification and all worldwide copyrights therein
are the exclusive property of Licensor. You may not remove, obscure, or alter any copyright or other proprietary
rights notices that are in or on the copy of the Specification you download. You must reproduce all such notices on
all copies of the Specification you make. Licensor may make changes to the Specification, or to items referenced
AIS Specification SAI-AIS-AMF-B.02.01 3

Service AvailabilityTM Application Interface Specification

Legal Notice

1

5

10

15

20

25

30

35

40
therein, at any time without notice. Licensor is not obligated to support or update the Specification.

6. WARRANTY DISCLAIMER. THE SPECIFICATION IS PROVIDED "AS IS." LICENSOR DISCLAIMS ALL
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY, NONINFRINGEMENT OF THIRD-PARTY RIGHTS, FITNESS FOR ANY PARTICULAR PUR-
POSE, OR TITLE. Without limiting the generality of the foregoing, nothing in this Agreement will be construed as
giving rise to a warranty or representation by Licensor that implementation of the Specification will not infringe the
intellectual property rights of others.

7. PATENTS. Members of the Service Availability Forum and other third parties [may] have patents relating to the
Specification or a particular implementation of the Specification. You may need to obtain a license to some or all of
these patents in order to implement the Specification. You are responsible for determining whether any such
license is necessary for your implementation of the Specification and for obtaining such license, if necessary.
[Licensor does not have the authority to grant any such license.] No such license is granted under this Agreement.

8. LIMITATION OF LIABILITY. To the maximum extent allowed under applicable law, LICENSOR DISCLAIMS
ALL LIABILITY AND DAMAGES, INCLUDING DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, AND INCI-
DENTAL DAMAGES, ARISING FROM OR RELATING TO THIS AGREEMENT, THE USE OF THE SPECIFICA-
TION OR ANY PRODUCT MANUFACTURED IN ACCORDANCE WITH THE SPECIFICATION, WHETHER
BASED ON CONTRACT, ESTOPPEL, TORT, NEGLIGENCE, STRICT LIABILITY, OR OTHER THEORY. NOT-
WITHSTANDING ANYTHING TO THE CONTRARY, LICENSOR’S TOTAL LIABILITY TO YOU ARISING FROM
OR RELATING TO THIS AGREEMENT OR THE USE OF THE SPECIFICATION OR ANY PRODUCT MANU-
FACTURED IN ACCORDANCE WITH THE SPECIFICATION WILL NOT EXCEED ONE HUNDRED DOLLARS
($100). YOU UNDERSTAND AND AGREE THAT LICENSOR IS PROVIDING THE SPECIFICATION TO YOU AT
NO CHARGE AND, ACCORDINGLY, THIS LIMITATION OF LICENSOR’S LIABILITY IS FAIR, REASONABLE,
AND AN ESSENTIAL TERM OF THIS AGREEMENT.

9. TERMINATION OF THIS AGREEMENT. Licensor may terminate this Agreement, effective immediately upon
written notice to you, if you commit a material breach of this Agreement and do not cure the breach within ten (30)
days after receiving written notice thereof from Licensor. Upon termination, you will immediately cease all use of
the Specification and, at Licensor’s option, destroy or return to Licensor all copies of the Specification and certify in
writing that all copies of the Specification have been returned or destroyed. Parts of the Specification that are
included in your product documentation pursuant to Section 1 prior to the termination date will be exempt from this
return or destruction requirement.

10. ASSIGNMENT. You may not assign, delegate, or otherwise transfer any right or obligation under this Agree-
ment to any third party without the prior written consent of Licensor. Any purported assignment, delegation, or
transfer without such consent will be null and void.

11. GENERAL. This Agreement will be construed in accordance with, and governed in all respects by, the laws of
the State of Delaware (without giving effect to principles of conflicts of law that would require the application of the
laws of any other state). You acknowledge that the Specification comprises proprietary information of Licensor and
that any actual or threatened breach of Section 1 or 3 will constitute immediate, irreparable harm to Licensor for
which monetary damages would be an inadequate remedy, and that injunctive relief is an appropriate remedy for
such breach. All waivers must be in writing and signed by an authorized representative of the party to be charged.
Any waiver or failure to enforce any provision of this Agreement on one occasion will not be deemed a waiver of
any other provision or of such provision on any other occasion. This Agreement may be amended only by binding
written instrument signed by both parties. This Agreement sets forth the entire understanding of the parties relating
to the subject matter hereof and thereof and supersede all prior and contemporaneous agreements, communica-
tions, and understandings between the parties relating to such subject matter.
4 SAI-AIS-AMF-B.02.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
Table of Contents Availability Management Framework

1 Document Introduction . 13

 1.1 Document Purpose . 13
 1.2 AIS Documents Organization . 13
 1.3 History . 13
 1.3.1 New Topics . 13
 1.3.2 Clarifications . 14
 1.3.3 Changes in Return Values of API Functions . 16
 1.3.4 Other Changes . 16
 1.4 References . 18
 1.5 How to Provide Feedback on the Specification . 18
 1.6 How to Join the Service Availability™ Forum . 18
 1.7 Additional Information . 19
 1.7.1 Member Companies . 19
 1.7.2 Press Materials . 19

2 Overview . 21

 2.1 Overview of the Availability Management Framework . 21

3 System Description and System Model . 23

 3.1 Physical Entities . 23
 3.2 Logical Entities . 24
 3.2.1 Cluster and Nodes . 26
 3.2.2 Components . 28
 3.2.2.1 SA-Aware Components . 29
 3.2.2.2 Non-SA-Aware Components . 30
 3.2.2.3 Proxy and Proxied Components . 31
 3.2.2.4 Component Life Cycle . 32
 3.2.3 Component Service Instance . 34
 3.2.4 Service Unit . 34
 3.2.5 Service Instances . 35
 3.2.6 Service Groups . 36
 3.2.7 Application . 36
 3.2.8 Protection Groups . 37
 3.2.9 Service Unit Instantiation . 37
 3.2.10 Illustration of Logical Entities . 38
 3.3 State Models . 39
 3.3.1 Service Unit States . 39
 3.3.1.1 Presence State . 40
 3.3.1.2 Administrative State . 41
 3.3.1.3 Operational State . 42
 3.3.1.4 Readiness State . 42
 3.3.1.5 Service Unit’s HA State per Service Instance . 44
AIS Specification SAI-AIS-AMF-B.02.01 5

Service AvailabilityTM Application Interface Specification

Table of Contents

1

5

10

15

20

25

30

35

40
 3.3.2 Component States . 45
 3.3.2.1 Presence State . 46
 3.3.2.2 Operational State . 48
 3.3.2.3 Readiness State . 49
 3.3.2.4 Component’s HA State per Component Service Instance . 50
 3.3.3 Service Instance States . 56
 3.3.3.1 Administrative State . 56
 3.3.3.2 Assignment State . 56
 3.3.4 Component Service Instance States . 58
 3.3.5 Service Group States . 58
 3.3.6 Node States . 59
 3.3.6.1 Administrative State . 59
 3.3.6.2 Operational State . 59
 3.3.7 Application States . 61
 3.3.8 Cluster States . 61
 3.3.9 Summary of States Supported for the Logical Entities . 62
 3.4 Fail-Over and Switch-Over . 64
 3.5 Possible Combinations of States for Service Units . 65
 3.5.1 Combined States for Pre-Instantiable Service Units . 65
 3.5.2 Combined States for Non-Pre-Instantiable Service Units . 67
 3.6 Component Capability Model . 68
 3.7 Service Group Redundancy Model . 69
 3.7.1 Common Characteristics . 70
 3.7.1.1 Common Definitions . 71
 3.7.1.2 Initiation of the Auto-Adjust Procedure for a Service Group . 73
 3.7.2 2N Redundancy Model . 74
 3.7.2.1 Basics . 74
 3.7.2.2 Configuration . 75
 3.7.2.3 SI Assignments and Failure Handling . 75
 3.7.2.4 Examples . 76
 3.7.2.5 UML Diagram of the 2N Redundancy Model . 83
 3.7.3 N+M Redundancy Model . 83
 3.7.3.1 Basics . 83
 3.7.3.2 Examples . 84
 3.7.3.3 Configuration . 86
 3.7.3.4 SI Assignments . 88
 3.7.3.5 Examples for Service Unit Fail-Over . 94
 3.7.3.6 An Example of Auto-adjust . 96
 3.7.3.7 UML Diagram of the N+M Redundancy Model . 98
 3.7.4 N-Way Redundancy Model . 98
 3.7.4.1 Basics . 98
 3.7.4.2 Example . 99
 3.7.4.3 Configuration . 100
 3.7.4.4 SI Assignments . 101
 3.7.4.5 Failure Handling . 105
 3.7.4.6 Auto-adjust Example . 106
 3.7.4.7 UML Diagram of the N-Way Redundancy Model . 107
 3.7.5 N-Way Active Redundancy Model . 108
6 SAI-AIS-AMF-B.02.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 3.7.5.1 Basics . 108
 3.7.5.2 Example . 109
 3.7.5.3 Configuration . 110
 3.7.5.4 SI Assignments . 111
 3.7.5.5 Failure Handling . 115
 3.7.5.6 Auto-adjust Example . 119
 3.7.5.7 UML Diagram of the N-Way Active Redundancy Model . 121
 3.7.6 No Redundancy Model . 121
 3.7.6.1 Basics . 121
 3.7.6.2 Example . 122
 3.7.6.3 Configuration . 123
 3.7.6.4 SI Assignments . 124
 3.7.6.5 Failure Handling . 126
 3.7.6.6 Auto-adjust Example . 126
 3.7.6.7 UML Diagram of the No Redundancy Model . 127
 3.7.7 The Effect of Administrative Operations on Service Instance Assignments 128
 3.7.7.1 Locking a Service Unit or a Node . 128
 3.7.7.2 Unlocking a Service Unit, a Service Group, or a Node . 129
 3.8 Component Capability Model and Service Group Redundancy Model 130
 3.9 Dependencies Among SIs, Component Service Instances, and Components 130
 3.9.1 Dependencies Among Service Instances and Component Service Instances 130
 3.9.1.1 Dependencies Between SIs when Assigning a Service Unit Active for a Service Instance . 131
 3.9.1.2 Impact of Disabling a Service Instance on the Dependent Service Instances 131
 3.9.1.3 Dependencies Between Component Service Instances of the Same Service Instance 131
 3.9.2 Dependencies Between Components . 132
 3.10 Approaches for Integrating Legacy Software or Hardware Entities 133
 3.11 Component Monitoring . 134
 3.12 Error Detection, Recovery, Repair, and Escalation Policy . 135
 3.12.1 Basic Notions . 135
 3.12.1.1 Error Detection . 135
 3.12.1.2 Restart . 135
 3.12.1.3 Recovery . 136
 3.12.1.4 Repair . 139
 3.12.1.5 Recovery Escalation . 141
 3.12.2 Recovery Escalation Policy of the Availability Management Framework 141
 3.12.2.1 Recommended Recovery Action . 141
 3.12.2.2 Escalations of Levels 1 and 2 . 142
 3.12.2.3 Escalation of Level 3 . 144

4 Local Component Life Cycle Management Interfaces . 145

 4.1 Common Characteristics . 145
 4.2 CLC-CLI's Environment Variables . 145
 4.3 Exit Status . 146
 4.4 INSTANTIATE Command . 146
 4.5 TERMINATE Command . 147
 4.6 CLEANUP Command . 148
AIS Specification SAI-AIS-AMF-B.02.01 7

Service AvailabilityTM Application Interface Specification

Table of Contents

1

5

10

15

20

25

30

35

40
 4.7 AM_START Command . 149
 4.8 AM_STOP Command . 150
 4.9 Summary of Usage of CLC-CLI Commands Based on the Component Category 151

5 Proxied Component Management . 153

 5.1 Assumptions About Proxied/Proxy Components . 153
 5.2 Life-Cycle Management of Proxied Components . 153
 5.3 Proxy Component Failure Handling . 154

6 Availability Management Framework API . 157

 6.1 Availability Management Framework Model for the APIs . 158
 6.1.1 Callback Semantics and Component Registration and Unregistration 158
 6.1.2 Component Healthcheck Monitoring . 159
 6.1.2.1 Overview . 159
 6.1.2.2 Healthcheck Types . 160
 6.1.2.3 Starting and Stopping Healthchecks . 160
 6.1.2.4 Healthcheck Configuration Issues . 161
 6.1.3 Availability Management (Component Service Instance Management) 163
 6.1.4 Component Life Cycle Management . 164
 6.1.5 Protection Group Management . 164
 6.1.6 Error Reporting . 164
 6.1.7 Component Response to Framework Requests . 164
 6.1.8 API Usage Illustrations . 164
 6.2 Include File and Library Names . 168
 6.3 Type Definitions . 169
 6.3.1 SaAmfHandleT . 169
 6.3.2 Component Process Monitoring . 169
 6.3.2.1 SaAmfPmErrorsT Type . 169
 6.3.2.2 SaAmfPmStopT type . 169
 6.3.3 Component Healthcheck Monitoring . 170
 6.3.3.1 SaAmfHealthcheckInvocationT . 170
 6.3.3.2 SaAmfHealthcheckKeyT . 170
 6.3.4 Types for State Management . 170
 6.3.4.1 HA State . 170
 6.3.4.2 Readiness State . 171
 6.3.4.3 Presence State . 171
 6.3.4.4 Operational State . 171
 6.3.4.5 Administrative State . 172
 6.3.4.6 Assignment State . 172
 6.3.4.7 Proxy Status . 172
 6.3.4.8 All Defined States . 172
 6.3.5 Component Service Instance Types . 173
 6.3.5.1 SaAmfCSIFlagsT . 173
 6.3.5.2 SaAmfCSITransitionDescriptorT . 174
 6.3.5.3 SaAmfCSIStateDescriptorT . 175
 6.3.5.4 SaAmfCSIAttributeListT . 176
8 SAI-AIS-AMF-B.02.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 6.3.5.5 SaAmfCSIDescriptorT . 177
 6.3.6 Types for Protection Group Management . 178
 6.3.6.1 SaAmfProtectionGroupMemberT . 178
 6.3.6.2 SaAmfProtectionGroupChangesT . 178
 6.3.6.3 SaAmfProtectionGroupNotificationT . 179
 6.3.6.4 SaAmfProtectionGroupNotificationBufferT . 179
 6.3.7 SaAmfRecommendedRecoveryT . 180
 6.3.8 saAmfCompCategoryT . 182
 6.3.9 saAmfRedandancyModelT . 182
 6.3.10 saAmfCompCapabilityModelT . 182
 6.3.11 Notification Related Types . 182
 6.3.12 SaAmfCallbacksT . 183
 6.4 Library Life Cycle . 184
 6.4.1 saAmfInitialize() . 184
 6.4.2 saAmfSelectionObjectGet() . 186
 6.4.3 saAmfDispatch() . 187
 6.4.4 saAmfFinalize() . 188
 6.5 Component Registration and Unregistration . 189
 6.5.1 saAmfComponentRegister() . 189
 6.5.2 saAmfComponentUnregister() . 192
 6.5.3 saAmfComponentNameGet() . 194
 6.6 Passive Monitoring of Processes of a Component . 195
 6.6.1 saAmfPmStart() . 196
 6.6.2 saAmfPmStop() . 198
 6.7 Component Health Monitoring . 199
 6.7.1 saAmfHealthcheckStart() . 200
 6.7.2 SaAmfHealthcheckCallbackT . 202
 6.7.3 saAmfHealthcheckConfirm() . 203
 6.7.4 saAmfHealthcheckStop() . 205
 6.8 Component Service Instance Management . 206
 6.8.1 saAmfHAStateGet() . 206
 6.8.2 SaAmfCSISetCallbackT . 208
 6.8.3 SaAmfCSIRemoveCallbackT . 209
 6.8.4 saAmfCSIQuiescingComplete() . 211
 6.9 Component Life Cycle . 212
 6.9.1 SaAmfComponentTerminateCallbackT . 213
 6.9.2 SaAmfProxiedComponentInstantiateCallbackT . 214
 6.9.3 SaAmfProxiedComponentCleanupCallbackT . 215
 6.10 Protection Group Management . 216
 6.10.1 saAmfProtectionGroupTrack() . 216
 6.10.2 SaAmfProtectionGroupTrackCallbackT . 219
 6.10.3 saAmfProtectionGroupTrackStop() . 221
 6.10.4 saAmfProtectionGroupNotificationFree() . 222
 6.11 Error Reporting . 223
 6.11.1 saAmfComponentErrorReport() . 223
AIS Specification SAI-AIS-AMF-B.02.01 9

Service AvailabilityTM Application Interface Specification

Table of Contents

1

5

10

15

20

25

30

35

40
 6.11.2 saAmfComponentErrorClear() . 225
 6.12 Component Response to Framework Requests . 226
 6.12.1 saAmfResponse() . 226

7 Administrative API . 229

 7.1 Availability Management Framework Administration API Model 229
 7.1.1 Availability Management Framework Administration API Basics 229
 7.2 Include File and Library Name . 231
 7.3 Type Definitions . 231
 7.3.1 saAmfAdminOperationIdT . 231
 7.4 Availability Management Framework Administration API . 231
 7.4.1 Administrative State Modification Operations . 232
 7.4.2 SA_AMF_ADMIN_UNLOCK . 234
 7.4.3 SA_AMF_ADMIN_LOCK . 235
 7.4.4 SA_AMF_ADMIN_LOCK_INSTANTIATION . 236
 7.4.5 SA_AMF_ADMIN_UNLOCK_INSTANTIATION . 238
 7.4.6 SA_AMF_ADMIN_SHUTDOWN . 240
 7.4.7 SA_AMF_ADMIN_RESTART . 242
 7.4.8 SA_AMF_ADMIN_SI_SWAP . 244
 7.4.9 SA_AMF_ADMIN_SG_ADJUST . 247
 7.4.10 SA_AMF_ADMIN_REPAIRED . 249
 7.4.11 SA_AMF_ADMIN_EAM_START . 250
 7.4.12 SA_AMF_ADMIN_EAM_STOP . 252
 7.5 Summary of Administrative Operation support . 254

8 Basic Operational Scenarios . 255

 8.1 Administrative Shutdown of a Service Instance . 255
 8.2 Administrative Shutdown of a Service Unit in a 2N case . 256
 8.3 Administrative Shutdown of a Service Unit for the N-Way Model 257
 8.4 Administrative Locking of a Service Instance . 259
 8.5 Administrative Locking of a Service Unit . 260
 8.6 A Simple Fail-Over . 261

9 Alarms and Notifications . 263

 9.1 Setting Common Attributes . 263
 9.2 Availability Management Framework Notifications . 264
 9.2.1 Availability Management Framework Alarms . 264
 9.2.2 Availability Management Framework State Change Notifications 271

 Appendix A Implementation of CLC Interfaces . 279

 Appendix B API functions in Unregistered Processes . 281
10 SAI-AIS-AMF-B.02.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
 Appendix C Example for Proxy/Proxied Association . 283
AIS Specification SAI-AIS-AMF-B.02.01 11

Service AvailabilityTM Application Interface Specification

Table of Contents

12 SAI-AIS-AMF-B.02.01 AIS Specification

1

5

10

15

20

25

30

35

40

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document defines the Availability Management Framework of the Application
Interface Specification (AIS) of the Service AvailabilityTM Forum (SA Forum). It is
intended for use by implementers of the Application Interface Specification and by
application developers who would use the Application Interface Specification to
develop applications that must be highly available. The AIS is defined in the C
programming language, and requires substantial knowledge of the C programming
language.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be
used in conjunction with the Service AvailabilityTM Forum Hardware Interface
Specification (HPI) and with the Service AvailabilityTM Forum System Management
Specification.

1.2 AIS Documents Organization

The Application Interface Specification is organized into several volumes. For a list of
all Application Interface Specification documents, refer to the SA Forum Overview
document [1].

1.3 History
Previous releases of the Availability Management Framework specification:

(1) SAI-AIS-AMF-A.01.0
(2) SAI-AIS-AMF-B.01.01

This section presents the changes of the current release, SAI-AIS-AMF-B.02.01, with
respect to the SAI-AIS-AMF-B.01.01 release. Editorial changes are not mentioned
here.

1.3.1 New Topics
• The “application” logical entity has been introduced in Section 3.2.7 on page 36.

Section 3.3.7 on page 61 on the application states is also new in this release.
• The operational state of a node (see Section 3.3.6.2 on page 59) and the admin-

istrative state of a cluster (see Section 3.3.8 on page 61) are new in this release.
• 3.10 on page 133 presents approaches how to integrate non-SA-aware software

or hardware entities into the Availability Management Framework model.
AIS Specification SAI-AIS-AMF-B.02.01 Section 1 13

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
• Chapter 5 on page 153 presents the management of proxy and proxied compo-
nents.

• Section 6.3.4 on page 170 contains the following new type definitions:
SaAmfReadinessStateT, SaAmfPresenceStateT, SaAmfOperationalStateT,
SaAmfAdminStateT, SaAmfAssignmentStateT, SaAmfProxyStatusT, and SaAmf-
StateT.

• New types for saAmfRedandancyModelT, saAmfCompCapabilityModelT &
saAmfCompCategoryT has been introduced in page 182.

• Section 6.3.11 on page 182 defines notification-related types.
• Section 6.10.4 on page 222 for the saAmfProtectionGroupNotificationFree()

function, which is used to release memory allocated by the Availability Manage-
ment Framework library in the saAmfProtectionGroupTrack() function.

• Chapter 7 on page 229 describes the administrative API.
• Alarms and notifications are described in Chapter 9 on page 263.
• Appendix B on page 281 contains a table showing functions that can be invoked

by or on unregistered processes.
• The concept of Auto Repair was added to 3.12.1.4 on page 139.

1.3.2 Clarifications
• Section 3.2.2 on page 28 clarifies that a process can only pertain to a compo-

nent.
• A note in Section 3.3.2 on page 45 provides a general remark on the states

defined for a proxied component.
• A paragraph after Table 13 on page 130 clarifies some cases for the x_active or

1_active capability models.
• Section 3.12.1.4 on page 139 treats the repair procedures in detail.
• The description of the INSTANTIATE command (see Section 4.4 on page 146)

explains the actions taken by the Availability Management Framework when the
INSTANTIATE command fails and either node reboot is disabled or a single
reboot did not solve the problem.

• The description of the CLEANUP command has been extended. For details, refer
to Section 4.6 on page 148.

• Section 6.1.1 on page 158 describes when a component may unregister with the
Availability Management Framework. Refer also to related clarifications for the
saAmfComponentUnregister() function in Section 6.5.2 on page 192.

• Section 6.1.2.4 on page 161 makes clear that the Availability Management
Framework reports an error on the component if it does not receive a health-
14 SAI-AIS-AMF-B.02.01 Section 1.3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
check confirmation from the component before the end of every healthcheck
period.

• Refer to the clarifications on the enums
SA_AMF_PROTECTION_GROUP_NO_CHANGE and
SA_AMF_PROTECTION_GROUP_STATE_CHANGE of the
SaAmfProtectionGroupChangesT type (see Section 6.3.6.2 on page 178).

• The description of the saAmfHealthcheckStart() function (see Section 6.7.1 on
page 200) clarifies that it is not possible to have at a given time and on the same
amfHandle two healthchecks started for the same component name and health-
check key.

• The description of the saAmfComponentErrorReport() function (see Section
6.11.1 on page 223) clarifies how the Availability Management Framework
reacts to the setting of the recommendedRecovery parameter.

• Added a clarification to various callbacks regarding what needs to be done by the
Availability Management Framework if the component fails to respond to a call-
back or does not respond within a pre-configured time interval.
AIS Specification SAI-AIS-AMF-B.02.01 Section 1.3.2 15

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
1.3.3 Changes in Return Values of API Functions

1.3.4 Other Changes
• The new notion of “application” implies changes in the following descriptions:

• Figure 2 on page 25
• Table 3 on page 44
• Section 3.9.1 on page 130
• Section 3.9.1.1 on page 131

• Section 3.2.2.3 on page 31 describes the changes in the handling of proxy and
proxied components.

• The definition of the presence state of a service unit (see Section 3.3.1.1 on page
40) has changed.

Table 1 Changes in Return Values of API Functions

API Function Return Value Change
Type

saAmfComponentErrorClear() SA_AIS_OK clarified

saAmfComponentErrorClear() SA_AIS_ERR_NOT_EXIST changed

saAmfComponentErrorReport() SA_AIS_ERR_NOT_EXIST changed

saAmfComponentErrorReport() SA_AIS_OK clarified

saAmfComponentErrorReport() SA_AIS_ERR_ACCESS new

saAmfComponentRegister() SA_AIS_ERR_INVALID_PARAM extended

saAmfComponentRegister() SA_AIS_ERR_BAD_OPERATION changed

saAmfHealthcheckStart() SA_AIS_ERR_ACCESS new

saAmfHealthcheckStart() SA_AIS_ERR_EXIST changed

saAmfPmStart() SA_AIS_ERR_ACCESS new

saAmfProtectionGroupTrack() SA_AIS_ERR_INIT
SA_AIS_ERR_NO_SPACE
SA_AIS_ERR_INVALID_PARAM

clarified

SaAmfProtectionGroupTrackCallbackT SA_AIS_ERR_BAD_HANDLE
SA_AIS_ERR_INVALID_PARAM
SA_AIS_ERR_BAD_FLAGS
SA_AIS_ERR_NOT_EXIST

new
16 SAI-AIS-AMF-B.02.01 Section 1.3.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
• The following sections have changed due to the addition of the new “Locked-
instantiation” value to the administrative states:
• Section 3.3.1.2 on page 41 on the administrative state of a service unit.
• Section 3.3.3 on page 56 on service instance states.
• Section 3.3.5 on page 58 on service group states.
• Section 3.3.6 on page 59 on node states.
• Section 3.4 on page 64 on fail-over and switch-over.
• Table 11 on page 65 and Figure 5 on page 66.
• Table 12 on page 67 and Figure 6 on page 68.

• The definition of the operational state (see Section 3.3.1.3 on page 42) and
readiness state (see Section 3.3.1.4 on page 42) of a service unit have changed.

• Section 3.3.2.1 on page 46 on the presence state of a component treats the
restart case in detail.

• Section 3.3.2.2 on page 48 on the operational state of a component describes
that during a restart because of a failure, a component remains enabled and in-
service, but its component service instances must be removed.

• Section 3.3.3.2 on page 56 describes the assignment state of a service instance.
This state replaces the previous operational state of a service instance. This
change has effect on other places in the specification such as Table 10 on page
62, Sections 3.9.1.1 on page 131 and 3.9.1.2 on page 131.

• Section 3.3.9 on page 62 and Table 10 on page 62 reflect the changes in the
states supported for the logical entities.

• The “failback” notion has been renamed to “auto-adjust”.
• The row for “1_active_or_1_standby” in Table 13 on page 130 has changed.
• The restart of a service unit is explained in Section 3.12.1.2 on page 135.
• Note that the example contained in the topic component or service unit fail-over

has changed for the N-way redundancy model (see Section 3.12.1.3 on page
136 on recovery).

• The configuration parameters described in Section 3.12.2.3 on page 144 on
escalations of level 3 have changed from valid for all nodes to a per-node basis.

• The SaAmfRecommendedRecoveryT type definition (refer to Section 6.3.7 on
page 180) has been extended by the SA_AMF_APPLICATION_RESTART
enum. Note also the changed description of the
SA_AMF_NO_RECOMMENDATION enum. The SA_AMF_CLUSTER_RESET
case is described in detail. These changes are also shown in Section 3.12.2.1
on page 141.
AIS Specification SAI-AIS-AMF-B.02.01 Section 1.3.4 17

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
• Memory allocated by the Availability Management Framework library in the
saAmfProtectionGroupTrack() function (see Section 6.10.1 on page 216) must
now be released by invoking the saAmfProtectionGroupNotificationFree() func-
tion (see Section 6.10.4 on page 222).

1.4 References
The following documents contain information that is relevant to specification:

[1] Service AvailabilityTM Forum, Application Interface Specification, Overview,
SAI-Overview-B.02.01

[2] Service AvailabilityTM Forum, Application Interface Specification, Notification
Service, SAI-AIS-NTF-A.01.01

[3] Service AvailabilityTM Forum, Application Interface Specification, Cluster Mem-
bership Service, SAI-AIS-CLM-B.02.01

[4] Service AvailabilityTM Forum, Application Interface Specification, Information
Model Management Service (IMM), SAI-AIS-IMM-A.01.01

[5] CCITT Recommendation X.731 | ISO/IEC 10164-2, State Management Function
[6] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function
[7] IETF RFC 2253 (http://www.ietf.org/rfc/rfc2253.txt).
[8] IETF RFC 2045 (http://www.ietf.org/rfc/rfc2045.txt).

References to these documents are made by putting the number of the document in
brackets.

1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum website (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to
participate in the Forum complete a membership application. Once completed, a
representative of the Service Availability™ Forum will contact you to discuss your
membership in the Forum. The Service Availability™ Forum Membership Application
can be completed online by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).
18 SAI-AIS-AMF-B.02.01 Section 1.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
You can also submit information requests online. Information requests are generally
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by
using the links provided on the Forum’s website
(http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).
AIS Specification SAI-AIS-AMF-B.02.01 Section 1.7 19

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
20 SAI-AIS-AMF-B.02.01 Section 1.7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
 2 Overview
This specification defines the Availability Management Framework within the Applica-
tion Interface Specification (AIS).

2.1 Overview of the Availability Management Framework
The Availability Management Framework (sometimes also called the AM Framework
or simply the Framework) is the software entity that provides service availability by
coordinating redundant resources within a cluster to deliver a system with no single
point of failure.

The Availability Management Framework provides a view of one logical system that
consists of a number of cluster nodes. These nodes host various resources in a dis-
tributed computing environment.

The Availability Management Framework provides a set of APIs to enable highly
available applications. The Availability Management Framework drives the HA state
and monitors the health of a component by invoking callback functions of the compo-
nent, defined in this API. It manages internally also the readiness state, without
exposing it to components. It further allows a component to query the Availability
Management Framework for information about the component’s HA state, using func-
tions of the Availability Management Framework defined in this API.
AIS Specification SAI-AIS-AMF-B.02.01 Section 2 21

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
22 SAI-AIS-AMF-B.02.01 Section 2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
3 System Description and System Model
This chapter presents the system description and the system model used by the SA
Forum Application Interface Specification (AIS) of the Availability Management
Framework (AMF).

An application that is managed by the Availability Management Framework to provide
high levels of service availability must be structured into logical entities according to
the model expected by the Framework. Furthermore, it must implement the state
models and callback interfaces that allow the Framework to drive workload manage-
ment, availability, and state management.

The physical entities that form the basis of the model, and the relationships between
them, are described in section 3.1.

Section 3.2 discusses the logical entities managed by Availability Management
Framework. The states and state models applicable to the relevant logical entities are
discussed in Sections 3.3 and 3.5. Section 3.4 discusses fail-over and switch-over of
service instances. The component capability model is discussed in Section 3.6. Sec-
tion 3.7 describes the redundancy models supported by the Availability Management
Framework in detail, and Section 3.8 investigates the interactions between the com-
ponent capability model and the redundancy models. The remainder of the chapter
discusses dependencies (Section 3.9), approaches for integrating legacy software
and hardware in the framework (Section 3.10), component monitoring (Section 3.11),
as well as error detection, recovery, repair, and escalation policy (Section 3.12).

3.1 Physical Entities
Every physical entity managed by the Availability Management Framework is a
resource. These physical entities are either hardware equipment or software
abstractions implemented by programs running on that hardware. These software
abstractions include but are not limited to software processes, operating system fea-
tures or operating system abstractions such as IP addresses or file systems like NFS.

A physical node is a particular type of resource that can behave like a computer, run
a single instance of an operating system and export the SA Forum Application Inter-
face Specification APIs. Physical nodes are interconnected with each other by some
form of communication medium.

Resources that are contained, from a fault containment point of view, within a physi-
cal node are called local resources. This means that if a physical node fails, all of
the local resources become inoperable. Local resources can be either software
abstractions implemented by programs running on the physical node, or hardware
equipment attached to the node (such as I/O devices), or the node itself.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3 23

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
All other resources are called external resources. For example, an intelligent I/O
board in a blade chassis that is not dependent on a particular processor board to
operate can be modeled as an external resource. Failures of external resources are
independent of physical node failures.

In the remainder of this specification usage of phrases like “resource external to the
cluster” or “resources outside of the cluster” should be interpreted as “resource exter-
nal to all nodes in the cluster”.

Figure 1 shows a UML diagram that depicts the physical entities of the system.

Figure 1 Physical Entities

3.2 Logical Entities
The Availability Management Framework uses an abstract system model to represent
the resources under its control. This abstract model consists of various logical entities
that are depicted in the UML diagram, shown in the following Figure 2.

Resource

Physical Node

Local ResourceExternal Resource

1

nhosts
24 SAI-AIS-AMF-B.02.01 Section 3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
Figure 2 Logical entities

Each logical entity of the system model is identified by a unique name.

All logical entities, their attributes, relationships and mapping to the resources they
represent are typically preconfigured and stored in a configuration repository.

Local
Service Unit

Local
Component

SA-aware
Component

Proxy
Component

Non-SA-aware
Component

Component

 Service
Unit

Service
Group

External
Service Unit

External
Component

Component
Service Instance

Service
Instance

1

1..*

1

0..*

1

1..*

1..*

0..1 1

1..*

1

1..*

0..*0..*

0..* 0..*
1..* 0..*

1 0..1

1..*

1

protects

is assigned to

is assigned to

proxiesproxies

1

1..*

Application
1

1..*Amf Cluster

Clm Cluster

Amf Node

Clm Node

maps on

maps on

0..1

0..1

0..1

0..1

1

1..*

Association

Aggregation

Generalization / Inheritance Link

/ Collection
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.2 25

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Dynamic modification of the system model is not precluded; however, how this config-
uration is organized and how it is accessed and modified is not specified in this docu-
ment. It is assumed that the Availability Management Framework obtains the cluster
configuration from the configuration repository and is notified of any changes.

3.2.1 Cluster and Nodes

An Availability Management Framework node is the logical representation of a physi-
cal node that has been administratively configured in the Availability Management
Framework configuration (Refer to the UML class description of SaAmfNode in [1] for
a complete list of the attributes that is configured for an Availability Management
Framework node). The configuration of an Availability Management Framework Node
is valid even if

(a) there is no Cluster Membership node (the cluster node defined in [3]) mapped to
the Availability Management Framework node or

(b) there is a Cluster Membership node mapped to the Availability Management
Framework node, but the mapped Cluster Membership node is not in the cluster
membership .

In both the cases above, the Availability Management Framework node cannot be
used to provide service and none of the Availability Management Framework objects
configured to be hosted by the Availability Management Framework node can be
instantiated. An Availability Management Framework node is also a logical entity
whose various states are managed by the Availability Management Framework.
There are Availability Management Framework administrative operations that are
defined for such nodes.

The complete set of Availability Management Framework nodes in the Availability
Management Framework configuration defines the Availability Management Frame-
work cluster. (See the UML class description of SaAmfCluster in [1] for details). Note
that although the Availability Management Framework cluster and Cluster Member-
ship cluster (defined in [3]) have a close relationship, they are not the same. Some
Availability Management Framework nodes may not have associated Cluster Mem-
bership nodes (See SaClmNode class in UML model in [1]) and some Cluster Mem-
bership nodes may not have associated Availability Management Framework nodes.
The procedure for mapping of an Availability Management Framework node to the
corresponding Cluster Membership node is outside the scope of the Availability Man-
agement Framework specification. But the following general mapping rules apply:

(i) During cluster startup, it is possible that some Availability Management Framework
nodes may be mapped to some Cluster Membership nodes by configuration, while
other Availability Management Framework nodes are not mapped to configured Clus-
ter Membership nodes.
26 SAI-AIS-AMF-B.02.01 Section 3.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
(ii) Later during the life-span of the cluster, modifications may be made to the map-
ping of the Availability Management Framework node to the Cluster Membership
node

The Availability Management Framework cluster is one of the entities that are under
the Availability Management Framework control, and its various states are managed
by the Availability Management Framework. There are Availability Management
Framework administrative operations that are defined on the Availability Manage-
ment Framework cluster.

However, the Availability Management Framework knows the association of its nodes
to the Cluster Membership nodes and shall use this association to initiate operations
such as rebooting a Cluster Membership node during a recovery operations.

If an Availability Management Framework node leaves the cluster membership, it is
cleaned in the sense that no process using Availability Management Framework
interfaces or no daemon that implements Availability Management Framework func-
tionality is left over and all non-persistent Availability Management Framework infor-
mation is deleted when the Availability Management Framework node rejoins the
cluster membership. The Availability Management Framework can force a cluster
node to leave the cluster membership by using a node reboot. It is required that the
underlying cluster node of each Availability Management Framework node is
equipped with an operating system providing a low level reboot interface. During a
reboot, the cluster node leaves the cluster membership and rejoins after successful
initialization.

In contrast, the restart of an Availability Management Framework node (see section
7.1.1 below) will only stop and start entities under Availability Management Frame-
work control, without any impact on the cluster membership. The restart of the Avail-
ability Management Framework cluster (see Section 7.1.1) will restart all Availability
Management Framework nodes and will also not impact the cluster membership. On
the other hand, a cluster reset (see Section 6.3.7) reboots all Cluster Membership
nodes of the cluster, where all nodes are first halted before any of the nodes boots
again. In the remainder of this specification cluster start or startup is synonymous to
the start of Availability Management Framework, which initially creates and instanti-
ates the Availability Management Framework objects based on the Availability Man-
agement Framework configuration.

Applications to be made highly available are supposed to be configured in the Avail-
ability Management Framework configuration. Each application is configured to be
hosted in one or more Availability Management Framework nodes within the Avail-
ability Management Framework cluster. In order to make the rest of specification
more readable and precise, we define the following notations:

• Throughout the specification, when the word "node" is used without an explicit
qualification, it means "Availability Management Framework node".
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.2.1 27

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• If "node” is used in the context of "reboot", "joining the cluster", and "leaving the
cluster", it actually means the "the associated Cluster Membership node". For
example, the sentence "the node will be rebooted" should be read as "the Cluster
Membership node associate to the node will be rebooted". Similarly the sentence
“When a node joins the cluster” should be interpreted as “When the Cluster
Membership node associated with node joins the cluster.”

Whenever "cluster" is used without an explicit qualification it assumes either of the
following two meanings based on the context:

• Cluster as defined in membership service: for example, the sentence fragment
“the node leaves the cluster", implies "the node leaves the cluster as defined in
the membership service".

• A generic term that describes a set of nodes on which a set of highly available
applications are deployed.

3.2.2 Components

A component is the logical entity that represents a set of resources to the Availability
Management Framework. The resources represented by the component encapsulate
specific application functionality. This set can include hardware resources, software
resources or a combination of the two.

A component is the smallest logical entity on which the Availability Management
Framework performs error detection and isolation, recovery, and repair. When decid-
ing what is to be included in a component, the following two statements should be
taken into account:

• The scope of a component must be small enough so that a failure of this compo-
nent has as little impact as possible on the services provided by the cluster.

• The component should include all functions that cannot be clearly separated for
error containment or isolation purposes.

The Availability Management Framework associates the following states to a compo-
nent: presence, operational, readiness, and HA. For more information on component
states, refer to Section 3.3.

The Availability Management Framework was primarily designed to manage local
resources contained in nodes. This framework can also manage resources external
to the cluster. Unlike the case of local resources, the Availability Management Frame-
work has little direct control over external resources. This difference justifies the dis-
tinction between two broad categories of components:

• Local component: A local component represents a subset of the local resources
contained within a single node.
28 SAI-AIS-AMF-B.02.01 Section 3.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• External component: An external component represents a set of resources that
are external to the cluster.

Sections 3.2.2.1 to 3.2.2.4 describe how the Availability Management Framework
manages local and external components. The information provided includes:

• An introduction to two sub-categories of components: Service Availability (SA)-
aware and non-SA-aware components.

• The concepts of proxy and proxied components.
• A description of the component life cycle.

3.2.2.1 SA-Aware Components

High levels of service availability can only be attained if errors are detected, isolated,
and recovered from, and failed entities repaired efficiently. Faster error recovery is
possible if components have been chosen or are written so that they can register and
interact with the Availability Management Framework to implement specific workload
assignments and recovery policies. Such components must be designed so that the
Availability Management Framework can dynamically assign workloads and choose
the role in which the component will operate for each specific workload.

Only local components that are under the direct control of the Availability Framework
can have such a high level of integration with this framework. Such components are
termed SA-aware components.

Each SA-aware component includes at least one process that is linked to the Avail-
ability Management Framework library. Processes of an SA-Aware component must
exclusively belong only to that component. One of these processes registers the
component with the Availability Management Framework through the
saAmfComponentRegister() API function. This process, called the registered pro-
cess, provides to the Availability Management Framework references to the availabil-
ity control functions it implements. These control functions are implemented as
callbacks.

Throughout the life of the component, the Availability Management Framework uses
these control functions to direct the component execution by, for example:

• assigning workloads to the component,
• removing workloads from the component,
• assigning the HA state to the component for each workload.

The registered process executes the availability management requests it receives
from these control functions and conveys such requests to other processes and the
hardware equipment of the local component, where necessary.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.2.2.1 29

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Most control functions of the component can only be provided by the registered pro-
cess; however, some control functions, such as healthcheck control functions, can be
provided by any process of the component. The descriptions of each API function
given in Chapter 6 on page 157 explicitly mention when the function is restricted to a
registered process. Additionally refer to Appendix B on page 281 for a table that dis-
plays which API/callback is restricted to registered processes only.

Note that legacy software running on a node that was not initially designed as an SA-
aware component can be converted to be SA-aware by adding a new process. This
process acts as the registered process for the component, receives all management
requests from the Availability Management Framework and converts them into spe-
cific actions on the legacy software using existing administration interfaces specific to
the legacy software.

3.2.2.2 Non-SA-Aware Components

Components that do not register directly with the Availability Management Frame-
work are called non-SA-aware components. However, such components may have
processes linked with the Availability Management Framework Library.

Typically, non-SA-aware components are registered with the Availability Management
Framework by dedicated SA-aware components, which act as proxies between the
Availability Management Framework and the non-SA-aware components. These ded-
icated SA-aware components are called proxy components. The components a
proxy component mediates for are called proxied components.

To keep maximum flexibility in the way external resources interact with nodes, which
is often device-dependent and/or proprietary, the Availability Management Frame-
work does not interact directly with external components and manages external com-
ponents always as proxied components.

However, the Availability Management Framework supports both proxied and non-
proxied, non-SA-aware local components. For non-proxied, non-SA-aware local com-
ponents, the role of the Availability Management Framework is limited to the manage-
ment of the component life cycle. The Availability Management Framework
instantiates a non-proxied, non-SA-aware component when the component needs to
provide a service and terminates this component when it must stop providing the ser-
vice. Processes of a local non-SA-Aware component must exclusively belong to that
component.

Application developers are encouraged to design applications, which will run on
nodes as a set of SA-aware components registered directly with the Availability Man-
agement Framework; however, non-SA-aware local components may be used
instead for the following reasons:
30 SAI-AIS-AMF-B.02.01 Section 3.2.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• Some system resources such as networking resources or storage resources are
implemented by the operating environment and their activation or de-activation is
usually performed through administrative command line interfaces. No actual
process is needed to implement these resources, and requiring the implementa-
tion of a registering process for such resources adds unnecessary complexity.

• For components representing only local hardware resources, making these com-
ponents SA-aware components with a registering process adds unnecessary
complexity.

• Existing clustering products support looser execution models than the execution
model of SA-aware components. For these products, there is minimal integration
between the applications and the clustering middleware: The clustering middle-
ware is only responsible for starting, stopping and monitoring applications but
does not expose APIs for finer-grained control of the application in terms of work-
load and availability management.
It is important to facilitate the migration of third party products from these existing
clustering products to products providing the Availability Management Frame-
work interfaces without requiring the transformation of these third party products
into SA-aware components.

• Some complex applications such as databases or application servers already
provide their own availability management for their various building blocks. When
moving these applications under the control of the Availability Management
Framework, different functions can be modelled as separate components; how-
ever, some controlling entity within the application might still be interposed
between the Availability Management Framework and the individual compo-
nents. The concept of the proxy component can be used in this case as an inter-
position layer between the Availability Management Framework and all other
components of the application.

3.2.2.3 Proxy and Proxied Components

The Availability Management Framework uses the availability control functions regis-
tered by a proxy component to control the proxy component and the proxied compo-
nents for which the proxy component mediates.

The proxy component is responsible for conveying requests made by the Availability
Management Framework to its proxied components. The interactions between prox-
ied components and their proxy component are private and not defined by this speci-
fication. The Availability Management Framework decides what proxied components
a proxy component is responsible for when the proxy component registers with the
framework, based on configuration and other factors like availability of components in
the cluster. The Availability Management Framework conveys this decision to the
proxy component by assigning it a work load in the form of a component service
instance (See Section 3.2.3 for the definition of component service instance).
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.2.2.3 31

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
The proxy component registers proxied components with the Availability Manage-
ment Framework; however, the proxied components are independent components as
far as the Availability Management Framework is concerned. As such, if a proxy com-
ponent fails, another component (usually the component acting as standby of the
failed proxy component), can register the proxied component again. This new proxy
component assumes, then, the mediation for the failed component without affecting
the service provided by the proxied component. If there is no available proxy compo-
nent to take over the mediation service, the Availability Management Framework
loses control of these proxied components and becomes unaware of whether the
proxied components are providing service.

Note that:
• A single proxy component can mediate between the Availability Management

Framework and multiple proxied components.
• The redundancy model (refer to Section 3.7) of the proxy component can be dif-

ferent from that of its proxied components.
• The Availability Management Framework does not consider the failure of the

proxied component to be the failure of the proxy component. Similarly, the failure
of the proxy component does not indicate a failure of the proxied components.

3.2.2.4 Component Life Cycle

The Availability Management Framework directly controls the life cycle of non-prox-
ied, local components through a set of command line interfaces provided by each
component.

The Availability Management Framework indirectly controls the life cycle of proxied
components through their proxies. However, command line interfaces may also be
used by the Availability Management Framework to control some aspects of the life
cycle of local proxied components.

For information about command line interfaces for local component life cycle man-
agement, refer to Chapter 4.

The Availability Management Framework distinguishes between two categories of
components in its life cycle management:

• pre-instantiable components: such components have the ability to stay idle
when they get instantiated by the Availability Management Framework. They
only start to provide a particular service when instructed to do so (directly or indi-
rectly) by the Availability Management Framework. The Availability Management
Framework can speed up recovery and repair actions by keeping a certain
number of pre-instantiated components, which can then take over faster the work
of failed components. All SA-aware components are pre-instantiable compo-
nents.
32 SAI-AIS-AMF-B.02.01 Section 3.2.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• non-pre-instantiable components: such components provide service as soon as
they are instantiated. Hence, the Availability Management Framework cannot
instantiate them in advance as spare entities. All non-proxied, non-SA-aware
components are non-pre-instantiable components.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.2.2.4 33

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
The following table shows the different component categories.

3.2.3 Component Service Instance

A component service instance (CSI) represents the workload that the Availability
Management Framework can dynamically assign to a component. High availability
(HA) states are assigned to a component on behalf of its component service
instances. The Availability Management Framework chooses the HA state of a com-
ponent for each particular component service instance as described in Section
3.3.2.4.

Each component service instance has a set of attributes (name/value pair), which
characterize the workload assigned to the component. These attributes are not used
by the Availability Management Framework, and are just passed to the components.

The Availability Management Framework supports the notion of component service
instance type. All component service instances of the same type share the same list
of attribute names. Several attributes with the same name may appear in the set of
attributes of a component service instance, thus, providing support for multi-valued
attributes.

3.2.4 Service Unit

A service unit (SU) is a logical entity that aggregates a set of components combining
their individual functionalities to provide a higher level service. Aggregating compo-
nents into a logical entity managed by the Availability Management Framework as a
single unit provides system administrators with a simplified, coarser grained view.
Administrative operations are directed at service units as opposed to individual com-
ponents.

A service unit can contain any number of components, but a given component can be
configured in only one service unit. The components that constitute a service unit can

Table 2 Component Categories

Locality HA Awareness Proxy Property Life Cycle Management

local SA-aware proxy or
non-proxy pre-instantiable

local non-SA-aware non-proxied non-pre-instantiable

local non-SA-aware proxied pre-instantiable or
non-pre-instantiable

external non-SA-aware proxied pre-instantiable or
non-pre-instantiable
34 SAI-AIS-AMF-B.02.01 Section 3.2.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
be developed in isolation, and a component developer might be unaware of which
components constitute a service unit. The service units are defined at deployment
time.

As a component is always enclosed in a service unit, from the Availability Manage-
ment Framework's perspective, the service unit is the unit of redundancy in the sense
that it is the smallest logical entity that can be instantiated in a redundant manner
(that is, more than once).

The Availability Management Framework associates presence, administrative, opera-
tional, readiness and HA states to service units (latter on behalf of service instances).
Each of these states, with the exception of the administrative state, represents an
aggregated view of the corresponding state of each component within the service
unit. The rules applied to obtain these aggregated states are specific to each state
and are described in Section 3.3.

Local components and external components cannot be mixed within a service unit.
The Availability Management Framework distinguishes between local service units
and external service units. Local service units can contain only local components
collocated on the same node. External service units can contain only external compo-
nents. The external components represent resources that are external to the cluster.

Proxy components for local non-SA-aware components and these non-SA-aware
components may reside in the same or in different service units. But a proxy compo-
nent and its pre-instantiable proxied component cannot reside in the same service
unit in order to prevent cyclic dependencies during the instantiation of the service
unit. If the proxy and proxied local components are hosted in different service units,
these service units may reside on different nodes.

A service unit that contains at least one pre-instantiable component is called a pre-
instantiable service unit; otherwise, it is called a non-pre-instantiable service
unit.

3.2.5 Service Instances

In the same way as components are aggregated into service units, the Availability
Management Framework supports the aggregation of component service instances
into a logical entity called a service instance (SI). A service instance aggregates all
component service instances to be assigned to the individual components of the ser-
vice unit in order for the service unit to provide a particular service. A service instance
represents a single workload assigned to the entire service unit.

When a service unit is available to provide service (in-service readiness state, see
Section 3.3.1.4), the Availability Management Framework can assign HA states to the
service unit for one or more service instances. When a service unit becomes unavail-
able to provide service (out-of-service readiness state), the Availability Management
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.2.5 35

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Framework removes all service instances from the service unit. A service unit might
be available to provide service but not have any assigned service instance.

The Availability Management Framework assigns a service instance to a service unit
programmatically by assigning each individual component service instance of the ser-
vice instance to a specific component within the service unit.

The assignment of the component service instances of a service instance to the com-
ponents of a service unit takes into account the type of component service instance
supported by each component. A component service instance can be assigned to a
given component only if the component configuration indicates that it supports this
particular type of component service instance. When a service instance contains sev-
eral component service instances of the same type, this specification does not dictate
how, within the service unit, the Availability Management Framework assigns them to
the components that support this particular type. This choice is implementation-
defined.

The number of component service instances aggregated in a service instance may
differ from the number of components aggregated in the service unit the service
instance is assigned to. In such cases, some components may be left without any
component service instance assignment while other components may have several
component service instances assigned to them.

3.2.6 Service Groups

To ensure service availability in case of component failures, the Availability Manage-
ment Framework manages redundant components that are contained in service
units.
A service group (SG) is a logical entity that groups one or more service units in order
to provide service availability for a particular set of service instances. To participate in
a service group, all components in the service unit must support the capabilities
required for the redundancy model defined for the service group and be able to
receive the assignment of any component service instance contained within the ser-
vice instances protected by the service group.
The redundancy model defines how the service units in the service group are used to
provide service availability. Refer to Section 3.7 on page 69 for details about service
group redundancy models.

3.2.7 Application

An application is a logical entity that contains one or more service groups. An appli-
cation combines the individual functionalities of the constituent service groups to pro-
vide a higher level service.
36 SAI-AIS-AMF-B.02.01 Section 3.2.6 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
Dependencies between service instances (described in Section 3.9.1 on page 130)
are more common amongst service instances belonging to the application than
amongst service instances of different applications.

This aggregation provides the Availability Management Framework with a further
scope for fault isolation and fault recovery.

From a software administration point of view, this grouping into application reflects
the set of service units and contained components that are delivered as a consistent
set of software packages, which results in tighter dependency with respect to their
upgrade.

An application can contain any number of service groups, but a given service group
can be configured in only one application.

3.2.8 Protection Groups

A protection group for a specific component service instance is the group of compo-
nents that the component service instance has been assigned to. The name of a pro-
tection group is the name of the component service instance that it protects.

A protection group is a dynamic entity that changes when component service
instances are assigned to, and removed from, components.

3.2.9 Service Unit Instantiation

When instantiating a pre-instantiable service unit, the Availability Management
Framework:

• runs the INSTANTIATE command for all SA-aware components (including prox-
ies),

• invokes the saAmfProxiedComponentInstantiateCallback() callback of the prox-
ies of all pre-instantiable proxied components of the service unit,

• performs no action for non-pre-instantiable components. Such components are
instantiated during the assignment of service instances to the service unit. (see
Section 3.3.2.4 on page 50)

When instantiating a non-pre-instantiable service unit, the Availability Management
Framework:

• invokes the saAmfCSISetCallback() callback of the proxies of all proxied compo-
nents of the service unit,

• runs the INSTANTIATE command for all non-proxied components.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.2.8 37

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Note that this processing creates an implicit inter-service unit dependency as the
Availability Management Framework needs to instantiate the service units containing
proxy components (and sometimes even assign them an active HA state for a service
instance) before the instantiation of service units containing proxied components can
be successfully completed.

3.2.10 Illustration of Logical Entities

The example illustrated in Figure 3 below shows two service groups, SG1 and SG2.
SG1 supports a single service instance (A) and SG2 supports two service instances
(B and C).

On behalf of service instance A, service unit S1 is assigned the active HA state and
service unit S2 the standby HA state.

Service units S1 and S2 each contain two components. Two component service
instances (A1 and A2) are assigned to components C1 and C3, and to C2 and C4,
respectively. Two protection groups (A1 and A2) are created, with protection group
A1 containing components C1 and C3 and protection group A2 containing compo-
nents C2 and C4. Note that the name of the protection group is the same as the
name of the component service instance. Thus, protection group A1 contains the
components that support component service instance A1.

On behalf of service instance B, service unit S3 is assigned the active HA state and
service unit S5 the standby HA state. Similarly, on behalf of service instance C, ser-
vice unit S4 is assigned the active HA state and service unit S5 the standby HA state.
Each of these service units contains a single component (C5, C6, C7). Thus, while
components C5 and C6 are assigned the active HA state for only single component
service instances (B1 and C1, respectively), component C7 is assigned the standby
HA state for two component service instances (B1 and C1). Two protection groups
(B1 and C1) are created, with protection group B1 containing components C5 and C7
while protection group C1 contains components C6 and C7.
38 SAI-AIS-AMF-B.02.01 Section 3.2.10 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
Figure 3 Elements of the System Model

3.3 State Models
The following sections describe the different states associated with service units,
components, service instances, component service instances, service groups, and
nodes. The Availability Management Framework API provides state management
only for components and component service instances with a subset of the states
described in the following subsections. The other states included in the state model
are relevant for System Management as well as for clear definition and extension of
this specification.

3.3.1 Service Unit States

In some cases, when describing the properties and states of service units, references
are made to properties and states of a node or cluster containing it. For readability

Node W

Service Unit S3

C5

Node U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

Node X

CSI A1

CSI A2
Service

Instance A

CSI B1

Service
Instance B

CSI C1

Service
Instance C

PG A1

PG A2

PG B1

PG C1

active
active active

standby

standby
standby

Service Group SG1

Service Unit S4

C6

Service Unit S5

C7

Service Group SG2
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3 39

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
reasons, it is not always mentioned that these references, obviously, only apply to
local service units, and are to be ignored for external service units.

3.3.1.1 Presence State

The presence state is supported at the service unit and component levels and
reflects the component life cycle. It takes one of the following values:

• Uninstantiated
• Instantiating
• Instantiated
• Terminating
• Restarting
• Instantiation-failed
• Termination-failed

First, the presence state of a non-pre-instantiable service unit is considered:

Note that the presence state of a service unit is described in this section in terms of
the presence state of its constituent components, which is explained in detail in Sec-
tion 3.3.2.1.

When all components are uninstantiated, the service unit is uninstantiated. When the
first component moves to instantiating, the service unit also becomes instantiating.

A non-pre-instantiable service unit is instantiated, if it has successfully been assigned
the active HA state on behalf of a service instance (see Section 3.3.1.5). Note that a
non-pre-instantiable service unit may be assigned one and only one service instance.
If, after all possible retries, a component cannot be instantiated, the component’s
presence state is set to instantiation-failed, and the service unit’s presence state is
also set to instantiation-failed. If components were already instantiated when the ser-
vice unit enters the instantiation-failed state, the Availability Management Framework
terminates them. These components will enter either the uninstantiated state if they
are successfully terminated, or the termination-failed state if the Availability Manage-
ment Framework was unable to terminate them correctly (refer to Section 4.5 and
4.6).

When the first component of an already instantiated service unit becomes terminat-
ing, the service unit becomes terminating. If the Availability Management Framework
fails to terminate a component, the component’s presence state is set to termination-
failed and the service unit’s presence state is also set to termination-failed.

When all components enter the restarting state, the service unit become restarting.
However, if only some components are restarting, the service unit is still instantiated.
40 SAI-AIS-AMF-B.02.01 Section 3.3.1.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
The management of the presence state of a pre-instantiable service unit is very simi-
lar to what was previously described for a non-pre-instantiable service unit except
that a pre-instantiable service unit becomes instantiated or terminating only based on
the presence state of its pre-instantiable components; When all pre-instantiable com-
ponents within a pre-instantiable service unit are instantiated, the service unit
becomes instantiated. If there are any errors in instantiating any of the constituent
components of the service unit, the presence state becomes instantiation-failed. Sim-
ilarly if there are errors in terminating any of the constituent components of the ser-
vice unit the presence state becomes termination-failed.

3.3.1.2 Administrative State

The administrative state of a service unit is an extension of the administrative state
proposed by the ITU X.731 state management model ([3]). The administrative state of
a service unit can be set by the system administrator. The administrative state of a
service unit as well as the administrative states of the service group (see Section
3.3.5), the node (see Section 3.3.6.1), the application containing it (see Section
3.3.7), and the cluster (see Section 3.3.8) enable the Availability Management
Framework to determine whether the service unit is administratively allowed to pro-
vide service.

Valid values for the administrative state of a service unit are:
• unlocked: The service unit has not been directly prohibited from taking service

instance assignments by the administrator.
• locked: The administrator has prevented the service unit from taking service

instance assignments.
• locked-instantiation: The administrator has prevented the service unit from

being instantiated by the Availability Management Framework, and the service
unit is currently not instantiable.

• shutting-down: The administrator has prevented the service unit from taking
new service instance assignments and requested that existing service instance
assignments be gracefully removed. When all service instances assigned to the
service unit have finally been removed, its administrative state becomes locked.

The administrative state of a service unit is one of the states that determine the readi-
ness state (see Section 3.3.1.4) of that service unit.

The administrative state of a service unit is persistent when all nodes within the clus-
ter are rebooted.

The administrative state of a service unit is not directly exposed to components via
the Availability Management Framework, but rather only indirectly, since the readi-
ness state has an impact on component service instance assignments.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3.1.2 41

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
3.3.1.3 Operational State

The operational state of the service unit refers to the ITU X.731 state management
model ([5]). It is used by the Availability Management Framework to determine
whether a service unit is capable of taking service instance assignments. The opera-
tional state of the service unit indicates whether the components within the service
unit are operable or not. Valid values for the operational state of a service unit are:

• enabled: The operational state of a service unit transitions from disabled to
enabled when a successful repair action has been performed on the service unit
(see Section 3.12.1.4).

• disabled: The operational state of a service unit transitions to disabled if a com-
ponent of the service unit has transitioned to the disabled state and the Availabil-
ity Management Framework has taken a recovery action at the level of the entire
service unit.

It is the Availability Management Framework that determines the value for the opera-
tional state.

A Service unit is enabled when the node containing this service unit joins the cluster
for the first time. It is set to disabled when a fail-over recovery is executed within its
scope or if its presence state is set to instantiation-failed or termination-failed. It is
again enabled after a successful repair. This is done by the entity performing the
repair (Availability Management Framework or other entity). An administrative opera-
tion is provided to clear the disabled state of a service unit so that an entity different
from Availability Management Framework can perform the repair and declare the ser-
vice unit repaired. When a restart recovery is executed in its scope, it is considered
as an instantaneous combined recovery and repair action and hence its operational
states remain enabled in such cases.

3.3.1.4 Readiness State

The operational, administrative, and presence states of a service unit, the operational
state of its containing node, and the administrative states of its containing node, ser-
vice group, application, and the cluster are combined into another state, called the
readiness state. This state indicates if a service unit is eligible to take service
instance assignments from an administrative and health status viewpoint. This state
is the only state used by Availability Management Framework to decide whether a
service unit is eligible to receive service instance assignments.

The readiness state of a service unit is not directly exposed to components via the
Availability Management Framework, but rather only indirectly, since the readiness
state has an impact on component service instance assignments.

Valid values for the readiness state of a service unit are:
42 SAI-AIS-AMF-B.02.01 Section 3.3.1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• out-of-service: The readiness state of a non-pre-instantiable service unit is
out-of-service if its operational state or the operational state of its containing
node is disabled, or if its administrative state or the administrative state of its con-
taining service group, node, application, or the cluster is either locked or locked-
instantiation. The readiness state of a pre-instantiable service unit is out-of-
service when any of the preceding conditions that cause a non-pre-instantiable
service unit to become out-of-service is true, or its presence state is neither
instantiated nor restarting. When the readiness state of a service unit is out-of-
service, no new service instance can be assigned to it. If there are service
instances assigned to the service unit at the time when it enters the out-of-ser-
vice state, they are transferred to other service units (if possible) and removed.

• in-service: The readiness state of a non-pre-instantiable service unit is in-ser-
vice if its operational state and the operational state of its containing node is
enabled, and if its administrative state and the administrative states of its con-
taining service group, node, application and the cluster are unlocked. The readi-
ness state of a pre-instantiable service unit is in-service if all of the preceding
conditions that cause a non-pre-instantiable service unit to become in-service
are true, and if its presence state is either instantiated or restarting. When a ser-
vice unit is in the in-service readiness state, it is eligible for service instance
assignments; however, it may not have been assigned any service instance yet.

• stopping: The service unit's readiness state is stopping if its operational state
and the operational state of its containing node is enabled, if at least one of the
administrative states of itself, the containing service group, node, application or
the cluster are shutting-down, and none of these administrative states are locked
or locked-instantiation. When a service unit is in the stopping state, no service
instance can be assigned to it, but already assigned service instances are not
removed until the service unit's components indicate to do so.

Table 3 shows how a pre-instantiable service unit's readiness state is derived from
operational state, presence state and administrative states of itself and administrative
states of its enclosing node, service group, application and cluster. The same table
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3.1.4 43

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40

C
t
A
t
S

u

O

A
d

applies as is for non-pre-instantiable service units without the service unit’s presence
state column.

3.3.1.5 Service Unit’s HA State per Service Instance

When a service instance is assigned to a service unit, the Availability Management
Framework assigns an HA state to the service unit for that service instance. The HA
state takes one of the following values:

• active: The service unit is currently responsible for providing the service charac-
terized by this service instance.

• standby: The service unit acts as a standby for the service characterized by this
service instance.

• quiescing: The service unit, which had previously an active HA state for this
service instance is in the process of quiescing its activity related to this service
instance. In accordance with the semantics of the shutdown administrative oper-
ations, this quiescing is performed by rejecting new users of the service charac-
terized by this service instance while still providing the service to existing users
until they all terminate using it. When there is no user left for that service, the
components of the service unit indicate that fact to the Availability Management
Framework, which transitions the HA state to quiesced. The quiescing HA state
is assigned as a consequence of a shutdown administrative operation.

• quiesced: The service unit which had previously an active or quiescing HA state
for this service instance has now quiesced its activity related to this service
instance, and the Availability Management Framework can safely assign the
active HA state for this service instance to another service unit. The quiesced

Table 3 Service Unit’s Readiness State

lus-
er’s
dminis-

rative
tate

Applica-
tions’s
Adminis-
trative
State

Service
Unit’s
Adminis-
trative
State

Service
Group’s
Adminis-
trative
State

Node’s
Adminis-
trative
State

Nodes’s
Opera-
tional
State

Service
Unit’s
Opera-
tional
State

Service
Unit’s
Pres-
ence
State

Service
Unit’s
Readi-
ness
State

nlocked unlocked unlocked unlocked unlocked enabled enabled

instanti-
ated or
restart-
ing.

in-ser-
vice

ne or more columns contain the shutting-down state. enabled enabled any stopping

ll other combinations of locked/locked-instantiation/unlocked/shutting-down, enabled/
isabled and any presence state.

out-of-
service
44 SAI-AIS-AMF-B.02.01 Section 3.3.1.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
state is assigned in the context of switch-over situations (refer to Section 3.4 for
a description of switch-over).

Note: It is important to note that at any point of time, a service unit may have multi-
ple service instance assignments.

The service units do not have an HA state of their own. They are assigned HA states
on behalf of service instances; however, in the remainder of the document, the usage
of the terminology “active or standby service units” will be deemed legal when the
context makes it obvious, instead of explicitly mentioning for which service
instance(s) the service unit has been assigned a particular HA state. This is mostly
applicable in scenarios in which all service instances assigned to a particular service
unit share the same HA state and the service unit is incapable of sustaining a mix of
HA states for the assigned service instances.

For simplicity of expression, the term active assignment of/for a service instance
(or simply active assignment, if the context makes it clear which service instance is
meant) is used to mean the assignment of the active HA state to a service unit for this
service instance. Similar terms are also used for the other HA states, such as
standby assignment.

Taking into consideration the configuration of each service group (list of service
instances, list of service units, redundancy model attributes, etc.) and the current
value of the administrative and operational states of their service units and service
instances, the Availability Management Framework dynamically assigns the HA state
to the service units for the various service instances. Section 3.7 on page 69
describes how these assignments are performed for the various redundancy models.

While some aspects differ from one redundancy model to another, some rules apply
to all redundancy models:

• The overall goal of the Availability Management Framework is to keep as many
active assignments as requested by the configuration for all service instances
(which are administratively unlocked). If a service unit that is active for a service
instance goes out-of-service, the Availability Management Framework automati-
cally assigns the active HA state to a service unit that is already standby for the
service instance, if there is one.

• In the absence of administrative operations or error recovery actions being per-
formed, only active and (possibly) standby HA states are assigned to the service
units for particular service instances.

3.3.2 Component States

The overall state of a component is a combination of a number of underlying states. A
description of these underlying states is given in the next sections.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3.2 45

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Note: There is no restriction in the applicability of various states of a component and
their values described in the following subsections to proxied components.
However, if a proxied component’s status changes to unproxied (typically
when it is no longer proxied), the values for various states of a proxied com-
ponent reflect the last know value of the corresponding states before it
became unproxied.

3.3.2.1 Presence State

The presence state of a component reflects the component life cycle. It takes one of
the following values:

• Uninstantiated
• Instantiating
• Instantiated
• Terminating
• Restarting
• Instantiation-failed
• Termination-failed

If, after all possible retries, a component cannot be instantiated, the component’s
presence state is set to instantiation-failed. If components were already instantiated
or instantiating when the service unit enters the instantiation-failed state, the Avail-
ability Management Framework terminates them. These components will enter either
the uninstantiated state if they are successfully terminated or the termination-failed
state if the Availability Management Framework was unable to terminate them cor-
rectly.

If the Availability Management Framework fails to terminate a component, the com-
ponent’s presence state is set to termination-failed (refer to Section 4.6).

If an instantiated component fails, the Availability Management Framework will make
an attempt to restart the component, provided that restart is allowed for the compo-
nent.

A component is restarted by the Availability Management Framework in the context of
error recovery and repair actions (see Section 3.10 for details) or in the context of a
restart administrative operation (see Section 6.4.6 for details). Restarting a compo-
nent means first terminating it and then instantiating it again (see Section 3.12.1.2).
Two different action shall be undertaken by the Availability Management Framework
regarding the component service instances assigned to a component when the com-
ponent restart is needed:

• Keep the component service instances assigned to the component while the
component is restarted. This is typically performed when it is faster to restart the
46 SAI-AIS-AMF-B.02.01 Section 3.3.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
component than to reassign the component service instances to another compo-
nent. In this case, the presence state of the component is set to restarting while
the component is being terminated and until it is instantiated again (or a failure
occurs). Internally, in this particular scenario, the Availability Management
Framework withdraws and reassigns exactly the same HA state on behalf of all
component service instances to the component as was assigned to the compo-
nent for various component service instances before the restart procedure, with-
out evaluating the various criteria that the Availability Management Framework
would normally assess before making such an assignment.

• Reassign the component service instances currently assigned to the component
to another component before terminating/instantiating the component. In this
case, the presence state of the component is not set to restarting but transitions
through the other presence state values (typically in the absence of failures: ter-
minating, uninstantiated, instantiating and then instantiated) as the component is
terminated and instantiated again.

The choice between these two policies is based on a configuration attribute of each
component.(Referred to as disableRestart for convenience in rest of the document.)

When a node leaves the cluster, the Availability Management Framework resets the
presence state of all components included on that node other than those that are in
the instantiation-failed or termination-failed state to uninstantiated.

Table 4 shows the possible presence states of the components of a service unit, for
each valid presence state of the service unit:

.

Table 4 Presence State of Components of a Service Unit

Service Unit Included Components

uninstantiated uninstantiated

instantiating

uninstantiated
instantiating
instantiated
restarting

instantiated instantiated
restarting

terminating

terminating
instantiated
restarting
uninstantiated
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3.2.1 47

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
3.3.2.2 Operational State

The operational state of a component refers to the ITU X.731 state management
model ([5]). It is used by the Availability Management Framework to determine
whether a component is capable of taking component service instance assignments.
The operational state indicates whether the components within the service unit are
operable or not. Valid values for the operational state of a component are:

• enabled: The Availability Management Framework is not aware of any error for
this component, or a restart recovery action is in progress to recover from this
error.

• disabled: The Availability Management Framework is aware of at least one error
for this component that could not be recovered from by restarting the component
or its service unit.

The described approach for operational state definition was chosen in order to reflect
properly the capability of a component to be restarted within the time limits critical for
the service it provides regardless the reason of the restart.

The Availability Management Framework becomes aware of an error for a compo-
nent in the following circumstances:

• An error for the component is reported to the Availability Management Frame-
work with the API function saAmfComponentErrorReport(). Such an error can be
reported by the component itself, by another component, or by a monitoring facil-
ity (see saAmfPmStart()).

• The component fails to respond to the Availability Management Framework's
healthcheck request, or responds with an error.

restarting restarting

instantiation-failed

instantiation-failed
uninstantiated
instantiated
terminating
termination-failed

termination-failed

instantiated
terminating
termination-failed
uninstantiated

Table 4 Presence State of Components of a Service Unit

Service Unit Included Components
48 SAI-AIS-AMF-B.02.01 Section 3.3.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• The component fails to initiate a component-invoked healthcheck in a timely
manner.

• A command used by the Availability Management Framework to control the com-
ponent life cycle returned an error or did not return in time.

• The component fails to respond in time to an Availability Management Frame-
work's callback.

• The component responds to an Availability Management Framework's state
change callback (SaAmfCSISetCallbackT) with an error.

• If the component is SA-aware, and it does not register with the Availability Man-
agement Framework within the preconfigured time-period after its instantiation
(see Section 4.4).

• If the component is SA-aware, and it unexpectedly unregisters with the Availabil-
ity Management Framework. (see Section 6.1.1).

• The component terminates unexpectedly.
• When a fail-over recovery operation performed at the level of the service unit or

the node containing the service unit triggers an abrupt termination of the compo-
nent. For more details about recovery operations, refer to Section 3.12.1.

A component is enabled when the node containing it joins the cluster for the first time.
It is set to disabled when the Availability Management Framework performs a fail-
over recovery action on the component as a consequence of the component becom-
ing faulty or if its presence state is set to instantiation-failed or termination-failed. It is
again enabled after a successful repair. When a restart recovery action is performed
on a component, it is considered as an instantaneous combined recovery and repair
action and hence the component's operational state remains enabled in that case.

It is the Availability Management Framework that determines the value for the opera-
tional state. The operational state of a component is not directly exposed to compo-
nents via the Availability Management Framework API.

3.3.2.3 Readiness State

The operational state of a component is combined with the readiness state of its ser-
vice unit to obtain the readiness state of the component. This state indicates whether
a component is available to take component service instance assignments. This state
is the only state used by the Availability Management Framework to decide whether a
component is eligible to receive component service instance assignments.

The readiness state of a component is defined as follows:
• out-of-service: The component's readiness state is out-of-service if its opera-

tional state is disabled, or the readiness state of the service unit containing it is
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3.2.3 49

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
out-of-service. When the readiness state of a component is out-of-service, no
component service instance can be assigned to it.

• in-service: The component's readiness state is in-service if its operational state
is enabled and the readiness state of the service unit containing it is in-service.
When a component is in the in-service readiness state, it is eligible for compo-
nent service instance assignments; however, it may not have been assigned any
component service instance yet.

• stopping: The component's readiness state is stopping, if its operational state is
enabled and the readiness state of the service unit containing it is stopping.
When the readiness state of a component is stopping, no component service
instance can be assigned to it. The standby component service instance assign-
ments are removed immediately but active component service instances are not
removed before the component indicates to the Availability Management Frame-
work to do so.

The following table summarizes how the readiness state of a component is derived
from the component's operational state and the enclosing service unit's readiness
state.

3.3.2.4 Component’s HA State per Component Service Instance

For each component service instance assigned to a component within a service unit,
the Availability Management Framework assigns an HA state to the component on
behalf of the component service instance.

When the Availability Management Framework assigns an HA state to a service unit
for a particular service instance, the action is actually translated into a set of sub-
actions on the components contained in the service unit, assigning an HA state to

Table 5 Component’s Readiness State

Service Unit’s
Readiness State

Component’s
Operational State

Component’s
Readiness State

in-service enabled in-service

stopping enabled stopping

out-of-service enabled out-of-service

in-service disabled out-of-service

stopping disabled out-of-service

out-of-service disabled out-of-service
50 SAI-AIS-AMF-B.02.01 Section 3.3.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
these components for the individual component service instances contained in the
service instance.

The HA state of a component for a particular component service instance takes one
of the following values (identical to the HA state of a service unit for a particular ser-
vice instance):

• active: The component is currently responsible for providing the service charac-
terized by this component service instance.

• standby: The component acts as a standby for the service characterized by this
component service instance.

• quiescing: The component that had previously an active HA state for this com-
ponent service instance is in the process of quiescing its activity related to this
service instance. In accordance with the semantics of the shutdown administra-
tive operations, this quiescing is performed by rejecting new users of the service
characterized by this component service instance while still providing the service
to existing users until they all terminate using it. When there is no user left for that
service, the component indicates that fact to the Availability Management Frame-
work, which transitions the HA state to quiesced. The quiescing HA state is
assigned as a consequence of a shutdown administrative operation.

• quiesced: The component, which had previously the active or quiescing HA
state for this component service instance has now quiesced its activity related to
this component service instance, and the Availability Management Framework
can safely assign the active HA state for this component service instance to
another component. The quiesced state is assigned in the context of switch-over
situations (refer to Section 3.4 for a description of switch-over).

As the sub-actions involved to change the HA state of individual components of the
service unit will not complete at the same time, the HA state of a service unit for a ser-
vice instance and the HA state of individual components for the component service
instances contained in that service instance may differ.
The following table describes the possible combinations. Note that the appearance of
the states active, standby, quiescing, and quiesced, in this order, in a row at the com-
ponent or component service instance level (second column), determines the state in
the same row at the service unit or service instance level (first column). So, if active
appears in a row at the component or component service instance level, the state of
the same row at the service unit or service instance level is active. If in a row at the
component or component service instance level there is no active but a standby
state, the state of the same row at the service unit or service instance level is standby.
The same applies similarly for the quiescing and quiesced states.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3.2.4 51

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
The first two rows of the previous table are used to identify the two possible but mutu-
ally exclusive combinations of HA state of components while the service unit’s HA
state is active. The second row is specific for a transition of the service unit’s HA state
from standby to active.

For simplicity of expression, the term active assignment of/for a component ser-
vice instance (or simply active assignment, if the context makes it clear which com-
ponent service instance is meant) is used to mean the assignment of the active HA
state to a component for this component service instance. Similar terms are also
used for the other HA states, such as standby assignment.

When the Availability Management Framework assigns the active HA state to a com-
ponent on behalf of a component service instance, the component must start to pro-
vide the service which is characterized by that component service instance.

When the Availability Management Framework assigns the standby HA state to a
component on behalf of a component service instance, the component must prepare
itself for a quick and smooth transition into the active HA state for that component ser-

Table 6 HA State of Component/Component Service Instance

HA State of Service Unit/ Service
Instance

HA State of Component/ Component
Service Instance

active

active
quiescing
quiesced
(not assigned)

active
active
standby
(not assigned)

quiescing
quiescing
quiesced
(not assigned)

quiesced quiesced
(not assigned)

standby
standby
quiesced
(not assigned)

(not assigned) (not assigned)
52 SAI-AIS-AMF-B.02.01 Section 3.3.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
vice instance, if requested by the Availability Management Framework. How the
standby component prepares itself is very dependent on its implementation and may
involve, for example, actions such as sharing access to checkpointed data with the
active component.

In switch-over situations (see Section 3.4) when the Availability Management Frame-
work assigns the quiesced HA state to a component on behalf of a component ser-
vice instance, the component must, as quickly as possible, get the work related to
that component service instance into a state where it can be transferred to another
component with as minimal service disruption as possible. This may mean different
things depending on the nature of the work and the implementation of the compo-
nent. Typically, the component should not take in new work related to the component
service instance. For example, if work related to the service instance is delivered in
the form of messages sent to a specific message queue, the component should stop
taking messages from that queue. Work related to that component service instance,
which is already in progress inside the component, should be checkpointed so that it
can be completed later on by the other component, which is taking over. If the compo-
nent or the way it interacts with its clients does not support checkpointing of on-going
work, the work needs to either be completed immediately or an indication returned to
the client indicating that it should submit that work later. If the component maintains
some state associated with the component service instance, that state needs to be
made available to the component, which will take over the activity. Depending on the
component’s implementation, this may imply, for example, writing the state in persis-
tent storage or in a checkpoint, or packing it in a message and sending it to a particu-
lar message queue.

As a consequence of a shutdown administrative operation (see Section 7.4.7 on page
242), when the Availability Management Framework assigns the quiescing HA state
to a component on behalf of a component service instance, the component must
reject attempts from new users to access the service characterized by the component
service instance and only continue to service existing users. When all users have ter-
minated using the service corresponding to that component service instance, the
component must notify this to the Availability Management Framework through the
saAmfCSIQuiescingComplete() function call. The invocation of the
saAmfCSIQuiescingComplete() function implicitly transitions the HA state of the com-
ponent from quiescing to quiesced for that component service instance.

When assigning the active HA state to a service unit for a particular service instance,
the Availability Management Framework:

• invokes the saAmfCSISetCallback() callback of all SA-aware components for
themselves,

• invokes the saAmfCSISetCallback() callback of their proxy components for all
proxied components. If the proxied component is a non-pre-instantiable compo-
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3.2.4 53

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
nent and is not already instantiated, the proxy instantiates the proxied compo-
nent as part of performing the component service instance assignment,

• runs the INSTANTIATE command for non-proxied, non-SA-aware components.

When assigning an HA state other than active to a service unit for a particular service
instance, the Availability Management Framework:

• invokes the saAmfCSISetCallback() callback of SA-aware components for them-
selves,

• invokes the saAmfCSISetCallback() callback of their proxy components for all
proxied components. The proxy component terminates its non-pre-instantiable
proxied components as part of performing the component service instance
assignment,

• runs the TERMINATE command for non-proxied, non-SA-aware components.

When removing a service instance assignment from a service unit, the Availability
Management Framework:

• invokes the saAmfCSIRemoveCallback() callback of SA-aware components for
themselves,

• invokes the saAmfCSIRemoveCallback() callback of their proxy components for
all proxied components. The proxy component terminates its non-pre-instantia-
ble proxied components as part of removing the component service instance
assignment,

• runs the TERMINATE command for non-proxied, non-SA-aware components.

As the instantiation and termination of proxied, non-pre-instantiable components is
performed by the proxy as part of the assignment, respectively, removal of compo-
nent service instances to, respectively, from the proxied component, the Availability
Management Framework never invokes the
saAmfProxiedComponentInstantiateCallback() and
saAmfComponentTerminateCallback() callback functions of the proxy for such com-
ponents.

During an individual component restart because of a fault encountered by the compo-
nent, the component remains enabled. Its readiness state may or may not change
according to changes in its presence state as described 3.3.2.1, which determines
AMF's actions regarding the CSI assignments to the component.

The state diagram for a component service instance is shown in Figure 4 below.
54 SAI-AIS-AMF-B.02.01 Section 3.3.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
Figure 4 State Diagram of the HA State of an SA-Aware Component for a Component Service Instance

Table 7 below shows combinations of the readiness state and the HA state for pre-
instantiable components for a component service instance. Only the HA state is
exposed to the application developer.

Table 7 Application Developer View for Pre-Instantiable Components

Component’s
Readiness State In-Service Stopping Out-Of-Service

HA State of a
Component for
a Component
Service Instance

active
standby
quiescing
quiesced

standby
quiescing
quiesced

[no HA state]

active

quiescing

quiesced

standby

ADD

ADD

RMV

RMV

RMV

RMV

ADD Transitions: saAmfCSISetCallback(SA_AMF_CSI_ADD_ONE)

RMV Transitions: saAmfCSIRemoveCallback(),

saAmfTerminateCallback(), CLEANUP

Other Transitions: saAmfCSISetCallback(SA_AMF_CSI_TARGET_*)
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3.2.4 55

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Table 8 below shows combinations of the readiness state and the HA state for non-
pre-instantiable components for the component service instances that are exposed to
the application developer.

3.3.3 Service Instance States

3.3.3.1 Administrative State

The administrative state of a service instance is manipulated by the system admin-
istrator. Valid values for the administrative state of a service instance are:

• unlocked: HA states can be assigned to service units on behalf of the service
instance.

• locked: No HA state can be assigned to service units on behalf of the service
instance.

• shutting-down: The service instance is shutting down gracefully. This means
that all assignments of all its component service instances are quiescing or qui-
esced assignments.

The administrative state of a service instance is not directly exposed to components
via the Availability Management Framework API.

The administrative state of a service instance is persistent when all nodes within the
cluster are rebooted.

Note: The administrative state value of locked-instantiation is not a valid state value
for a service instance as it may not be terminated and made non-instantiable
as other logical entities may be.

3.3.3.2 Assignment State

The assignment state of a service instance indicates whether the service repre-
sented by this service instance is being provided or not by some service unit. Valid
values for the assignment state of a service instance are:

• unassigned: A service instance is said to be unassigned if there is no service
unit having the active or quiescing HA state for this service instance.

Table 8 Application Developer View for Non-Pre-Instantiable Components

Component’s
Readiness State In-Service Out-Of-Service

HA State of a
Component for
a Component
Service Instance

active or
no HA state [no HA state]
56 SAI-AIS-AMF-B.02.01 Section 3.3.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• fully-assigned: A service instance is said to be fully-assigned if and only if:
• The number of service units having the active or quiescing HA state for the

service instance is equal to the preferred number of active assignments for the
service instance, defined in the redundancy model of the corresponding ser-
vice group (see Section 3.7) and

• The number of service units having the standby HA state for the service
instance is equal to the preferred number of standby assignments for the ser-
vice instance, defined in the redundancy model of the corresponding service
group (see Section 3.7).

• partially-assigned: A configured service instance which is neither unassigned
nor fully-assigned is said to be partially-assigned.

The following table shows the preferred number of active and standby assignments,
for various redundancy models (additionally, refer to Section 3.7):

It is the Availability Management Framework that determines the value of the assign-
ment state.

The assignment state of a service instance is not directly exposed to components via
the Availability Management Framework API.

When a service instance enters the unassigned state, an alarm will be issued. For
other changes in the assignment state, appropriate notifications will be issued. (see
Section 9).

Table 9 Preferred Number of Active and Standby Assignments

Redundancy Model Preferred Number of
Active Assignments

Preferred Number of
Standby Assignments

2N 1 1

N+M 1 1

N-Way 1 As configured in the ser-
vice group

N-Way Active As configured in the ser-
vice group 0

No Redundancy 1 0
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3.3.2 57

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
3.3.4 Component Service Instance States

The Availability Management Framework does not define any states for a component
service instance; instead states are defined for the service instance that comprises
this component service instance.

3.3.5 Service Group States

The only state defined by the Availability Management Framework for service groups
is the administrative state. It is an extension of the administrative state proposed by
the ITU X.731 state management model ([3]) which can be manipulated by the sys-
tem administrator. Valid values for the administrative state of a service group are:

• unlocked: The service group has not been directly prohibited from providing
service by the administrator.

• locked: The service group has been administratively prohibited from providing
service.

• locked-instantiation: The administrator has prevented all service units of the
service group from being instantiated by the Availability Management Frame-
work.

• shutting-down: The administrator has prevented all service units contained
within the service group from taking new service instance assignments and
requested that existing service instance assignments be gracefully removed.
When all service instances assigned to all the service units within the service
group have finally been removed, the administrative state of the service group
transitions to locked, that is, the administrative state of the service group is
locked after completion of the shutting down operation.

The Availability Management Framework uses the administrative state of the service
group to determine the readiness state of the service units of the service group as
described in Section 3.3.1.4.

The administrative state of a service group is persistent when all nodes within the
cluster are rebooted.

The administrative state of a service group is not directly exposed to components via
the Availability Management Framework, but rather only indirectly, since the service
unit’s readiness state has an impact on component service instance assignments.

Note: Though a service group has no associated HA state, this specification uses
the term “assign a service instance” to a service group, meaning that the ser-
vice instance is assigned to one or more service units of the service group.
58 SAI-AIS-AMF-B.02.01 Section 3.3.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
3.3.6 Node States

3.3.6.1 Administrative State

The administrative state of a node is an extension of the administrative state pro-
posed by the ITU X.731 state management model ([3]). The administrative state of a
node can be set by the system administrator. Valid values for the administrative state
of a node are:

• unlocked: The node has not been directly prohibited from providing service by
the administrator.

• locked: The node has been administratively prohibited from providing service.
• locked-instantiation: The administrator has prevented all service units of the

node from being instantiated by the Availability Management Framework. Thus,
all service units within the node are not instantiable.

• shutting-down: The administrator has prevented all service units contained
within the node from taking new service instance assignments and requested
that existing service instance assignments be gracefully removed. When all ser-
vice instances assigned to all the service units within the node have finally been
removed, the administrative state of the node transitions to locked, that is, the
administrative state of the node is locked after completion of the shutting down
operation.

The Availability Management Framework uses the administrative state of the node to
determine the readiness state of the service units of the node as described in Section
3.3.1.4.

The administrative state of a node is persistent when all nodes within the cluster are
rebooted.

The administrative state of a node is not directly exposed to components via the
Availability Management Framework, but rather only indirectly, since the service unit’s
readiness state has an impact on component service instance assignments.

3.3.6.2 Operational State

The operational state of the node refers to the ITU X.731 state management model
([5]). It is used by the Availability Management Framework to determine whether a
service unit within the node is capable of taking service instance assignments. The
operational state of the node indicates whether the service units within the node are
operable or not.

Valid values for the operational state of a node are:

• enabled: The operational state transitions from disabled to enabled when a suc-
cessful repair action has been performed on the node (see 3.12.1.4).
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3.6 59

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• disabled: The operational state of a node transitions to disabled if a component
of the node has transitioned to the disabled state and the Availability Manage-
ment Framework has taken a recovery action at the level of the entire node
(node switch-over, fail-over or failfast).

A node's operational state is enabled when the node joins the cluster for the first time.
It is set to disabled when the Availability Management Framework performs a node-
level recovery action. It is again enabled after a successful repair. This is done by the
entity performing the repair (Availability Management Framework or other entity). An
administrative operation is provided to clear the disabled state of a node so that an
entity different from Availability Management Framework may perform the repair and
declare the node repaired.

The Availability Management Framework uses the operational state of the node to
determine the readiness state of the service units of the node as described in Section
3.3.1.4. The operational state of a node is valid even after a node left the member-
ship, since it is used to provide the information if the node was healthy or had a failure
when leaving. The following explains the state transitions in detail:

The operational state of a node is not directly exposed to components via the Avail-
ability Management Framework, but rather only indirectly, since the service unit’s
readiness state has an impact on component service instance assignments.

When a node joins the cluster for the first time, the operational state of the node is
enabled. The node remains enabled until a recovery within its scope is done and is
reenabled when successfully repaired.

If a node is enabled and is in the locked-instantiation administrative state when it
leaves the cluster membership, the node stays enabled until it joins the cluster again.

If a node is enabled and is not in the locked-instantiation administrative state when it
leaves the cluster membership, the node becomes disabled while it is out of the clus-
ter and becomes enabled again when it rejoins the cluster.

If a disabled node with the automatic repair attribute (see Section 3.12.1.4 on page
139) turned on unexpectedly leaves the cluster membership, the Availability Manage-
ment Framework should assess the state of the node when it rejoins the cluster mem-
bership to ascertain if it needs to proceed with the planned repair action which was
potentially interrupted when the node unexpectedly left the cluster membership.

If a disabled node with the automatic repair attribute turned off leaves the cluster
membership, the operational state of the node (and of its contained entities) is not
modified when the node joins the cluster again. Note that the operational state of the
node may have been re-enabled by an SA_AMF_ADMIN_REPAIR administrative
operation before the node rejoined the cluster in which case the node becomes
enabled upon rejoining the cluster.
60 SAI-AIS-AMF-B.02.01 Section 3.3.6.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
3.3.7 Application States

The only state defined by the Availability Management Framework for an application
is the administrative state. It is an extension of the administrative state proposed by
the ITU X.731 state management model ([3]) which can be manipulated by the sys-
tem administrator. Valid values for the administrative state of an application are:

• unlocked: The application has not been directly prohibited from providing serv-
ice by the administrator.

• locked: The application has been administratively prohibited from providing ser-
vice.

• locked-instantiation: The administrator has prevented all service units of the
application from being instantiated by the Availability Management Framework.

• shutting-down: The administrator has prevented all service units contained
within the application from taking new service instance assignments and
requested that existing service instance assignments be gracefully removed.
When all service instances assigned to all the service units within the application
have finally been removed, the administrative state of the application transitions
to locked, that is, the administrative state of the application is locked after com-
pletion of the shutting down operation.

The Availability Management Framework uses the administrative state of the applica-
tion to determine the readiness state of the service units of the application as
described in Section 3.3.1.4.

The administrative state of an application is persistent even when all nodes within the
cluster are rebooted.

The administrative state of an application is not directly exposed to components via
the Availability Management Framework, but rather only indirectly, since the service
unit’s readiness state has an impact on component service instance assignments.

3.3.8 Cluster States

The only state defined by the Availability Management Framework for a cluster is the
administrative state. It is an extension of the administrative state proposed by the ITU
X.731 state management model ([3]) which can be manipulated by the system admin-
istrator. Valid values for the administrative state of a cluster are:

• unlocked: The cluster has been administratively allowed to provide service.
• locked: The cluster has been administratively prohibited from providing service.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3.7 61

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• locked-instantiation: The administrator has prevented all service units of the
cluster from being instantiated by the Availability Management Framework.
Thus, all service units within the cluster are not instantiable.

• shutting-down: The administrator has prevented all service units contained
within the cluster from taking new service instance assignments and requested
that existing service instance assignments be gracefully removed. When all ser-
vice instances assigned to all the service units within the cluster have finally
been removed, the administrative state of the cluster transitions to locked, that
is, the administrative state of the cluster is locked after completion of the shutting
down operation.

The Availability Management Framework uses the administrative state of the cluster
to determine the readiness state of the service units of the cluster as described in
Section 3.3.1.4.

The administrative state of a cluster is persistent across the reboot of the cluster.

The administrative state of a cluster is not directly exposed to components via the
Availability Management Framework, but rather only indirectly, since the service unit’s
readiness state has an impact on component service instance assignments.

3.3.9 Summary of States Supported for the Logical Entities

Table 10 summarizes the states that the Availability Management Framework sup-
ports for the logical entities of the system model.

Table 10 Summary of States Supported for the Logical Entities

Logical Entity States

Cluster Administrative

Application Administrative

Service group Administrative

Node Administrative, operational

Service unit Administrative, operational, readiness, HA, presence

Component Operational, readiness, HA, presence

Service instance Administrative, assignment

Component service
instance -
62 SAI-AIS-AMF-B.02.01 Section 3.3.9 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
The administrative states of service units, service groups, service instances, nodes,
applications and the cluster are completely independent, in the sense that one does
not affect the other. As an example, a service unit might be administratively unlocked
while its enclosing node is locked. Whether the service unit is actually administra-
tively prevented to provide service or not depends on the service unit’s administrative
state and on the administrative states of its containing node, service group, applica-
tion, and the cluster. The corresponding rules are given in Section 3.3.1.2.

Note that the administrative, presence and operational states of a particular entity
typically do not have a direct impact on each other. However, certain incidents may
change more than one of the these states as explained below:

• A service unit failure can lead to its presence state changing to uninstantiated
and the operational state changing to disabled. This is an example of an event
that changes both the operational and presence states.

• When a service unit is administratively terminated (refer to Section 7.4.4 on
page 236), its presence state changes to uninstantiated, its administrative
state changes to locked-instantiation, but its operational state remains
unchanged. Thus, this event changes both administrative and presence states
but not the operational state.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.3.9 63

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
3.4 Fail-Over and Switch-Over
The terms fail-over and switch-over are used to designate two scenarios where a
component assigned the active HA state for a particular component service instance
loses the active assignment.

The term fail-over is used to designate a recovery procedure performed by the Avail-
ability Management Framework when a component with the active HA state for a
component service instance fails (when, for instance, its operational state becomes
disabled), and the Availability Management Framework decides to reassign the active
HA state for the component service instance to another component. In a fail-over sit-
uation, the faulty component is abruptly terminated either by the fault itself (for exam-
ple, a node failure) or by the Availability Management Framework, which promptly
isolates the fault through the execution of CLEANUP commands for non-proxied
components (see Section 4.6) or the invocation of
saAmfProxiedComponentCleanupCallback() callbacks (see Section 6.9.3) for proxied
components.

The term switch-over is used to designate circumstances where the Availability Man-
agement Framework moves the active HA state assignment of a particular compo-
nent service instance from one component C1 to another component C2 while the
component C1 is still healthy and capable of providing the service (that is, C1 opera-
tional state is enabled). Switch-over operations are usually the consequence of
administrative operations (such as lock of a service unit) or escalation of recovery
procedures (for details about recovery escalations, see Section 3.12). To minimize
the impact of the switch-over operation, the Availability Management Framework per-
forms an orderly transition of the HA state of C1 from active to quiesced before
assigning the active HA state to C2. After C2 has been assigned active for the com-
ponent service instance, the Availability Management Framework will typically
remove the component service instance assignment from C1.

Similarly, the terms fail-over and switch-over are also used to designate situations
where the Availability Management Framework removes the active HA state of a ser-
vice unit for a particular service instance. A service instance switch-over operation is
the consequence of an administrative operation such as a lock operation while a fail-
over operation is the consequence of a failure recovery. As described in Section 3.12,
it should be noted that depending on configuration options, a service instance fail-
over may be implemented as a fail-over of all component service instances assigned
to the failed component while component service instances assigned to non faulty
components are simply switched-over.
64 SAI-AIS-AMF-B.02.01 Section 3.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
3.5 Possible Combinations of States for Service Units

3.5.1 Combined States for Pre-Instantiable Service Units

Table 11 and Figure 5 show the possible combinations of states for these service
units,

Reasons for a service unit to move from one combination of states to another:
• lock, lock-instantiation, shutdown, unlock-instantiation or unlock operation,
• failure of a contained component, which escalates to disabling the containing

service unit, and, thus, cleaning up and uninstantiating the service unit,
• repair of a failed service unit (instantiating the service unit or rebooting the node,

or with an SA_AMF_ADMIN_REPAIRED administrative operation),

Table 11 Combined States for Pre-Instantiable Service Units

Service Unit is Operational Presence Readiness HA

locked enabled instantiated out-of-service [no HA state]

locked enabled uninstantiated out-of-service [no HA state]

locked disabled uninstantiated
terminating
instantiation-failed
termination-failed

out-of-service

[no HA state]

unlocked disabled uninstantiated
terminating
instantiation-failed
termination-failed

out-of-service

[no HA state]

shutting-down enabled instantiated stopping quiescing
quiesced

unlocked enabled instantiated in-service any

unlocked enabled instantiated out-of-service [no HA state]

locked-instantiation disabled uninstantiated
terminating
instantiation-failed
termination-failed

out-of-service

[no HA state]

locked-instantiation enabled uninstantiated out-of-service [no HA state]
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.5 65

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• all contained components leaving the SA_AMF_HA_QUIESCING state for all
their component service instances (labeled with "Stopped" in the diagram below)

Some of the important state transitions for a pre-instantiable component are shown
below in Figure 5:

Figure 5 State Transitions for Pre-Instantiable Service Units

locked,
enabled

unlocked,
enabled

locked,
disabled

shutting-down,
enabled

Unlock

Shutdown Lock or
Stopped

unlocked,
disabled

Unlock

Repair

Failure

locked-instantiation,
disabled

Lock Instantiation

locked-instantiation,
enabled

Lock Instantiation

Failure

Repair

Unlock InstantiationLock

Unlock

Unlock Instantiation Lock/Shutdown

Failure

Failure Repair
66 SAI-AIS-AMF-B.02.01 Section 3.5.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
3.5.2 Combined States for Non-Pre-Instantiable Service Units

Table 12 and Figure 6 show the possible combinations of states for these service
units.

Reasons for a service unit to move from one combination of states to another:
• lock, lock-instantiation, shutdown, unlock-instantiation or unlock operation
• failure of a contained component, which escalates to disabling the containing

service unit, and, thus, cleaning up and uninstantiating the service unit,
• service unit uninstantiated by the Availability Management Framework
• service unit instantiated by the Availability Management Framework

Some of the important state transitions for a pre-instantiable component are shown
below in Figure 6:

Table 12 Combined States for Non-Pre-Instantiable Service Units

Service Unit is Operational Presence Readiness HA

locked enabled uninstantiated out-of-service [no HA state]

locked disabled uninstantiated
instantiation failed
termination failed

out-of-service [no HA state]

unlocked disabled uninstantiated
instantiation failed
termination failed

out-of-service
[no HA state]

unlocked enabled uninstantiated in-service active

unlocked enabled instantiated
instantiating
restarting

in-service
active

unlocked enabled uninstantiated
instantiated
instantiating
restarting

out-of-service

[no HA state]

locked-instantiation disabled uninstantiated
instantiation failed
termination failed

out-of-service
[no HA state]

locked-instantiation enabled uninstantiated out-of-service [no HA state]
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.5.2 67

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Figure 6 State Transitions for Non-Pre-Instantiable Service Units

3.6 Component Capability Model
To accommodate possible simplifications in component development, whereby com-
ponents may implement only restricted capabilities, the Application Interface Specifi-
cation defines the Component Capability Model, which consists of the capabilities
presented below. Note that the letters x and y in the name of a component capability
only indicate multiplicity of numbers of active or standby component service
instances. The precise values of the maximum number of active and standby CSIs
will be defined in the component configuration.

locked,
enabled,

uninstantiated

locked,
disabled

uninstantiated,..

unlocked,
enabled,

instantiated,...

Unlock

Lock

unlocked,
disabled

uninstantiated,...

Repair

Failure

locked-instantiation,
disabled

uninstantiated,...

Lock Instantiation

locked-instantiation,
enabled,

uninstantiatedLock Instantiation

Repair

Unlock InstantiationLock

Unlock

Unlock InstantiationLock

Failure

unlocked,
enabled,

uninstantiated

Instantiate

Terminate

,

Failure
Repair

Failure
68 SAI-AIS-AMF-B.02.01 Section 3.6 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• x_active_and_y_standby: The component supports all values of the HA state,
and it can have the active HA state for x component service instances and the
standby HA state for y component service instances at a time.

• x_active_or_y_standby: The component supports all values of the HA state. It
can be assigned either the active HA state for x component service instances or
the standby HA state for y component service instances at a time.

• 1_active_or_y_standby: The component supports all values of the HA state. It
can be assigned either the active HA state for only one component service
instance or the standby HA state for y component service instances at a time.

• 1_active_or_1_standby: The component supports all values of the HA state,
and it can be assigned either the active HA state or the standby HA state for only
one component service instance at a time.

• x_active: The component cannot be assigned the standby HA state for compo-
nent service instances, but it can be assigned the active HA state for x compo-
nent service instances at a time.

• 1_active: The component cannot be assigned the standby HA state for compo-
nent service instances, but it can be assigned the active HA state for only one
component service instance at a time.

• non-pre-instantiable: The component provides service as soon as it is started.
The Availability Management Framework delays the instantiation of the compo-
nent to the time when the component is assigned the active HA state on behalf of
a component service instance. When the active HA state for a component serv-
ice instance is removed from the component, the Availability Management
Framework terminates the component. Such a component is termed non-pre-
instantiable.

Service units may hold components supporting different capability models. The num-
ber of service instances assigned to a service unit depends on the number of compo-
nent service instances supported by the components included in the service unit.

3.7 Service Group Redundancy Model
A service group has associated with it, by configuration, a service group redun-
dancy model. The service units within a service group provide service availability to
the service instances that they support according to the particular service group
redundancy model.

The redundancy models are described in this chapter in terms of the rules followed by
the Availability Management Framework when assigning the active and standby HA
state to service units of a service group for one or several service instances.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7 69

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
The assignment of the quiesced and quiescing HA states to the service units for par-
ticular service instances is not described here, as these states are not an integral part
of the redundancy models definition, but rather transition states used by the Availabil-
ity Management Framework to perform switch-over operations or implement shut-
down administrative operations.

In the following descriptions, a service unit assigned the quiescing HA state for a ser-
vice instance must be accounted as if the same service unit is assigned the active HA
state for that same service instance.

The transient quiesced HA state is peculiar, as during the switch-over operation, a
service unit assigned the quiesced HA state for a service instance must be accounted
as either being assigned the active or standby HA state for that service instance.

In the following descriptions, a service unit assigned the quiesced HA state for a par-
ticular service instance should be accounted as a service unit assigned the active HA
state for that service instance if no other service unit has the active HA state assigned
for that service instance; otherwise, it should be accounted as a service unit assigned
the standby HA state for that service instance.

In the following descriptions, a service unit that has the stopping readiness state must
be accounted as an in-service service unit.

This specification defines the following service group redundancy models:
• 2N
• N+M
• N-Way
• N-Way Active
• No Redundancy

These service group redundancy models are not exposed in the APIs of this specifi-
cation. Note that the N in the 2N model refers to the number of service groups,
whereas N and M, when used in the other models, refer to service units. This is due
to common usage of the term 2N to refer to 1+1 active/standby redundancy configu-
rations, which can be repeated N times.

Each redundancy model and the common characteristics of all or most of the redun-
dancy models are explained in the following sections. Section 3.7.7 on page 128
describes the effect of administrative operations on the redundancy models.

3.7.1 Common Characteristics

Note: In the following description, several ordered lists, like ordered list of service
units or ordered list of service instances, are used. The order of the elements in the
70 SAI-AIS-AMF-B.02.01 Section 3.7.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

A

1

5

10

15

20

25

30

35

40
list is based on the relative importance of these elements. The term rank is used as a
synonym to this order. Similarly, ranked list is also used as a synonym to ordered list.

3.7.1.1 Common Definitions

The following definitions and concepts are common to all the supported redundancy
models.

• Instantiable service units: These service units have the following characteris-
tics:
(*) Configured in the Availability Management Framework.
(*) Contained in a node that is currently a member of the cluster whose opera-
tional state is enabled.
(*) The service unit's presence state is uninstantiated and its operational state is
enabled.

• in-service service units: These are the service units that have a readiness state
of either in-service or stopping.

• Instantiated service units: Instantiated service units: In the context of this dis-
cussion, these are service units with the presence state of either instantiated, or
instantiating, or restarting. When the Availability Management Framework
intends to select service units to be in the "instantiated service units" list, it
chooses these service units from the instantiable service units that are not
administratively locked at any of the levels service unit, containing node, service
group, application and the cluster. This selection is done according to the service
unit rank defined for the particular redundancy models. The notion of “preferred
number of in-service service units” is defined later for each redundancy model.
See, for instance, Section 3.7.2.2. Note that the instantiable and instantiated sets
are disjoint.

• Assigned service units: These are the service units that have at least one SI
assigned to them. If the Availability Management Framework needs to choose a
service unit for assignment from the instantiated service units list, it has to
choose from the in-service instantiated service units.

• Instantiated and non-instantiated spare service units: All instantiated but
unassigned service units are called "instantiated spare service units", or simply
spare service units. All non-instantiated service units of a service group are
named "non-instantiated spare service units".

• Ordered list of service units for a service group: For each service group,
there is an ordered list of service units, which defines the rank of the service unit
within the service group. The length of the list is equal to the number of service
units configured for the service group. This ordered list is used to specify the
order in which service units are selected to be instantiated. This list also can be
used to determine the order in which a service unit is selected for SI assign-
IS Specification SAI-AIS-AMF-B.02.01 Section 3.7.1.1 71

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
ments, when no other configuration parameter defines it. It is possible that this
list has only one service unit. However, to maintain the availability of the service
provided by the service group, the list should include at least two service units.
Default value: no default (the order is implementation-dependent)

• Reduction Procedure: The configuration of a service group describes optimal
assignments if the preferred number of its service units can actually be instanti-
ated during the cluster start-up. In the event that a service unit or a node fails to
instantiate during cluster start-up or is administratively taken out of service, a
reduction procedure is described in most of the redundancy models. The Availa-
bility Management Framework uses this reduction procedure to compute less
optimal assignments before actually starting to assign the service instances.

• No spare HA state: As spare service units have no SI assigned to them, there is
no "spare" HA state for service units, respectively components on behalf of serv-
ice instance, respectively component service instances. Hence, protection
groups do not contain components of the spare service units; thus, no change
needs to be tracked.

• Auto-adjust option: This notion indicates that it is required that the SI assign-
ments to the service units in the service group are transferred back to the most
preferred SI assignments in which the highest ranked available service units are
assigned the active or standby HA states for those SIs. If the auto-adjust option
is not set, even when a higher ranked service unit becomes eligible to take
assignments (for example after a new node joining the cluster), the HA assign-
ments to service units are kept unchanged. Refer to Section 3.7.1.2 for details
when the auto-adjust option is initiated.

The following definitions are used in most, but not all, of the supported redundancy
models.

• Multiple (ranked) standby assignments: For some redundancy models, it is
possible that multiple service units are assigned the standby HA state for a given
SI. These service units are termed the standby service units for this given SI. The
standby service units are ranked, meaning that one service unit will be consid-
ered standby #1, another one standby #2, and so on. The rank is represented by
a positive integer. The lowest the integer value, the highest the rank. The
standby service unit with the highest rank will be assigned the active HA state for
a given service instance if the service unit, which is currently active for that serv-
ice instance, fails.
When the Availability Management Framework assigns component service
instances to a component, it notifies the component about the rank of its standby
assignment. This additional information can be used for the component in pre-
paring itself for the standby role.
72 SAI-AIS-AMF-B.02.01 Section 3.7.1.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• Ordered list of SIs: This ordered list is used to rank the SIs based on their
importance. The Availability Management Framework will use this ranking to
choose SIs to either support with less than the desired redundancy or drop them
completely, if the set of instantiated service units does not allow full support of all
SIs.

• Redundancy level of a Service Instance: This is the number of service units
being assigned an HA state for this service instance.

While most redundancy models are applicable to service groups containing non-pre-
instantiable service units (see Table 13, Section 3.8), the descriptions provided in the
following sections only apply to service groups with pre-instantiable service units, as
they lead to more complex situations. The behavior of the various redundancy mod-
els for service groups with non-pre-instantiable service units can be deduced from the
following descriptions by taking into account the following restrictions attached to ser-
vice groups with non-pre-instantiable service units:

• no spare service units,
• no standby service units,
• one and only one SI assignment per in-service service unit,
• the three sets of instantiated service units, in-service service units and active

service units are identical.

3.7.1.2 Initiation of the Auto-Adjust Procedure for a Service Group

If a service group is configured with the auto-adjust option set, then the Availability
Management Framework should attempt to return the service group’s assignments
back to the most preferred assignments as defined in Section 3.7.1.1, as soon as
possible. In general, the need for auto-adjustment for a service group arises when
one of the following happens:

• A service unit configured for the service group becomes instantiable.
• The readiness state of a service unit configured for the service group becomes

in-service.
• A locked service instance, configured for the service group becomes unlocked.

When a service group becomes eligible for auto-adjustment, the Availability Manage-
ment Framework can initiate the auto-adjust procedure for that service group immedi-
ately. This seems practical when an administrative action has made the service group
eligible for the auto-adjust (for example when a service instance is unlocked by the
administrative operation). However, if the completion of a recovery/repair operation
has made the service group eligible for auto-adjustment (for example if a node joins
the cluster after the repair), it is not so wise to run the auto-adjust procedure for the
service group involving the newly-repaired service units immediately. Thus, a service
group-level configuration item named "probation period" has been introduced. When
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.1.2 73

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
a service unit becomes available for auto-adjustment after a repair/recovery opera-
tion, the service unit enters its probation period, and it cannot thereby be used for
auto-adjustment while in its probation period. Note that the service group can be
auto-adjusted using other service unit's but auto-adjustment cannot use the service
units in their probation periods. Also, the service unit on probation can and should be
used in other operations such as switch-over and fail-over.

As soon as the probation period of a service unit elapses, the Availability Manage-
ment Framework initiates the auto-adjust procedure for the corresponding service
group.

By configuring the probation period appropriately, the administrator can make sure
that the Availability Management Framework does not run into undesired situations
such as toggling the active service units due to, for example, intermittent failures of a
service unit and inadequate repair operations.

3.7.2 2N Redundancy Model

3.7.2.1 Basics

In a service group with the 2N redundancy model, at most one service unit will have
the active HA state for all service instances (usually called the active service unit),
and at most one service unit will have the standby HA state for all service instances
(usually called the standby service unit). Some other service units may be considered
spare service units for the service group, depending on the configuration. The com-
ponents in the active service unit execute the service, while the components in the
standby service unit are prepared to take over the active role if the active service unit
fails.

Although the goal of the 2N redundancy model is to offer redundancy in service, it is
possible that a 2N-redundancy service group is configured to have only one service
unit. In this case, there is no redundancy on the service units level; however, the
Availability Management Framework manages the availability of such a degenerated
service group. The specification supports this single service unit 2N redundancy
model, because it makes easier, from the configuration-update viewpoint, to add
more service units later on, when, for example, more nodes are configured into the
cluster.

Components implementing any of the capability models described in Section 3.6 on
page 68 can participate in the 2N redundancy model.

Examples of a service group with a 2N redundancy model are presented in Section
3.7.2.4 on page 76.
74 SAI-AIS-AMF-B.02.01 Section 3.7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
3.7.2.2 Configuration

• Ordered list of service units for a service group: This parameter is described
in Section 3.7.1.1.
Default value: no default (the order is implementation-dependent)

• Preferred number of in-service service units at a given time: The Availability
Management Framework should make sure that this number of in-service service
units are always instantiated, if possible. If the ordered list of service units of a
service group has at least two service units, then the preferred number of in-
service service units should be at least two. If the preferred number of in-service
service units is greater than two, then there will be some instantiated spare ser-
vice units in the service group. These service units are called "spare" service
units. The preferred number of in-service service units for the service groups
containing only non-pre-instantiable components must be set to one.
Default value: two

• Auto-adjust option: For the general explanation of this option, refer to Section
3.7.1.1 on page 71. Section 3.7.2.3.3 on page 75 discusses how this option is
handled in this redundancy model.
Default value: no auto-adjust

3.7.2.3 SI Assignments and Failure Handling

3.7.2.3.1 Failure of the Active Service Unit

When an active service unit fails over, the associated standby service unit will be
assigned active for all SIs. Then, one of the spare service units will be selected and
will be assigned standby for all SIs. If the number of instantiated service units falls
below the preferred number of in-service service units, another service unit from the
ordered list of instantiable service units will be instantiated.

3.7.2.3.2 Failure of the Standby Service Unit

When a standby service unit fails over, one of the spare service units will be assigned
to take over the standby role, if possible. If the number of instantiated service units
falls below the preferred number of in-service service units, another service unit from
the set of instantiable service units will be instantiated.

3.7.2.3.3 Auto-adjust Procedure

If the auto-adjust option is set in the configuration, the Availability Management
Framework should make sure that the service group assignments are assigned back
to the preferred configuration, meaning that the highest ranked in-service service unit
be active and the second highest ranked in-service service unit be standby. It is obvi-
ous that the auto-adjust procedure may involve relocation of SIs. Though it is left to
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.2.2 75

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
the implementation how to perform an auto-adjust, it should be done with minimum
impact on the availability of the corresponding service.

3.7.2.3.4 Cluster Startup

Because the cluster startup is a rare event, its latency may not be as critical as other
failure recovery events such as a service unit fail-over. Moreover, it is very important
to start a cluster in an orderly fashion such that the initial runtime status of the entities
under the control of the Availability Management Framework is as close as possible
to the preferred configuration. Saying so, during the startup of the cluster, the Availa-
bility Management Framework should wait for at most a predefined period of time to
make sure that all required service units are instantiated before assigning SIs to ser-
vice units. It is left to the implementation how to handle cluster startup; however, the
implementation should make sure that the initial assignments are as close as possi-
ble to the preferred assignments.

3.7.2.3.5 Role of the Ordered Service Units List in Assignments and Instantiations

The ordered list of service units will be used for the following purposes:
• To decide when to instantiate a service unit from the list: If, at a given time, the

number of instantiated service units is less than the preferred number of in-serv-
ice service units specified in the configuration, the non-instantiated service units
with highest ranks in the service unit list will be instantiated until both numbers
are equal. If the preferred number of in-service service units cannot be instanti-
ated due to a shortage of instantiable service units, then the service group will be
only partially supported.

• To select which of the instantiated service units will have active and standby
assignments: When there is no active or standby assignments for a service
group and several service units are instantiated at the same time (for example
during the cluster startup or when multiple nodes join the cluster at the same
time), then, for each SI, the Availability Management Framework will assign the
service unit with highest rank in the list the active HA state for this SI and the sec-
ond highest ranked service unit the standby HA state for this SI.

3.7.2.4 Examples

In the following example, it is assumed that the number of preferred in-service service
units is set to 2.
76 SAI-AIS-AMF-B.02.01 Section 3.7.2.3.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
Figure 7 Example of 2N Redundancy Model: Two Service Units on Different Nodes

After a fault that disables Node U, Service Unit S2 on Node V will be assigned to be
active for Service Instance A, as shown in Figure 8 on page 78.

Service Unit S2

C3

C4

Node U

Service Unit S1

C2

Node V
Service Group

Protection Group A1

Protection Group A2

CSI A1

CSI A2
Service

Instance A

active standby

C1
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.2.4 77

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Figure 8 Example of 2N Redundancy Model. Two Service Units on Different Nodes Where a Fault Has Occurred

The two service units may even reside on the same node, as shown in Figure 9 on
page 79, which allows one to implement software redundancy with two instances of
the application running on the same node.

Node U Node V

Service Unit S2

C3

C4

Service Group

CSI A1

CSI A2
Service

Instance A

active

Node
Failure

Protection Group A1

Protection Group A2
78 SAI-AIS-AMF-B.02.01 Section 3.7.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
Figure 9 Example of 2N Redundancy Model: Two Service Units on the Same Node

As shown in Figure 10 on page 80, after a fault that disables component C1 within
service unit S1, service unit S2 is assigned to be active for service instance A. Note
that a fault affecting any component within a service unit that cannot be recovered by
restarting the affected component, causes the entire service unit and all components
within the service unit to be withdrawn from service. In this example, even though
component C2 is still fully operational, it must fail-over to component C4.

Node U

Service Unit S1

C1

C2

Service Unit S2

C3

C4

Service Group

Protection Group A1

Protection Group A2

CSI A1

CSI A2
Service

Instance A

active standby
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.2.4 79

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Figure 10 Example of 2N Redundancy Model: Two Service Units on the Same Node, Where a Fault Has Occurred

As shown in the next figure, the 2N service group redundancy model can support
N+1 strategies at the node level, as shown below. Node X supports standby service
units for several service groups. If one of the other nodes fails, the corresponding ser-
vice unit on Node X, and its components, will be reassigned to be active for the ser-
vice instance supported by the failed node. Note that Node X must support multiple
service units, and might require additional resources like memory.

Node U

Service Unit S1

C1

C2

Service Unit S2

C3

C4

Service Group

Protection Group A1

Protection Group A2

CSI A1

CSI A2
Service

Instance A

active

C1 Fails
80 SAI-AIS-AMF-B.02.01 Section 3.7.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
Figure 11 Example of 2N Redundancy Model, Where a Single Node Provides Standby Service Units for Several
Service Groups

Node WNode U

Service Unit S1

C1

C2

Node V Node X

Service Unit S2

C3

C4

CSI A1

CSI A2
Service

Instance A

CSI B1

CSI B2
Service

Instance B

CSI C1

CSI C2
Service

Instance C

Service Group SG1

PG A1

PG A2

active

Service Unit S3

C5

C6

Service Unit S4

C7

C8

Service Group SG2

PG B1

PG B2

Service Unit S5

C9

C10

Service Unit S6

C11

C12

Service Group SG3

PG C1

PG C2

active active

standby standby standby
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.2.4 81

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
As Figure 12 illustrates, the 2N redundancy model can also support strategies in
which all nodes host some service units that are active for their service instances,
and other service units that are standby for their service instances.

Figure 12 Example of 2N Redundancy Model, Where Nodes Support Some Service Units That Are Active for Their
Service Instances and Other Service Units That Are Standby for Their Service Instances

Node WNode U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

CSI A1

CSI A2
Service

Instance A

CSI B1

CSI B2
Service

Instance B

CSI C1

CSI C2
Service

Instance C

Service Group SG1

PG A1

PG A2

active

Service Unit S3

C5

C6

Service Unit S4

C7

C8

Service Group SG2

PG B1

PG B2

Service Unit S6

C11

C12

Service Unit S5
C9

C10

Service Group SG3

PG C1

PG C2

active active

standby standby
standby
82 SAI-AIS-AMF-B.02.01 Section 3.7.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
3.7.2.5 UML Diagram of the 2N Redundancy Model

The 2N redundancy model is represented by the UML diagram shown in the following
figure.

Figure 13 UML Diagram for 2N Redundancy Model

3.7.3 N+M Redundancy Model

3.7.3.1 Basics

In the N+M redundancy model, the service group has N+M service units.

This redundancy model has the following characteristics:
• A service unit can be

(i) active for all SIs assigned to it or
(ii) standby for all SIs assigned to it.
In other words, a service unit cannot be active for some SIs and standby for
some other SIs at the same time.

• At any given time, there can be several in-service service units instantiated for a
service group: Some service units are active for some SIs, some service units
are standby for some SIs, and possibly some other service units are considered
spare service units for the service group. For simplicity of the discussion, the
service units having the active HA state for all SIs assigned to them are denoted
as "active service units", and the service units having the standby HA state for all
SIs assigned to them are denoted as "standby service units".

• The number of active service units, the number of standby service units and
number of spare service units of a service group are dynamic and can change

1
1.*

0..1 0..1

0..* 0..*

Service Unit

0..1
0..*

active standby A service unit can take all
active or all standby service
instance assignments at a time

2N Redundancy
Service Group

protects

Service Instance
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.2.5 83

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
during the life-span of the service group; however, the preferred number of these
service units can be configured, as discussed in Section 3.7.3.3 on page 86.

• For each SI and at any given time, there will be at most one active service unit
and at most one standby service unit.

• At any given time, the Availability Management Framework should make sure
that the per-SI redundancy level (one service unit assigned the active HA state
and a service unit on another node assigned the standby HA state for each SI) is
guaranteed, while requirements on the load constraints in each service unit and
the number of available spare service units (see Section 3.7.3.3) are fulfilled.

• As mentioned before, the objective should be to maintain the redundancy level
for all SIs (one service unit assigned the active HA state and another service unit
assigned the standby HA state for each SI); however, there may be cases when
this may not be feasible due to the shortage of available service units for the
service group. For example, if the number of in-service service units is not large
enough to support full redundancy levels for all SIs, then some of the SIs could
be supported in a degraded mode (e.g., no service unit assigned standby for this
SI). The service group deployer should be allowed to specify the order of impor-
tance of SIs, as discussed in Section 3.7.3.3.

Components implementing any of the capability models described in Section 3.6 on
page 68, except the 1_active _or_1_standby capability model, can participate in the
N+M redundancy model.

3.7.3.2 Examples

A common use of the N+M redundancy model is the N+1 redundancy model in which
a single service unit is assigned standby for N active service units, as shown in Fig-
ure 14 on page 85. The following diagram depicts a typical N+1 configuration. Note
that each of the components C7 and C8 of the standby service unit supports three
component service instances. Node X might require additional resources like memory
to accommodate additional component service instances.
84 SAI-AIS-AMF-B.02.01 Section 3.7.3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
Figure 14 Example of N+1 Redundancy Model

To illustrate what happens after a fail-over in the N+M model, assume that the service
unit S2 fails. As a consequence, service unit S4 should be assigned the active HA
state for SI B. Because, according to the redundancy model, S4 may not be assigned
active for some SIs and standby for other SIs at the same time, the standby HA state
for service instances A and C will be removed from S4. Note that this is also true if the
involved component capability models are x_active_and_y_standby.

In a more general N+M case, the M standby service units can be freely associated
with the N active service units. The following figure shows an example of the N+M
redundancy model with N=3 and M=2.

Node W

Service Unit S3

C5

C6

Node U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

Node X

Service Unit S4

C7

C8

CSI A1

CSI A2
Service

Instance A

CSI B1

CSI B2
Service

Instance B

CSI C1

CSI C2
Service

Instance C

PG A1

PG A2

PG B1

PG B2

PG C2

PG C1

active active active

standby standbystandby

Service Group
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.3.2 85

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Figure 15 Example of N+M Redundancy Model, Where N = 3 and M = 2

3.7.3.3 Configuration

• Ordered list of service units for a service group: This parameter is described
in Section 3.7.1.1.
Default value: no default (the order is implementation-dependent)

• Ordered list of SIs: For the general meaning of this parameter, refer to its defini-
tion in Section 3.7.1.1. The Availability Management Framework will use this
ranking to select some SIs to support either in non-redundant mode (i.e., there is
a service unit having the active HA state for each of these SIs, but no service unit
having the standby HA state for each of these SIs) or drop them completely, if the
Availability Management Framework encounters shortage of service units for the
full support of all SIs; however, it is important to note that the Availability Manage-
ment Framework should consider not only the ordering of the SIs but also their
dependencies in choosing some SIs to support partially or drop them. The Avail-
ability Management Framework should observe the following role assignment of
the SIs: The assignment goes in an order compatible with the dependencies. If

Node W

Service Unit S3

C5

C6

Node Y

Service Unit S5

C9

C10

Node U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

Node X

Service Unit S4

C7

C8

CSI A1

CSI A2
Service

Instance A

CSI B1

CSI B2
Service

Instance B

CSI C1

CSI C2
Service

Instance C

Service Group

PG A1

PG A2

PG B1

PG B2

PG C2

PG C1

active active active

standby standbystandby
86 SAI-AIS-AMF-B.02.01 Section 3.7.3.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
several SIs could be assigned at the same time with respect to that criterion, the
ordered list of SIs serves as a tie-breaker.
Default value: no default (the order is implementation-dependent)

• Preferred number of in-service service units at a given time: The Availability
Management Framework should make sure that this number of in-service service
units are always instantiated, if possible. If the service units list for a service
group includes at least two service units, then the preferred number of instanti-
ated service units should be at least two.
Default value: the number of configured service units for the service group.

• Preferred number of active service units: This parameter indicates the pre-
ferred number of active service units at any time. The Availability Management
Framework should try to guarantee that this number of active service units exist
for the service group, if the number of in-service service units is large enough.
Default value: no default value is specified. It is mandatory to set this number for
each service group.

• Preferred number of standby service units: This indicates the preferred
number of standby service units at any time. The Availability Management
Framework should guarantee that this number of standby service units exist for
the service group, if the number of in-service service units and the number of
service units associated with the service group are large enough.
Default value: no default value is specified. It is mandatory to set this number for
each service group.

• Maximum number of active SIs for each service unit: This indicates the maxi-
mum number of SIs that can be assigned to a service unit such that the service
unit has the active HA state for all these SIs. It is assumed that the load imposed
by each SI is the same. If this is not true for some service instances, then the
service deployer has to approximate.
Default value: no limit (A value of 0 is used to specify this)

• Maximum number of standby SIs for each service unit: This indicates the
maximum number of SIs that can be assigned to a service unit such that the
service unit has the standby HA state for all these SIs. It is assumed that the load
imposed by each SI is the same.
Default value: no limit (A value of 0 is used to specify this)

• Auto-adjust option: For the general explanation of this option, refer to Section
3.7.1.1 on page 71. Section 3.7.3.6 on page 96 shows an example for handling
the auto-adjust option in this redundancy model.
Default value: no auto-adjust
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.3.3 87

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
3.7.3.4 SI Assignments

In this section, the general direction in assigning SIs to in-service service units is dis-
cussed. Then, the assignment procedure will be illustrated using example configura-
tions.

If available service units for the service group allow it, the Availability Management
Framework will instantiate the preferred number of in-service service units for the ser-
vice group. Additionally, as many service units as the preferred number of active ser-
vice units will be assigned the active HA state for SIs, and as many service units as
the preferred number of standby service units will be assigned the standby HA state
for SIs, according to the configuration. Additionally, some of the service units will be
dedicated as spare.

It is assumed that the service group configuration has gone through a series of vali-
dations, so that when the preferred number of active (respectively standby) service
units are assigned the active (respectively the standby) HA state, there will be one
service unit assigned the active HA state and another one the standby HA state for
each SI of the service group, without violating the load limits expressed in Section
3.7.3.3.

In case of shortage of in-service service units, the Availability Management Frame-
work should use the ordered list of SIs in choosing which SIs have to be dropped or
supported in a non-redundant mode (i.e., there is a service unit having the active HA
state for each of these SIs, but no service unit having the standby HA state for each
of these SIs).

In the rest of this section, the SI assignment procedure is described. The following
example of a service group configuration will be used throughout this illustration:

• Ordered list of service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• Ordered list of SIs = {SI1, SI2, SI3, SI4, SI5, SI6}
• Preferred number of in-service service units = 7
• Preferred number of active service units = 3
• Preferred number of standby service units = 3
• Maximum number of active SIs for each service unit = 3
• Maximum number of standby SIs for each service unit = 4

Assignment I: Full Assignment with Spare Service Units

As an initial example, it is assumed that all service units of the preceding configura-
tion can be brought in-service. Then, the following can be a running configuration for
the service group.

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7}
88 SAI-AIS-AMF-B.02.01 Section 3.7.3.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• instantiable service units = {SU8}
• active service units = {SU1, SU2, SU3}
• standby service units = {SU4, SU5, SU6}
• spare service units = {SU7}

Then, the assignments look like:
• SIs assigned to SU1 as active = {SI1, SI2}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as standby = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby ={SI5, SI6}

The following points should be mentioned regarding the assignments:
(1) The selection of instantiated, active, and standby service units is based on the

ordered list of service units.
(2) The assignments of SIs to service units are based on the ordered list of SIs.
(3) Service units are not fully used to their capacities. Each active service unit could

handle one more SI. Similarly, each standby service unit can handle two more
SIs. This extra slack will be used in case less service units are available due to
unavailability of some nodes.

Note: This specification does not define the actual algorithm for SI assignments. A
few rules are provided to guide implementations as stated above. The exam-
ples provided are only illustrative and represents one possible assignment
scenario (by a particular implementation) based on the configuration specified
in page 88. Implementations should design their own assignment algorithms
by following the above rules".

The difficulty comes when there are not enough in-service service units to satisfy the
configuration requirements. The first goal is to try to keep all SIs in the redundant
mode (i.e., there is one service unit having the active HA state and another service
unit having the standby HA state for each of those SIs) even at the expense of impos-
ing maximum load on each service unit. If this goal is not attainable, then the next
goal is to keep as many SIs as possible in a redundant mode, while all SIs are
assigned active in one of the service units. This may lead to a reduction in the num-
ber of standby service units. Finally, if this objective is also not attainable, then there
are no choices, but to drop some of the SIs completely. This means reducing further
the number of active service units.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.3.4 89

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
The following subsections sketch the procedure for assigning service units and SIs in
situations of shortage of in-service service units.

3.7.3.4.1 Reduction Procedure

The following procedure is for assigning SIs to in-service service units and for sup-
porting the N+M service group if not enough service units are available.

If the number of in-service service units is not large enough to support the preferred
number of active, standby, and spare service units, as defined in the configuration,
the following procedure is used to maintain an acceptable level of support for the ser-
vice group.

Step 1: Reduction of the Number of Spare Service Units

If the number of instantiated service units does not allow enough spare service units,
the service group should be maintained with less spare service units than the desired
number. The number of the spare service units is reduced until:

(1.a) The Availability Management Framework succeeds in allocating the preferred
number of active and standby service units. In this case, the assignment procedure is
completed.

 OR

(1.b) After dropping all spare service units, the Availability Management Framework
does not succeed in allocating the preferred number of active and standby service
units. In this case, the assignment procedure continues to the next step ((2.a) or
(2.b)).

The following example illustrates case (1.a).

Assignment II: Full Assignment with Spare Reduction

Let us assume that the state of the cluster is as follows:
• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6}
• instantiable service units = {}
• active service units = {SU1, SU2, SU3}
• standby service units = {SU4, SU5, SU6}
• spare service units = {}

Based on the preceding configuration, SI assignments, with every SI being in the
redundant mode, can be:
90 SAI-AIS-AMF-B.02.01 Section 3.7.3.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• SIs assigned to SU1 as active = {SI1, SI2}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as standby = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6}

Step 2: Reduction of the Number of Standby Service Units

If the preferred number of active and standby service units cannot be supported due
to shortage of in-service service units, the Availability Management Framework is
forced to use fewer standby service units than the preferred number expressed in the
configuration. As the number of standby service units gets smaller, the number of SIs
assigned to each standby service units increases. The Availability Management
Framework needs to guarantee that the load does not exceed the service units
capacity expressed in the configuration.

The number of standby service units is reduced, until:

(2.a) The preferred number of active service units are available, and, for each SI,
there is a service unit having been assigned the standby HA state without violating
the capacity levels of the service units. In this case, the assignment procedure is
completed.

 OR

 (2.b) All standby service units have been loaded to their maximum capacity but there
are still some SIs without standby assignments. In this case, the assignment proce-
dure continues to the next step ((3.a) or (3.b)).

The following example illustrates case (2.a).

Assignment III: Full Assignment With Reduction of Standby Service Units

Let us assume that the state of the cluster is such that the only service units that can
be brought in-service are SU1, SU2, SU3, SU4, and SU5.

These instantiated service units take the following responsibilities:
• in-service service units = {SU1, SU2, SU3, SU4, SU5}
• active service units = {SU1, SU2, SU3}
• standby service units = {SU4, SU5}
• spare service units = {}

Based on the preceding configuration, SI assignments, with every SI being in the
redundant mode, can be:
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.3.4.1 91

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• SIs assigned to SU1 as active = {SI1, SI2}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as standby = {SI1, SI2, SI3}
• SIs assigned to SU5 as standby = {SI4, SI5, SI6}

Step 3: Reduction of the Number of Active Service Units

If even after loading standby service units to their full capacity, there are still not
enough in-service service units to keep the preferred number of active service units,
the Availability Management Framework tries to reduce the number of active service
units by loading active service units to their full capacity. In this step, the number of
active service units should be reduced until:

(3.a) For each SI, there is an active assignment without violating the capacity levels
of active service units. In this case, the assignment procedure is completed.

 OR

 (3.b) All active service units have been loaded to their maximum capacity but there
are still some SIs without active or standby assignments. In this case, the assignment
procedure should continue to the next step ((4.a) or (4.b)).

The following example illustrates case (3.a).

Assignment IV: Full Assignment with Reduction of Active Service Units

Let us assume that the state of the cluster is such that the only service units that can
be brought in-service are SU1, SU2, SU3, and SU4.

These instantiated service units take the following responsibilities:
• in-service service units = {SU1, SU2, SU3, SU4}
• active service units = {SU1, SU2}
• standby service units = {SU3, SU4}
• spare service units = {}

Based on the preceding configuration, the SI assignments can be:
• SIs assigned to SU1 as active = {SI1, SI2, SI3}
• SIs assigned to SU2 as active = {SI4, SI5, SI6}
• SIs assigned to SU3 as standby = {SI1, SI2, SI3}
• SIs assigned to SU4 as standby = {SI4, SI5, SI6}
92 SAI-AIS-AMF-B.02.01 Section 3.7.3.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
Note that in the preceding assignments, all SIs are still supported in the redundant
mode.

Step 4: Reduction of the Standby Assignments for some SIs

At this step of the assignment procedure, the number of instantiated service units are
not enough to guarantee redundant assignments for all SIs; therefore, the Availability
Management Framework is forced to drop the standby assignment of some SIs. The
Availability Management Framework will use the ordered SI list to decide for which
SIs standby assignments should be dropped. The standby assignments for some SIs
will be dropped until:

(4.a) For each SI, there is a service unit with the active HA state for this SI. In this
case, the assignment procedure is completed.

 OR

 (4.b) The number of the in-service service units is so small that the Availability Man-
agement Framework cannot assign the active HA state to them for all SIs. In this
case, the reduction procedure continues to the next step (5).

The following example illustrates case (4.a).

Assignment V: Partial Assignment with Reduction of Standby Assignments

Let us assume that the state of the cluster is such that only the service units SU1,
SU2, and SU3 can be brought in-service.

The instantiated service units take the following responsibilities:
• in-service service units = {SU1, SU2, SU3}
• active service units = {SU1, SU2}
• standby service units = {SU3}
• spare service units = {}

Based on the preceding configuration, the SI assignments can be:
• SIs assigned to SU1 as active = {SI1, SI2, SI3}
• SIs assigned to SU2 as active = {SI4, SI5, SI6}
• SIs assigned to SU3 as standby = {SI1, SI2, SI3, SI4}

Note that, in this assignment, SI5 and SI6 are supported only in a non-redundant
mode (i.e., there is a service unit having the active HA state for each of these SIs, but
no service unit having the standby HA state for each of these SIs).
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.3.4.1 93

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Step 5: Reduction of the Active Assignments for some SIs

At this stage of the reduction procedure, the number of instantiated service units is so
small that the Availability Management Framework cannot guarantee that there are
service units being assigned active for all SIs. Therefore, some of the SIs should be
dropped. As stated earlier, the ordered list of SIs should be used to decide which SIs
should be dropped. This last step continues until a subset of the SIs are supported in
a non-redundant mode (that is., there is a service unit having the active HA state for
each of these SIs, but no service unit having the standby HA state for each of these
SIs).

The following example illustrate the last step of the reduction procedure.

Assignment VI: Partial Assignment with SIs Drop-Outs

Let us assume that the state of the cluster is such that SU1 is the only service unit
that can be brought in-service.

The instantiated service units take the following responsibilities:
• in-service service units = {SU1}
• active service units = {SU1}
• standby service units = {}
• spare service units = {}

Based on the preceding configuration, the SI assignments can be:
• SIs assigned to SU1 as active = {SI1, SI2, SI3}

Note that in the preceding example, SI4, SI5, and SI6 are completely dropped.

3.7.3.5 Examples for Service Unit Fail-Over

The Availability Management Framework reactions to failures such as node failures
are implementation-dependent and are out of the scope of the specification; however,
the Availability Management Framework should handle failures in a way that the
availability of all SIs supported by service groups are guaranteed, if possible. The fol-
lowing examples should be considered as illustrations of high-level requirements on
the Availability Management Framework failure handling and should not be seen as
the only way of failure handling.

3.7.3.5.1 Handling of a Node Failure when Spare Service Units Exist

Let us assume that the cluster configuration was as follows, before the node hosting
SU1 failed:

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
94 SAI-AIS-AMF-B.02.01 Section 3.7.3.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• active service units = {SU1, SU2, SU3}
• standby service units = {SU4, SU5, SU6}
• spare service units = {SU7}
• SIs assigned to SU1 as active = {SI1, SI2}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as standby = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6}

When the node hosting SU1 fails, SI1 and SI2 lose their active assignments; there-
fore, the Availability Management Framework must react in attempting to restore the
active assignments for SI1 and SI2. This is the immediate reaction of the Availability
Management Framework to the failure. Additionally, the Availability Management
Framework should use the spare service unit to restore the standby assignment for
SI1 and SI2 as well. After the recovery, the assignment should look like the following:

• in-service service units = {SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• active service units = {SU2, SU3, SU4}
• standby service units = {SU5, SU6, SU7}
• spare service units = {}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as active = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6}
• SIs assigned to SU7 as standby = {SI1, SI2}

3.7.3.5.2 Handling of a Node Failure when no Spare Service Units Exist

The following example illustrates how the Availability Management Framework
should utilize the available capacity of service units to retain the redundant mode of
SIs when a node hosting some service units fails.

Let us assume the following is the cluster configuration before the failure of the node
hosting SU2:
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.3.5.2 95

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• in-service service units = {SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• active service units = {SU2, SU3, SU4}
• standby service units = {SU5, SU6, SU7}
• spare service units = {}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as active = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6}
• SIs assigned to SU7 as standby = {SI1, SI2}

When the node hosting SU2 fails, SI3 and SI4 lose their active assignments; there-
fore, the immediate action for the Availability Management Framework is to restore
the active assignments of SI3 and SI4. Additionally, the standby assignments of these
SIs should also be restored. There can be a couple of different ways of restoring the
standby assignments for SI3 and SI4. It depends on the Availability Management
Framework implementation how to achieve this without violating the configuration
parameters (such as the number of active/standby SIs assigned to a service unit).
One way of restoring the standby assignments for SI3 and SI4 is the following one.

• in-service service units = {SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• active service units = {SU3, SU4, SU5}
• standby service units = {SU6, SU7}
• spare service units = {}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as active = {SI1, SI2}
• SIs assigned to SU5 as active = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6, SI4}
• SIs assigned to SU7 as standby = {SI1, SI2, SI3}

3.7.3.6 An Example of Auto-adjust

The auto-adjust option indicates that it is required that the current (running) configura-
tion of the service group returns to the preferred configuration such that the service
96 SAI-AIS-AMF-B.02.01 Section 3.7.3.6 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
units with the highest ranks are active and the highest ranked SIs are assigned in
redundant mode (i.e., there is a service unit having the active HA state for each of
these SIs and another service unit having the standby HA state for each of these SIs).
It is up to the Availability Management Framework implementation to decide when
and how the auto-adjust will be initiated. The following example is given for illustration
purposes. Let us assume that the following is the configuration of the service group.

• in-service service units = {SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• active service units = {SU2, SU3, SU4}
• standby service units = {SU5, SU6, SU7}
• spare service units = {}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as active = {SI1, SI2}
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6}
• SIs assigned to SU7 as standby = {SI1, SI2}

Now, assume that the node hosting SU1 joins the cluster. As a result, SU1 becomes
instantiable. Because SU1 has the highest rank in the ordered list of service units, the
preceding configuration is no longer a preferred one. When the auto-adjust is initiated
(in a implementation-dependent way), the service group configuration should look like
as follows, after the completion of the auto-adjust procedure (assuming that SU1
could be brought in-service):

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• active service units = {SU1, SU2, SU3}
• standby service units = {SU4, SU5, SU6}
• spare service units = {SU7}

The assignments look like:
• SIs assigned to SU1 as active = {SI1, SI2}
• SIs assigned to SU2 as active = {SI3, SI4}
• SIs assigned to SU3 as active = {SI5, SI6}
• SIs assigned to SU4 as standby = {SI1, SI2}
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.3.6 97

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• SIs assigned to SU5 as standby = {SI3, SI4}
• SIs assigned to SU6 as standby = {SI5, SI6}

Note that the Availability Management Framework may undergo a series of SI reloca-
tions to go from the configuration before the auto-adjust to the preceding configura-
tion.

3.7.3.7 UML Diagram of the N+M Redundancy Model

The N+M redundancy model is represented by the UML diagram shown in the follow-
ing figure.

Figure 16 UML Diagram of the N+M Redundancy Model

3.7.4 N-Way Redundancy Model

3.7.4.1 Basics

In the N-way redundancy model, a service group contains N service units that pro-
tect multiple service instances.

This redundancy model has the following characteristics:
• In a service group with the N-way redundancy model, a service unit can simulta-

neously be assigned
(i) the active HA state for some SIs and
(ii) the standby HA state for some other SIs.

• At most one service unit may have the active HA state for an SI, and zero, one or
multiple service units may have the standby HA state for the same SI.

1
1..*

0..1 0..1

0..M1 0..M2

Service Unit

0..1
0..*

active standby

N service units can have
only active and M service units
can have only standby service
instance assignments at a timeN + M Redundancy

Service Group

protects

Service Instance
M1 and M2 can be
configured
98 SAI-AIS-AMF-B.02.01 Section 3.7.3.7 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• The preferred number of standby assignments for an SI is an SI-level configura-
tion parameter. The preferred number of standby assignments may differ for
each SI.

• At any given time, there can be several service units in-service for a service
group: Some have SI assignments and possibly some others are considered
spare service units for the service group. The number of assigned service units,
and the number of spare service units are dynamic and can change during the
life-span of the service group; however, the preferred number of these service
units can be configured, as will be discussed in Section 3.7.4.3.

• If resources allow and at any given time, the Availability Management Framework
should make sure that the redundancy level is guaranteed for each SI (one serv-
ice unit assigned active and as many service units as the preferred number of
standby assignments assigned standby), while the load constraints in each serv-
ice unit and the number of spare service units are fulfilled.

• Each SI has an ordered list of service units the SI can be assigned to. For sim-
plicity of the model and its implementation, it is assumed that all service units in a
service group are identical. That means that any SI can be assigned to any serv-
ice unit. Therefore, the ordered list of service units per SI must include all the
service units configured for the service group. In other words, a partial list of
service units is an invalid configuration. If the number of in-service service units
allows it, the Availability Management Framework should make sure that the
highest ranked in-service service units be assigned active for each service
instance, and, according to the preferred number of standby assignments, the
higher ranked amongst in-service service units be assigned standby for that
service instance.

Only components implementing the x_active_and_y_standby component capability
model can participate in the N-way redundancy model.

3.7.4.2 Example

Figure 17 next shows an example of the N-way redundancy model. Note that each
component has the active HA state for one component service instance and the
standby HA state for the other two component service instances.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.4.2 99

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Figure 17 Example of N-Way Redundancy Model

3.7.4.3 Configuration

• Ordered list of service units for a service group: This parameter is described
in Section 3.7.1.1.
Default value: no default (the order is implementation-dependent)

• Ordered list of SIs: For the general meaning of this parameter, refer to its defini-
tion in Section 3.7.1.1. The Availability Management Framework will use this
ranking to choose SIs to support either in non-redundant mode (i.e., there is a
service unit having the active HA state for each of these SIs, but no service unit
having the standby HA state for each of these SIs) or drop them completely, if the
set of instantiated service units does not allow full support of all SIs.
Default value: no default (the order is implementation dependent)

• Ranked service unit list per SI: Each SI has an ordered list of service units the
SI can be assigned to. The Availability Management Framework should make
sure that the highest ranked available service unit be assigned active for the SI,
and the remaining available high ranked service units be assigned standby for

Node W

Service Unit S3

C5

C6

Node U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

CSI X1

CSI X2
Service

Instance X

CSI Y1

CSI Y2
Service

Instance Y

CSI Z1

CSI Z2
Service

Instance Z

PG X1
PG Y1

PG X2

active
active active

standby

standby

standby

Service Group

standby

standbystandby

PG Z2

PG Y2

PG X2

PG Y1 PG X1

PG Z1

PG Z2

PG Y2

PG Z1
100 SAI-AIS-AMF-B.02.01 Section 3.7.4.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
the SI, if possible; that is, the second highest ranked service unit is assigned the
first ranked standby, the third highest ranked service unit is assigned the second
ranked standby, and so on.
Default value: the ordered service units list defined for the service group.

• Preferred number of standby assignments per SI: This indicates the preferred
number of service units that are assigned the standby HA state for this SI.
Default value: 1

• Preferred number of in-service service units at a given time: The Availability
Management Framework should make sure that this number of in-service service
units are always instantiated, if possible. If the service units list for a service
group includes at least two service units, then the preferred number of in-service
service units should be at least two.
Default value: the number of the service units configured for the service group.

• Preferred number of assigned service units: This indicates the preferred
number of assigned service units at any time. As to be discussed in Section
3.7.4.4 on page 101, the Availability Management Framework should try to guar-
antee that this number of assigned service units exist for the service group, if the
number of instantiated service units is large enough.
Default value: the preferred number of in-service service units.

• Maximum number of active SIs for each service unit: This indicates the maxi-
mum number of SIs that can be concurrently assigned to a service unit such that
the service unit has the active HA state for all these SIs. It is assumed that the
load imposed by each SI is the same.
Default value: no limit (A value of 0 is used to specify this)

• Maximum number of standby SIs for each service unit: This indicates the
maximum number of standby SIs that can be concurrently assigned to a service
unit such that the service unit has the standby HA state for all these SIs. It is
assumed that the load imposed by each SI is the same.
Default value: no limit (A value of 0 is used to specify this)

• Auto-adjust option: For the general explanation of this option, refer to Section
3.7.1.1 on page 71. Section 3.7.4.6 on page 106 shows an example for handling
the auto-adjust option in this redundancy model.
Default value: no auto-adjust

3.7.4.4 SI Assignments

In this section, the general direction in assigning SIs to service units is discussed.
Then, a few examples will be given for illustration. If available service units in the
cluster allow it, the Availability Management Framework will instantiate the preferred
number of in-service service units for the service group. Moreover, the preferred num-
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.4.4 101

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
ber of assigned service units will be used for SI assignments. The remaining in-serv-
ice service units, if any, will be spare.

It is assumed that the service group configuration has gone through a series of vali-
dations, so that when as many service units as the preferred number of assigned ser-
vice units have been assigned, for each configured SI in the service group there is a
service unit assigned active for this SI and the preferred number of standby assign-
ments is ensured, without violating the limits expressed in Section 3.7.4.3.

The following example of a service group configuration will be used throughout this
section:

• Ordered list of service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• Ordered list of SIs = {SI1, SI2, SI3, SI4, SI5, SI6}
• Ranked service units for SI1 = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• Preferred number of standby assignments for SI1 = 5
• Ranked service units for SI2 = {SU2, SU3, SU4, SU5, SU6, SU7, SU8, SU1}
• Preferred number of standby assignments for SI2 = 5
• Ranked service units for SI3 = {SU3, SU4, SU5, SU6, SU7, SU8, SU1, SU2}
• Preferred number of standby assignments for SI3 = 5
• Ranked service units for SI4 = {SU4, SU5, SU6, SU7, SU8, SU1, SU2, SU3}
• Preferred number of standby assignments for SI4 = 5
• Ranked service units for SI5 = {SU5, SU6, SU7, SU8, SU1, SU2, SU3, SU4}
• Preferred number of standby assignments for SI5 = 5
• Ranked service units for SI6 = {SU6, SU7, SU8, SU1, SU2, SU3, SU4, SU5}
• Preferred number of standby assignments for SI6 = 5
• Preferred number of in-service service units = 8
• Preferred number of assigned service units = 7
• Maximum number of active SIs for each service unit = 4
• Maximum number of standby SIs for each service unit = 5

Assignment I: Full Assignment with Spare Service Units

Let us assume that under the current state of the cluster, all service units can be
brought in-service. Then, a running configuration for the service group can be as fol-
lows:

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
102 SAI-AIS-AMF-B.02.01 Section 3.7.4.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7}
• spare service units = {SU8}

Then, the assignments look like:
• SI1's assignments = {active: SU1; standby: SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {active: SU2; standby: SU3, SU4, SU5, SU6, SU7}
• SI3's assignments = {active: SU3; standby: SU4, SU5, SU6, SU7, SU1}
• SI4's assignments = {active: SU4; standby: SU5, SU6, SU7, SU1, SU2}
• SI5's assignments = {active: SU5; standby: SU6, SU7, SU1, SU2, SU3}
• SI6's assignments = {active: SU6; standby: SU7, SU1, SU2, SU3, SU4}

The following points should be mentioned regarding the preceding assignments:
(1) The selection of instantiated service units is based on the ordered list of service

units.
(2) The assignments of SIs to service units is based on the ordered list of service

units for each SI.

3.7.4.4.1 Reduction Procedure

The difficulty comes when there are not enough in-service service units to satisfy the
configuration requirements listed in the example. The first goal is to try to keep all SIs
in the desired redundant mode (i.e., there is one service unit assigned active for each
of these SIs and the preferred number of standby assignments is ensured), even at
the expense of imposing maximum load on each service unit. If this goal is not attain-
able, the next goal is to make sure that as many SIs as possible have active assign-
ments. This may mean reduction in the number of standby service units. The
reduction is done for less important SIs first. Finally, if this objective is also not attain-
able, there is no choices but drop some of the SIs completely.

Because the reduction algorithm is simple and somehow similar to the reduction pro-
cedure discussed in the N+M case, the reduction procedure is not discussed, and
only examples are given.

Assignment II: Full Assignment with Spare Reduction

Let us assume that, initially, the service units that can be brought in-service are SU1,
SU2, SU3, SU4, SU5, SU6, and SU7. Then, the following can be a running configura-
tion for the service group.

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7}
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.4.4.1 103

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• spare service units = {}

Then, the assignments look like:
• SI1's assignments = {active: SU1; standby: SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {active: SU2; standby: SU3, SU4, SU5, SU6, SU7}
• SI3's assignments = {active: SU3; standby: SU4, SU5, SU6, SU7, SU1}
• SI4's assignments = {active: SU4; standby: SU5, SU6, SU7, SU1, SU2}
• SI5's assignments = {active: SU5; standby: SU6, SU7, SU1, SU2, SU3}
• SI6's assignments = {active: SU6; standby: SU7, SU1, SU2, SU3, SU4}

Assignment III: Full Assignment with Reduction of Assigned Service Units

Let us assume that the state of the cluster is, initially, such that only SU1, SU2, SU3,
SU4, SU5, SU6 can be brought in-service. Then, the state of the service units is:

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6}
• spare service units = {}

Then, the assignments look like:
• SI1's assignments = {active: SU1; standby: SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {active: SU2; standby: SU3, SU4, SU5, SU6, SU1}
• SI3's assignments = {active: SU3; standby: SU4, SU5, SU6, SU1, SU2}
• SI4's assignments = {active: SU4; standby: SU5, SU6, SU1, SU2, SU3}
• SI5's assignments = {active: SU5; standby: SU6, SU1, SU2, SU3, SU4}
• SI6's assignments = {active: SU6; standby: SU1, SU2, SU3, SU4, SU5}

Assignment IV: Partial Assignment with Reduction of SIs Redundancy Level

Let us assume that the state of the cluster is such that only the following service units
can be brought in-service:

• in-service service units = {SU1, SU2, SU3}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {}

Then, the assignments look like:
• SI1's assignments = {active: SU1; standby: SU2, SU3}
• SI2's assignments = {active: SU2; standby: SU3, SU1}
104 SAI-AIS-AMF-B.02.01 Section 3.7.4.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• SI3's assignments = {active: SU3; standby: SU1, SU2}
• SI4's assignments = {active: SU1; standby: SU2, SU3}
• SI5's assignments = {active: SU1; standby: SU2, SU3}
• SI6's assignments = {active: SU2; standby: SU3, SU1}

Assignment V: Partial Assignment with SIs Drop-Outs

Let us assume that the state of the cluster is such that only SU1 can be brought in-
service. Then, the cluster status looks like:

• in-service service units = {SU1}
• instantiable service units = {}
• assigned service units = {SU1}
• spare service units = {}

• SI1's assignments = {active: SU1; standby: none}
• SI2's assignments = {active: SU1; standby: none}
• SI3's assignments = {active: SU1; standby: none}
• SI4's assignments = {active: none; standby: none}
• SI5's assignments = {active: none; standby: none}
• SI6's assignments = {active: none; standby: none}

3.7.4.5 Failure Handling

In this section, the fail-over action initiated by a node failure is described. Let us
assume that the node hosting SU3 fails. The assignments before the node hosting
SU3 failed and after the fail-over completion are as follows:

Assignments Before the Node Hosting SU3 Fails
• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6}
• spare service units = {}

• SI1's assignments = {active: SU1; standby: SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {active: SU2; standby: SU3, SU4, SU5, SU6, SU1}
• SI3's assignments = {active: SU3; standby: SU4, SU5, SU6, SU1, SU2}
• SI4's assignments = {active: SU4; standby: SU5, SU6, SU1, SU2, SU3}
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.4.5 105

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• SI5's assignments = {active: SU5; standby: SU6, SU1, SU2, SU3, SU4}
• SI6's assignments = {active: SU6; standby: SU1, SU2, SU3, SU4, SU5}

Assignments After Completion of the Fail-Over
• in-service service units = {SU1, SU2, SU4, SU5, SU6}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU4, SU5, SU6}
• spare service units = {}

• SI1's assignments = {active: SU1; standby: SU2, SU4, SU5, SU6}
• SI2's assignments = {active: SU2; standby: SU4, SU5, SU6, SU1}
• SI3's assignments = {active: SU4; standby: SU5, SU6, SU1, SU2}
• SI4's assignments = {active: SU4; standby: SU5, SU6, SU1, SU2}
• SI5's assignments = {active: SU5; standby: SU6, SU1, SU2, SU4}
• SI6's assignments = {active: SU6; standby: SU1, SU2, SU4, SU5}

When the node hosting SU3 fails, the Availability Management Framework makes
adjustments by removing assignments of the SIs from SU3. In this example, it is
assumed that the ordering of standby assignments is important. This means that the
Availability Management Framework has to inform the components of some service
units of the change in their active/standby HA states. For instance, in this example,
the Availability Management Framework should do the following for SI1:

• Ask the components of SU4 to go to standby-level 2 for SI1 (it was standby-level
3 before).

• Ask the components of SU5 to go to standby-level 3 for SI1 (it was standby-level
4 before).

• Ask the components of SU6 to go to standby-level 4 for SI1 (it was standby-level
5 before).

3.7.4.6 Auto-adjust Example

The auto-adjust option indicates that it is required that the current (running) configura-
tion of the service group returns to the preferred configuration in which the service
instance with highest ranks are active and the highest ranked SIs are assigned in
redundant mode. It is up to the Availability Management Framework implementation
to decide when and how the auto-adjust will be initiated. The following example is
given for illustration purposes.

Let us assume that the running configuration of the service group is as follows.
• in-service service units = {SU1, SU2, SU3}
106 SAI-AIS-AMF-B.02.01 Section 3.7.4.6 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {}

• SI1's assignments = {active: SU1; standby: SU2, SU3}
• SI2's assignments = {active: SU2; standby: SU3, SU1}
• SI3's assignments = {active: SU3; standby: SU1, SU2}
• SI4's assignments = {active: SU1; standby: SU2, SU3}
• SI5's assignments = {active: SU1; standby: SU2, SU3}
• SI6's assignments = {active: SU2; standby: SU3, SU1)

Now, assume that the node hosting SU4 joins the cluster. As result, SU4 becomes
instantiable. It is obvious that this configuration is not the preferred one. If the auto-
adjust is initiated (in an implementation-dependent way), and assuming that SU4
could be brought in-service, then, after completion of the auto-adjust procedure, the
service group configuration looks like:

• in-service service units = {SU1, SU2, SU3, SU4}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4}
• spare service units = {}

• SI1's assignments = {active: SU1; standby: SU2, SU3, SU4}
• SI2's assignments = {active: SU2; standby: SU3, SU4, SU1}
• SI3's assignments = {active: SU3; standby: SU4, SU1, SU2}
• SI4's assignments = {active: SU4; standby: SU1, SU2, SU3}
• SI5's assignments = {active: SU1; standby: SU2, SU3, SU4}
• SI6's assignments = {active: SU2; standby: SU3, SU4, SU1}

3.7.4.7 UML Diagram of the N-Way Redundancy Model

The N-way redundancy model is represented by the UML diagram shown in the fol-
lowing figure.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.4.7 107

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Figure 18 UML Diagram of N-Way Redundancy Model

3.7.5 N-Way Active Redundancy Model

3.7.5.1 Basics

In the N-way active redundancy model, the service group contains N service units.
The characteristics of this redundancy model are:

• Each service unit has to be active for all the SIs assigned to it.
• A service unit is never assigned the standby state for any SI.
• For each SI, there may be zero, one, or multiple service units assigned the active

HA state for that SI.
• Preferred number of active assignments for an SI is an SI-level configuration

parameter (see Section 3.7.5.3 on page 110). The preferred number of active
assignments may be different for each SI.

• At any given time, there can be several service units in-service for a service
group: Some have SIs assigned to them, and possibly some others are consid-
ered spare service units for the service group. The number of assigned service
units, and the number of spare service units are dynamic and can change during
the life-span of the service group; however, the preferred number of these ser-
vice units can be configured.

• At any given time, the Availability Management Framework should make sure
that the redundancy level (the preferred number of active assignments) for each
SI is guaranteed, if possible, while the maximum number of SIs assigned to each
service units is not exceeded.

1
1..*

0..1 0..*

0..M1 0..M2

Service Unit

0..1
0..*

active standby

A service unit can take
several active and several
standby service instance
assignments at a timeN-way Redundancy

Service Group

protects

Service Instance
M1 and M2 can be
configured
108 SAI-AIS-AMF-B.02.01 Section 3.7.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• Each SI has an ordered list of service units the SI can be assigned to.
The ordered list of service units per SI must include all the service units config-
ured for the service group. In other words, a partial list of service units is an
invalid configuration. If the number of instantiated Service units allows it, the
Availability Management Framework should make sure that the highest ranked
available service units are assigned active for the SI.

The simplest case for the N-way active redundancy model is the 2-way active redun-
dancy model in which the service group contains two service units that are both
assigned the active HA state for every service instance that they support. This is
sometimes referred to as an active-active redundancy configuration.

Components implementing any of the capability models described in Section 3.6 on
page 68 can participate in the N-way active redundancy model.

3.7.5.2 Example

Figure 19 next shows an example of the N-way active redundancy model. Note that
the HA state of each component for all component service instances assigned to it is
active.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.5.2 109

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Figure 19 Example of N-Way Active Redundancy Model

3.7.5.3 Configuration

• Ordered list of service units for a service group: This parameter is described
in Section 3.7.1.1.
Default value: no default (the order is implementation-dependent)

• Ordered list of SIs: For the general meaning of this parameter, refer to its defini-
tion in Section 3.7.1.1. The Availability Management Framework will use this
ranking to choose the SIs with less redundancy (i.e., there are less than the pre-
ferred number of service units having the active HA state for them) or drop them
completely, if the number of available service units are not enough for a full sup-
port of all SIs.
Default value: no default (the order is implementation-dependent).

• Ranked service unit list per SI: Each SI has an ordered list of service units the
SI can be assigned to. This list must be an ordered list consisting of all service
units configured for the service group. The Availability Management Framework
should make sure that the highest ranked available service unit be assigned

Node W

Service Unit S3

C5

C6

Node U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

CSI A1

CSI A2
Service

Instance A

CSI B1

CSI B2
Service

Instance B

CSI C1

CSI C2
Service

Instance C

PG A1

PG A2

PG B1

PG B2

PG C2

PG C1

active active activeactive
active

active

Service Group
110 SAI-AIS-AMF-B.02.01 Section 3.7.5.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
active for the SI, if possible.
Default value: the ordered service units list defined for the service group.

• Preferred number of active assignment per SI: This indicates the preferred
number of service units being assigned the active HA state for each SI.
Default value: the preferred number of assigned service units.

• Preferred number of in-service service units at a given time: The Availability
Management Framework should make sure that this number of service units are
always instantiated, if possible.
Default value: the number of the service units configured for the service group.

• Preferred number of assigned service units: This indicates the preferred
number of assigned service units at any time. As to be discussed later, the Avail-
ability Management Framework should try to guarantee that this number of
assigned service units exist for the service group, if the number of instantiated
service units is large enough.
Default value: the preferred number of in-service service units.

• Maximum number of active SIs for each service unit: This indicates the maxi-
mum number of SIs that can be concurrently assigned to a service unit such that
the service unit has the active HA state for all these SIs. It is assumed that the
load imposed by each SI is the same.
Default value: no limit (A value of 0 is used to specify this.)

• Auto-adjust option: For the general explanation of this option, refer to Section
3.7.1.1 on page 71. Section 3.7.5.6 on page 119 shows an example for handling
the auto-adjust option in this redundancy model.
Default value: no auto-adjust

3.7.5.4 SI Assignments

First, the general direction in assigning SIs to service units is discussed. Then, a few
examples will be given for illustration. If the number of available service units in the
cluster allows it, the Availability Management Framework will instantiate the preferred
number of in-service service units for the service group. Additionally, the preferred
number of in-service service units will be assigned the active HA state for each SI.
The remaining instantiated service units will be spare, if the configuration allows. It is
assumed that the service group configuration has gone through a series of valida-
tions, so that when as many as the preferred number of assigned service units have
been assigned, all SIs configured for the service group are assignable such that each
SI will have the preferred number of active assignments without violating the limits
expressed in the configuration section.

The following example of a service group configuration will be used throughout this
section.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.5.4 111

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• Ordered list of service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8, SU9}
• Ordered list of SIs = {SI1, SI2, SI3, SI4, SI5, SI6}
• Ranked service units for SI1 = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8,

SU9}
• Preferred number of active assignments for SI1 = 6
• Ranked service units for SI2 = {SU2, SU3, SU4, SU5, SU6, SU7, SU8, SU9,

SU1}
• Preferred number of active assignments for SI2 = 6
• Ranked service units for SI3 = {SU3, SU4, SU5, SU6, SU7, SU8, SU9, SU1,

SU2}
• Preferred number of active assignments for SI3 = 6
• Ranked service units for SI4 = {SU4, SU5, SU6, SU7, SU8, SU9, SU1, SU2,

SU3}
• Preferred number of active assignments for SI4 = 6
• Ranked service units for SI5 = {SU5, SU6, SU7, SU8, SU9, SU1, SU2, SU3,

SU4}
• Preferred number of active assignments for SI5 = 6
• Ranked service units for SI6 = {SU6, SU7, SU8, SU9, SU1, SU2, SU3, SU4,

SU5}
• Preferred number of active assignments for SI6 = 6
• Preferred number of in-service service units = 9
• Preferred number of assigned service units = 8
• Maximum number of active SIs for each service unit = 5

Assignment I: Full Assignment with Spare

Let us assume that under the current state of the cluster, all service units can be
brought in-service. Then, the following can be a running configuration for the service
group.

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8, SU9}
• instantiable service units ={}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• spare service units = {SU9}

• Then, the assignments look like:
112 SAI-AIS-AMF-B.02.01 Section 3.7.5.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• SI1's assignments = {SU1, SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU3, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU3, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU3, SU4}

The following points should be mentioned regarding the preceding assignments:
(1) The selection of in-service service units is based on the ordered list of service

units.
(2) The assignments of SIs to service units are based on the ordered list of service

units for each SI.

3.7.5.4.1 Reduction Procedure

The difficulty comes when there are not enough in-service service units to satisfy the
requirements listed in the configuration. The first goal is to try to keep all SIs in the
preferred redundancy levels (i.e., with the preferred number of active assignments),
even at the expense of imposing maximum load on each service unit. If this goal is
not attainable, then the next goal is to keep as many important SIs as possible in the
preferred redundancy levels, without dropping any SIs completely. This may mean
reducing the number of assignments for some SIs. The reduction is done for less
important SIs first. Finally, if this objective is also not attainable, there is no choices
but to drop some of the SIs completely (starting first with least important service
units).

Because the reduction algorithm is simple and somehow similar to the reduction pro-
cedures discussed in the N+M and N-way cases, the reduction procedure is not dis-
cussed, and only examples are given.

Assignment II: Full Assignment with Spare Reduction

Let us assume that under the current state of the cluster, SU9 cannot be instantiated.
Then, the following can be a running configuration for the service group.

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

The assignments look like:
• SI1's assignments = {SU1, SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU3, SU4, SU5, SU6, SU7}
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.5.4.1 113

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• SI3's assignments = {SU3, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU3, SU4}

Assignment III: Full Assignment with Maximum Assignments per Service Unit

The reduction procedure should first attempt to keep full assignments (i.e., all SIs
being supported at their preferred number of active assignments) by loading the ser-
vice units as much as possible. This first step in the procedure can succeed only if the
following condition is fulfilled:

(Maximum number of assignments that can be supported by all in-service service
units)

 >=

 (Number of assignments needed for all SIs given the preferred number of active
assignments)

AND

(Number of in-service service units) >= (Maximum of all preferred number of assign-
ments for SIs).

This means that for the example configuration, full assignment is possible only if
more than seven service units are instantiated. In the previous example, full assign-
ment is not possible if one of the service units becomes unavailable.

Assignment IV: Partial Assignment with Reduction of SIs Redundancy Level

Let us assume that the state of the cluster is such that only SU1, SU2, and SU3 can
be instantiated:

• in-service service units = {SU1, SU2, SU3}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {}

Then, the assignments look like:
• SI1's assignments = {SU1, SU2, SU3}
• SI2's assignments = {SU2, SU3, SU1}
• SI3's assignments = {SU3, SU1, SU2}
• SI4's assignments = {SU1, SU2, SU3}
114 SAI-AIS-AMF-B.02.01 Section 3.7.5.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• SI5's assignments = {SU1, SU2}
• SI6's assignments = {SU3}

Note that the number of assignments for SIs is reduced to cope with the shortage of
in-service service units. The basic logic for assigning service units in SIs can be sum-
marized as follows.

The number of assignments that can be handled in this case is
number of in-service service units (i.e., 3) * maximum number of SIs for each service
unit (i.e., 5)].
This means that in this example all available in-service service units can handle 15 SI
assignments. This may force the Availability Management Framework to decide that
the four most important SIs (i.e., SI1, SI2, SI3, and SI4) will have three assignments,
SI5 two assignments, and SI6 one assignment, as shown above.

Assignment V: Partial Assignment with SIs Drop-Outs

Let us assume that the state of the cluster is such that only SU1 can be instantiated:
• in-service service units = {SU1}
• instantiable service units = {}
• assigned service units = {SU1}
• spare service units = {}

• SI1's assignments = {SU1}
• SI2's assignments = {SU1}
• SI3's assignments = {SU1}
• SI4's assignments = {SU1}
• SI5's assignments = {SU1}
• SI6's assignments = {}

Note that in this example, it was impossible to keep assignments for all SIs, so that
the least important SI, SI6, was dropped.

3.7.5.5 Failure Handling

The failure recovery is required to avoid one (or both) of the following undesirable sit-
uations after the occurrence of a failure:

(a) Some of the in-service service units have additional capacity to support more SIs,
while some SIs are not being supported with their preferred number of active assign-
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.5.5 115

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
ments. In this case, the Availability Management Framework should fill the slack
capacity by assigning more service units active for these SIs.

(b) Some less important SIs have more active assignments than those for some more
important SIs. In this case, the Availability Management Framework should rearrange
SI assignments such that more important SIs get assigned, if possible. This, of
course, may require removing some assignments of less important SIs.

The following subsection provides example for the cases (a) and (b):

3.7.5.5.1 Example for Failure Recovery

In this example, let us assume that the node hosting SU3 fails.

Assignments Before the Node Hosting SU3 Fails
• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

Then, the assignments look like:
• SI1's assignments = {SU1, SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU3, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU3, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU3, SU4}

Assignments After Failure of the Node Hosting SU3, and Before the Recovery
• in-service service units = {SU1, SU2, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

Then, the assignments look like:
• SI1's assignments = {SU1, SU2, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
116 SAI-AIS-AMF-B.02.01 Section 3.7.5.5.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU4}

In this case, the number of assignments for SIs look like:
• Number of current assignments for SI1 = 5
• Number of current assignments for SI2 = 5
• Number of current assignments for SI3 = 5
• Number of current assignments for SI4 = 6
• Number of current assignments for SI5 = 6
• Number of current assignments for SI6 = 5

The number of SIs assigned to service units is:
• Number of assignments on SU1 = 4
• Number of assignments on SU2 = 4
• Number of assignments on SU4 = 5
• Number of assignments on SU5 = 5
• Number of assignments on SU6 = 5
• Number of assignments on SU7 = 5
• Number of assignments on SU8 = 4

This is not “optimal” for the following two reasons:
(1) The less important SIs (i.e., SI4 and SI5) have higher levels of assignment than

more important SIs (i.e., SI1, SI2, and SI3).
(2) Some in-service service units (i.e., SU1, SU2, and SU8) have free capacity

while there are SIs that are not assigned to as many service units as the pre-
ferred number of assigned service units.

This requires failure recovery, discussed below.

Assignments After Completion of Failure Recovery

The failure recovery procedure is implementation-dependent, but the Availability
Management Framework implementation should have the ultimate goal of maximiz-
ing the number of active assignments for the most important SIs (obviously, this num-
ber may not be higher than the preferred number of active assignments per SI);
however, this may require complex reassignment algorithms; therefore, the specifica-
tion does not enforce this goal to the implementation. At the end of this subsection, a
more practical (but less ambitious) goal for failure recovery is given.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.5.5.1 117

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Because the overall capacity of the service units is 35 (7 SIs with 5 assignments
each), SI1 through SI5 should get full assignments and only SI6 should get partial
assignments. According to this objective, the following can be the post-recovery
assignments:

• in-service service units = {SU1, SU2, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

• SI1's assignments = {SU1, SU2, SU8, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU1, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU2, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU4}

This means the following additional assignments:
• SI1 assigned to SU8
• SI2 assigned to SU1
• SI3 assigned to SU2

These assignments guarantee that the most important SIs get the highest number of
assignments possible under the existing configuration limitations (hence, it is called
an optimal assignment).
As noted earlier, the failure recovery procedure is implementation-dependent. Thus,
some simpler implementations may not arrive at the above “optimal” solution. For
example, a simple implementation that does not aim at guaranteeing "highest possi-
ble assignments to the most important SIs", but attempts to adjust the assignments
partially (without service group level optimization), may end up with the following
post-recovery configuration:

• SI1's assignments = {SU1, SU2, SU7, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU1, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU2, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU8, SU1, SU2, SU4}
118 SAI-AIS-AMF-B.02.01 Section 3.7.5.5.1 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
In this example, each of the SIs affected by the service unit failure is assigned to
another service unit. For example, SI1 is assigned to SU7 as a replacement of its
assignment to SU3.

As mentioned at the beginning of this subsection, to make the Availability Manage-
ment Framework’s implementation simpler, the specification does not require the
optimal error recovery (as defined earlier in this section). It only requires that the error
recovery procedure achieves the following non-optimal goals:

(a) The more important SIs should get more assignments than less important SIs
after the completion of the recovery.

(b) The implementation should minimize the number of SI reassignments during the
recovery process.

(c) The free capacity of service units should be kept as small as possible.

3.7.5.6 Auto-adjust Example

As discussed earlier, the failure recovery should avoid undesirable situations (i.e.,
under-utilized service units and more important SIs not being assigned in higher num-
ber); however, the failure recovery may not consider the service units ordered list for
assigning SIs.

So, there may be cases in which the SIs are not arranged based on their service units
ordered lists. The fail-over procedure can be initiated to do one of the following rear-
rangements:

(1) Redistribute the SIs to service units evenly and based on the per-SI based
ordering such that the SIs are distributed among all assigned service units.

(2) Rearrange the assignment such that the order of the per-SI service units is hon-
ored.

The following example illustrates the auto-adjust procedure.

Assignments Before the Node hosting SU3 Joins
• in-service service units = {SU1, SU2, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

The assignments look like:
• SI1's assignments = {SU1, SU2, SU8, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU1, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU2, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.5.6 119

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU4}

Now, let us assume that the node hosting SU3 joins the cluster.

The following will be the service group configuration after the failure recovery.

Assignments After the Node Hosting SU3 Joins

Because only SI6 is not supported in full 6 active assignments, one thing the Availa-
bility Management Framework can do (at least) is to assign SU3 active for SI6.
Therefore, the following can be the assignments after the node hosting SU3 joins the
cluster:

• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

After the node hosting SU3 joins, the assignments look like:
• SI1's assignments = {SU1, SU2, SU8, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU1, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU2, SU4, SU5, SU6, SU7, SU8}
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU4, SU3}

If the administrator requests an auto-adjust, the assignments will look like after the
completion of the auto-adjust:

Assignments After Completion of the Auto-adjust Procedure
• in-service service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3, SU4, SU5, SU6, SU7, SU8}
• spare service units = {}

The assignments look like:
• SI1's assignments = {SU1, SU2, SU3, SU4, SU5, SU6}
• SI2's assignments = {SU2, SU3, SU4, SU5, SU6, SU7}
• SI3's assignments = {SU3, SU4, SU5, SU6, SU7, SU8}
120 SAI-AIS-AMF-B.02.01 Section 3.7.5.6 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• SI4's assignments = {SU4, SU5, SU6, SU7, SU8, SU1}
• SI5's assignments = {SU5, SU6, SU7, SU8, SU1, SU2}
• SI6's assignments = {SU7, SU8, SU1, SU2, SU3, SU4}

3.7.5.7 UML Diagram of the N-Way Active Redundancy Model

The N-way active redundancy model is represented by the UML diagram shown in
the following figure.

Figure 20 UML Diagram of N-Way Active Redundancy Model

3.7.6 No Redundancy Model

3.7.6.1 Basics

In the no redundancy model, the service group contains one or more service units.

This redundancy model is typically used with non-critical components, when the fail-
ure of a component does not cause any severe impact on the overall system.

This redundancy model has the following characteristics:
• A service unit is assigned the active HA state for at most one SI. In other words,

no service unit will have more than one SI assigned to it.
• A service unit is never assigned the standby HA state for an SI. The Availability

Management Framework can recover from a fault only by restarting a service
unit, or as an escalation, by restarting the node (see Section 7.1.1 on page 229)
containing the service unit.

• No two service units exist having the same SI assigned to them.

1
1..*

0..*

0..M1

Service Unit

0..1
0..*

active

A service unit can take
only active service instance
assignments at a time

N-way Active
Redundancy

Service Group
protects

Service Instance
M1 can be
configured
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.5.7 121

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• At any given time, there can be several in-service service units instantiated for a
service group: Some have SIs assigned to them, and possibly some others are
considered spare service units for the service group. The number of service units
that have SIs assigned to them, and the number of spare service units are
dynamic and can change during the life-span of the service group; however, the
preferred number of in-service service units can be configured.

• At any given time, the Availability Management Framework should ensure that
each SI is assigned to a service unit, if the number of in-service service units is
large enough.

• SIs are ordered based on their importance. This ordered list will be used for
assigning SIs to service units.

Note: To simplify the SI assignments and failure handling, it is assumed that all serv-
ice units in a service group are capable of providing all SIs defined in the configura-
tion.

Components implementing the x_active_and_y_standby, x_active_or_y_standby,
1_active_or_y_standby, 1_active_or_1_standby, x_active, 1_active, or non-pre-
instantiable capability models can participate in the no redundancy model.

3.7.6.2 Example

An example of the no redundancy model is shown in the following figure.
122 SAI-AIS-AMF-B.02.01 Section 3.7.6.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
Figure 21 Example of “No Redundancy” Redundancy Model

3.7.6.3 Configuration

• Ordered list of service units for a service group: This parameter is described
in Section 3.7.1.1.
Default value: no default (the order is implementation-dependent)

• Ordered list of SIs: For the general meaning of this parameter, refer to its defini-
tion in Section 3.7.1.1. The Availability Management Framework uses this rank-
ing to choose the SIs to drop from assignment, if there is shortage of service
units for a full support of all SIs.
Default value: no default (the order is implementation-dependent).

• Preferred number of in-service service units at a given time: The Availability
Management Framework should make sure that this number of in-service service
units are always instantiated, if possible.
Default value: the number of the service units configured for the service group.

Node W

Service Unit S3

C5

C6

Node U

Service Unit S1

C1

C2

Node V

Service Unit S2

C3

C4

CSI A1

CSI A2
Service

Instance A

CSI B1

CSI B2
Service

Instance B

CSI C1

CSI C2
Service

Instance C

active active active

Service Group
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.6.3 123

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
• Auto-adjust option: For the general explanation of this option, refer to Section
3.7.1.1 on page 71. Section 3.7.6.6 on page 126 shows an example for handling
the auto-adjust option in this redundancy model.
Default value: no auto-adjust

Note that the preferred number of assigned service units is equal to the number of
configured SIs plus one spare service unit.

3.7.6.4 SI Assignments

First, the general approach for assigning SIs to service units is discussed. Then, a
few examples will be given for illustration.

If the number of available service units in the cluster allows it, the Availability Man-
agement Framework will instantiate the preferred number of instantiated service units
for the service group. Then, some or all of these service units will be used for SI
assignments. The remaining instantiated service units will be spare. It is assumed
that the service group configuration has gone through a series of validations, so that
when the required number of service units are assigned, then each configured SI can
be assigned to a service unit.

The following example of a service group configuration will be used throughout this
section.

• Ordered list of service units = {SU1, SU2, SU3, SU4, SU5}
• Ordered list of SIs = {SI1, SI2, SI3}
• Preferred number of in-service service units = 4

Assignment I: Full Assignment with Spare

Let us assume that under the current state of the cluster, all service units can be
brought in-service. Then, the following can be a running configuration for the service
group.

• in-service service units = {SU1, SU2, SU3, SU4}
• instantiable service units = {SU5}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {SU4}

Then, the assignments looks like:
• SI1's assignment = {SU1}
• SI2's assignment = {SU2}
• SI3's assignment = {SU3}

The following points should be mentioned regarding these assignments:
124 SAI-AIS-AMF-B.02.01 Section 3.7.6.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
(1) The selection of in-service service units is based on the ordered list of service
units.

(2) The assignments of SIs to service units are based on the ordered list of service
units for each SI.

3.7.6.4.1 Reduction Procedure

The first goal of the assignment procedure is to try keeping all SIs assigned. If this
goal is not attainable, then the next goal is to keep as many important SIs as possible
assigned.

Assignment II: Full Assignment with Spare Reduction

Let us assume that under the current state of the cluster, SU4 and SU5 cannot be
instantiated. Then, the following can be a running configuration for the service group.

• in-service service units = {SU1, SU2, SU3}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {}

Then, the assignments looks like:
• SI1's assignment = {SU1}
• SI2's assignment = {SU2}
• SI3's assignment = {SU3}

Assignment III: Partial Assignment

If the number of instantiated service units is not large enough, some less important
SIs will be dropped. Let us assume that only SU1 and SU2 can be brought in-service
in this example.

• in-service service units = {SU1, SU2}
• instantiable service units = {}
• assigned service units = {SU1, SU2}
• spare service units = {}

Then, the assignments look like:
• SI1's assignment = {SU1}
• SI2's assignment = {SU2}
• SI3's assignment = {}
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.6.4.1 125

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
3.7.6.5 Failure Handling

The failure handling is rather simple. If a node hosting a service unit fails, the only fail-
over option is to select a spare service unit from the service group's spare service
units and assign the SI of the failed service unit to the selected spare service unit. If
there is no spare service unit available, the Availability Management Framework can-
not carry out any failure handling, and the SI that was being provided by the failed
service unit will not be supported until another service unit becomes available for the
service group.

The following example illustrates the fail-over action.

Assignments Before the Node Hosting SU3 Failed
• in-service service units = {SU1, SU2, SU3, SU4}
• instantiable service units = {SU5}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {SU4}

• SI1's assignments = {SU1}
• SI2's assignments = {SU2}
• SI3's assignments = {SU3}

Assignments After the Failure Recovery
• in-service service units = {SU1, SU2, SU4, SU5}
• instantiable service units = {}
• assigned service units = {SU1, SU2, SU4}
• spare service units = {SU5}

• SI1's assignments = {SU1}
• SI2's assignments = {SU2}
• SI3's assignments = {SU4}

3.7.6.6 Auto-adjust Example

The auto-adjust procedure does not achieve much in this redundancy model. It only
makes sure that the SIs are assigned to the most preferred in-service service units.
The following example illustrates the auto-adjust procedure.

Assignments Before the Auto-adjust Procedure
126 SAI-AIS-AMF-B.02.01 Section 3.7.6.5 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
After the node hosting SU3 joins the cluster (See previous example), the service units
and the assignments can be as follows:

• in-service service units = {SU1, SU2, SU4, SU5}
• instantiable service units = {SU3}
• assigned service units = {SU1, SU2, SU4}
• spare service units = {SU5}

• SI1's assignments = {SU1}
• SI2's assignments = {SU2}
• SI3's assignments = {SU4}

Because SU3 has a higher ranking for SI3 than SU4, if the auto-adjust option is
enabled for the service group when SU3 is brought in-service again, the assignments
will look like:

Assignments After the Auto-adjust Procedure
• in-service service units = {SU1, SU2, SU3, SU4}
• instantiable service units = {SU5}
• assigned service units = {SU1, SU2, SU3}
• spare service units = {SU4}

• SI1's assignments = {SU1}
• SI2's assignments = {SU2}
• SI3's assignments = {SU3}

Note that SU5 has been de-instantiated, because the number of preferred service
units is 4.

3.7.6.7 UML Diagram of the No Redundancy Model

The No Redundancy redundancy model is represented by the UML diagram shown in
the following figure.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.6.7 127

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
Figure 22 UML Diagram of “No Redundancy” Redundancy Model

3.7.7 The Effect of Administrative Operations on Service Instance Assignments

Usually, administrative operations such as lock or unlock of a service unit or a node
result in reassignments of SIs to service units. This section briefly discusses the
effects for the lock/unlock operations.

The cases for other administrative operations are similar. The detailed reaction of the
Availability Management Framework for each administrative operation depends on
the redundancy model; however, the basic directions are given here. The details are
left for the implementation.

3.7.7.1 Locking a Service Unit or a Node

Since the lock for instantiation does not effect the service instance assignment, this
subsection focusses on the lock operation only.

Depending on the status of the service unit, one of the following cases can happen
when locking a service unit:

(a) The service unit (say SU1) or one of its enclosing entities like the node, service
group, application or the cluster is being locked and the service unit has SI
assignments: In this case, the SIs supported by the service units will be reas-
signed to other service units in the service group. This reassignment depends
obviously on the redundancy model of the service group. Transferring SI assign-
ments from the service unit SU1 to other service units is very similar to the
recovery operation performed when a service units fails. Refer to the failure
handling section of the associated redundancy model for details. However, it is
important to note that an effective reassignment may require selecting one of

1
1..*

0..1

0..1

Service Unit

0..1
0..*

active

A service unit can take
only one active service instance
assignment at a time

No Redundancy
Service Group

protects

Service Instance
128 SAI-AIS-AMF-B.02.01 Section 3.7.7 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
the spare service units or instantiating a new service unit from the instantiable
set. Removing SI assignments will not trigger a termination of the service unit
and the operation discussed below in case (b) is undertaken when it enters the
out-of-service readiness state.

(b) The service unit (say SU1) or one of its enclosing entities like the node, service
group, application or the cluster is being locked and the service unit has no cur-
rent SI assignments, but it belongs to the set of in-service service units: When
the service unit SU1 becomes out-of-service, if the number of in-service service
units drops below the preferred number of in-service service units, one instantia-
ble service unit with none of its containing entities (service group, node, applica-
tion or cluster) in locked state will be selected to replace the service unit SU1.
This selection will be based on the service units and their ranks, as discussed in
Section 3.7.1. The service unit SU1 stays in the set of instantiated service unit.

(c) The service unit to be locked does not belong to the set of in-service service
units: No SI reassignment or service unit instantiation is performed.

3.7.7.2 Unlocking a Service Unit, a Service Group, or a Node

After unlocking a service unit, the following cases can occur:
(a) The service unit does not belong to the set of instantiable service units. Nothing

can be done in this case, and the service unit still remains out of the set of
instantiated service units.

(b) The service unit belongs to the set of instantiable service units, but it is not
instantiated. If the preferred number of in-service service units is not reached,
the service unit is instantiated. If the service unit can be brought in-service, the
operation described below in case (c) is undertaken.

(c) The service unit is in-service. Based on the configuration of the service group
(auto-adjust option and preferred number of assignments) and the current
assignments, some SIs may be assigned to the service unit.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.7.7.2 129

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
3.8 Component Capability Model and Service Group Redundancy Model
A component having a certain component capability model can only participate in a
certain set of service group redundancy models. This mapping between the compo-
nent capability models and the service group redundancy models is shown in Table
13.

A component with capability models x_active or 1_active is eligible for being used in
service groups with redundancy models 2N and N+M. The component may have the
active, quiescing or quiesced HA states but not the standby HA state for its CSIs.
Nevertheless, its service unit can be assigned the standby HA state for a service
instance. The Availability Management Framework does not attempt to assign the
standby HA state for a CSI to the component in this case.

3.9 Dependencies Among SIs, Component Service Instances, and
Components

3.9.1 Dependencies Among Service Instances and Component Service Instances

The Availability Management Framework defines two types of dependencies among
service instances (SI) and component service instances (CSI):

• SI --> SI, cluster wide.
• CSI --> CSI in the same SI.

Table 13 Component Capability Model and Service Group Redundancy Model

Service Group
Redundancy Model -->

Component Capability Model

2N N+M N-Way N-Way
Active

No
Redundancy

x_active_and_y_standby X X X X X

x_active_or_y_standby X X - X X

1_active_or_y_standby X X - X X

1_active_or_1_standby X X - X X

x_active X X - X X

1_active X X - X X

non-pre-instantiable compo-
nent

X X - X X
130 SAI-AIS-AMF-B.02.01 Section 3.8 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
The SI-SI dependencies are also applicable to applications. Refer to Section 3.2.7 for
more details on how SI-SI dependencies pertain to the application logical entity.

The dependencies apply in two cases:
• When a service unit (component, respectively) is assigned the active HA state on

behalf of a service instance (component service instance, respectively).
• When the active HA state has been assigned to a service unit (component,

respectively) on behalf of a service instance (component service instance,
respectively), and another HA state is now assigned, or the active HA state
assignment is removed.

3.9.1.1 Dependencies Between SIs when Assigning a Service Unit Active for a Service Instance

A service instance SI1 may be configured to depend on other service instances
(especially within the scope of an application logical entity as defined in Section
3.2.7), SI2, SI3, and so on, in the sense that a service unit can only be assigned the
active HA state for SI1 if all SI2, SI3, etc. are either fully-assigned or partially-
assigned (see Section 3.3.3.2).
These dependencies are cluster-wide, which means SI2 and SI3 may or may not
belong to the same service group as SI1.

3.9.1.2 Impact of Disabling a Service Instance on the Dependent Service Instances

The Availability Management Framework defines one configurable attribute of a
dependency between service instances:

'tolerance time': In the case of a dependency of a service instance SI1 on the ser-
vice instance SI2, this time indicates for how long SI1 can tolerate SI2 being in the
unassigned state (see Section 3.3.3.2). If this time elapses before SI2 becomes
assigned again, the Availability Management Framework will remove the active and
the quiescing HA states for SI1 from all service units, i.e., it will make SI1 unassigned.

This tolerance time can be set to zero to indicate to the Availability Management
Framework that it must remove the active and the quiescing HA states for SI1 from all
service units immediately as soon as SI2 is unassigned.

3.9.1.3 Dependencies Between Component Service Instances of the Same Service Instance

A component service instance of a service instance can be configured to depend on
other component service instances of the same service instance. In this case, the
Availability Management Framework performs the assignment of the active HA state
to components on behalf of component service instances in a sequence determined
by the configuration.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.9.1.1 131

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
The reverse order is applied when, on behalf of component service instances, the
active HA state is removed from components or another HA state is assigned to com-
ponents.

In other words, if a component service instance CSI1 depends on the component ser-
vice instance CSI2, a component can only be assigned the active HA state for CSI1 if
any of the components of the service unit in question has already acknowledged the
assignment of the active HA state for CSI2 by calling saAmfResponse().

Note that dependencies between component service instances also apply when
restarting components within a service unit. Since component service instances
assigned to a component must be removed when restarting a component, dependent
component service instances within the same service instance will also be removed.

Example: Suppose a component C1 consisting of an HTTP server supporting a com-
ponent service instance CSI1 that contains an IP address and a port number. The
server binds to that IP address (and not to INADDR_ANY) and port number.
A second component C2 implements a virtual IP address service and its component
service instance, CSI2, contains simply the same IP address as above. CSI2 must be
assigned before CSI1; otherwise the bind() system call would fail.

3.9.2 Dependencies Between Components

A component can be configured to depend on another component in the same ser-
vice unit in the sense that the instantiation of the second component is a prerequisite
for the instantiation of the first component. Dependencies amongst components
described in this section are applicable only when instantiating or terminating a ser-
vice unit. These dependencies in no way influence the state transitions effected by
the Availability Management Framework.

Such explicit dependencies can be configured between any two pre-instantiable com-
ponents in the same service unit. (Note that there also exist implicit dependencies
between a proxy and its proxied components - not to be discussed here.)

A system administrator can take advantage of such a feature to avoid launching
many processes, which perform a lengthy initialization, concurrently, as this could
lead to CPU saturation. A "tempered" launching of these processes could be more
adequate.

Dependencies between components are configured by associating an instantiation
level with each pre-instantiable component. The instantiation level is a positive inte-
ger configured for such components.

Within a service unit, the Availability Management Framework instantiates the pre-
instantiable components according to the instantiation level specified in the Availabil-
ity Management Framework configuration. All pre-instantiable components with the
132 SAI-AIS-AMF-B.02.01 Section 3.9.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
same instantiation level are instantiated by the Availability Management Framework
in parallel. Components of a given level are only instantiated by the Availability Man-
agement Framework when all components with a lower instantiation level have suc-
cessfully completed their instantiation.

Within a service unit, the Availability Management Framework terminates the pre-
instantiable components according to the configured instantiation level. All pre-instan-
tiable components with the same instantiation level are terminated by the Availability
Management Framework in parallel. Pre-instantiable components of a given level are
only terminated by the Availability Management Framework when all pre-instantiable
components with a higher instantiation level have been terminated.

As has been said, the instantiation level is only applicable during service unit instanti-
ation and termination. As restarting a service unit means terminating the service unit
and instantiating it again, the instantiation level also applies here. If single compo-
nents within a service unit are restarted, the instantiation level does not cause com-
ponents with a higher level to be also subject to a restart. The instantiation level is,
above all, a means to limit the load on the system during the instantiation process.

Non-pre-instantiable components are only instantiated when they have to provide
service (for instance, when the Availability Management Framework would assign to
them the active HA state for a component service instance).
In case dependencies amongst a non-pre-instantiable and another component exist,
they should be resolved by using the inter-CSI (CS I - CSI) dependency scheme.

3.10 Approaches for Integrating Legacy Software or Hardware Entities
There are two ways to integrate non-SA-aware software or hardware entities into the
Availability Management Framework model:

• By the use of a wrapper to encapsulate the legacy software (hardware) into an
SA-aware component. The wrapper consists of one or more processes that link
with the AMF library and interact with the Availability Management Framework on
the one hand and with the legacy software (hardware) on the other hand. The
wrapper and the legacy software (hardware) together constitute a single compo-
nent.

• By the use of a proxy to manage the legacy software (hardware).The legacy soft-
ware (hardware) can be considered to be a separate component managed by the
proxy component.

In general, the proxy/proxied solution is appropriate most when one of the following is
true:

• (i) The redundancy model of the proxied entity (the legacy software or hardware)
is different from the redundancy model of the proxy entity. The proxy entity usu-
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.10 133

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
ally requires a very simple redundancy model such as 2N, while the legacy entity
may need a more complex redundancy models such as N+M and N-way active.

• (ii) The failure semantics and fault zone of the proxied entities are different from
the ones for proxy entities. For example, the proxied entity may be running out-
side of the cluster, while the proxy entity has to be located in a node.

3.11 Component Monitoring
Three types of component monitoring can be envisaged for a component:

• Passive Monitoring: The component is not involved in the monitoring, and mostly
operating system features are used to assess the health of a component. This
includes monitoring the death of processes, which are part of the component
(but it could also be extended to also monitor crossing some thresholds in
resource usage such as memory usage).

• External Active Monitoring: The component does not include any special code to
monitor its health but some entity external to the component (usually called a
monitor) assesses the health of the component by submitting some service
requests to the component and checking that the service is provided in a timely
fashion.

• Internal Active Monitoring: The component includes code (often called audits) to
monitor its own health and to discover latent faults. Each of these health checks
is triggered either by the component itself or by the Availability Management
Framework.

These three types of monitoring are in fact complementary. Passive monitoring or
external active monitoring do not need modification of the component itself and can
be applied to non-SA-aware components.

The Availability Management Framework supports these three types of monitoring.

The passive monitoring of components is covered by the API functions
saAmfPmStart() (refer to Section 6.6.1 on page 196) and saAmfPmStop() (refer to
Section 6.6.2 on page 198).
External active monitoring is supported with two command line interfaces (CLI) com-
mands, AM_START (refer to Section 4.7 on page 149) and AM_STOP (refer to Sec-
tion 4.8 on page 150), used to start and stop a monitoring process for a component.
Due to the extra load put on the system to run CLI commands (need to spawn a pro-
cess each time), it is preferable to have long running processes for external active
monitors (as opposed to run periodically a monitoring command similarly to what is
done for audits).

The internal active monitoring of components is accomplished through the health-
check interfaces (refer to Section 6.1.2 on page 159).
134 SAI-AIS-AMF-B.02.01 Section 3.11 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
3.12 Error Detection, Recovery, Repair, and Escalation Policy

3.12.1 Basic Notions

3.12.1.1 Error Detection

Error detection is the responsibility of all entities in the system. Errors are reported to
the Availability Management Framework through the saAmfComponentErrorReport()
API function. Components play an important part in error detection and should report
their own errors or the errors of other components with which they interact. The Avail-
ability Management Framework itself also generates error reports on components
when it detects errors while interacting with components. Refer to Section 3.3.2.2 on
page 48 for the different cases.

It is assumed that a reported error does not refer explicitly to a specific component
service instance currently assigned to the component. It rather applies to the compo-
nent as a whole.

3.12.1.2 Restart

Restarting a component means any of the following sequences of life cycle opera-
tions:

• terminate + instantiate
• cleanup + instantiate
• terminate + cleanup + instantiate

The latter sequence applies if an error occurs during the terminate operation. Appen-
dix A describes how these operations are implemented for the various types of com-
ponents.

The Availability Management Framework terminates erroneous components abruptly
by running the CLEANUP command or by asking the proxy component to do so.
Other components are terminated gracefully by first attempting to run the terminate
callback or the TERMINATE command.

During a restart because of a failure, a component remains enabled and its readiness
state may or may not change according to changes in its presence state as described
in Section 3.3.2.1, which in turn impacts whether its component service instances
must be removed. (Refer to Section 3.3.2.3).

Restarting a service unit is achieved by the following actions:
• First, all components in the service unit are terminated in the order dictated by

their instantiation-levels.
• In a second step, all components in the service unit are instantiated in the order

dictated by their instantiation-levels.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.12 135

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
During this restart procedure, the components follow their relevant state transition
(see Section 3.3.2.1) that impacts the service unit’s presence state (see Section
3.3.1.1) and consequently readiness state (see Section 3.3.1.4), which determines
the service instance assignments. If a service unit contains only restartable compo-
nents (i.e., disableRestart=FALSE), it remains in the in-service readiness state during
the restart, thus its service instance assignments remain intact.

3.12.1.3 Recovery

This is an automatic action taken by the Availability Management Framework (no
human intervention) after an error occurred to a component to ensure that all compo-
nent service instances that were assigned to this component, are reassigned to non-
erroneous components. This applies to all component service instances regardless of
the component’s HA state on their behalf.

Recovery actions include:

Different Levels of Restart:
The objective here is to avoid reassigning service instances to different service units.
The Availability Management Framework tries to fix the problem by restarting some
components and reassigning them all component service instances previously
assigned with the same HA state. This may not always be possible, as other events
may have happened during the recovery, which would prevent the Availability Man-
agement Framework from performing such assignments (for example some depen-
dencies may not be satisfied anymore). Two levels of restart are provided:

• restart the erroneous component: The erroneous component is abruptly termi-
nated and then instantiated again. The Availability Management Framework
attempts to reassign component service instances previously assigned to the
components with the same HA state. This action is performed as a conse-
quence of an SA_AMF_COMPONENT_RESTART recommended recovery
action provided in the error report.

• restart all components of the service unit that contains the erroneous compo-
nent: All components of the service unit are abruptly terminated and then
instantiated again (See Section 3.12.1.2). This action is performed as a conse-
quence of an escalation of an SA_AMF_COMPONENT_RESTART recom-
mended recovery action.

The Availability Management Framework must provide the option to disable restart
recovery actions for particular components. This option should be used when restart-
ing a component takes too much time and fail-over is a preferred recovery action.
See Section 3.3.2.1 on page 36.

Different Levels of Fail-Over:
Either because the restart recovery action has been disabled in the configuration of a
particular component or because previous attempts to restart the component failed,
136 SAI-AIS-AMF-B.02.01 Section 3.12.1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
the Availability Management Framework may decide to recover by reassigning ser-
vice instances to service units other than the one they are currently assigned to. The
different levels of fail-over listed below differ by the scope of the service instances
being failed over (some service instances assigned to a service unit, or all service
instances assigned to a node) and how abruptly component service instances are
removed from the components they are currently assigned to (regular HA state man-
agement leading to the removal of the component service instance, or graceful com-
ponent termination, or abrupt component termination or abrupt node reboot).

• Component or Service Unit Fail-Over
The Availability Management Framework provides a configuration attribute at the
service unit level to indicate if a component fail-over should trigger a fail-over of
the entire service unit or only of the erroneous component.
By default, a service unit fail-over is performed.

If the service unit is configured to fail over as a single entity, all other components
of the service unit are abruptly terminated and all service instances assigned to
that service unit are failed over; otherwise, only the erroneous component is
abruptly terminated and all component service instances, which were assigned
to it are failed over. Other components are not terminated but all service
instances, which contained one of the failed over component service instances
have their remaining component service instances switched over. Switch-over
means that component service instances are not abruptly removed from compo-
nents; the HA state of these components for these component service instances
is rather transitioned to the quiesced HA state before being removed.

The following example helps in clarifying this. Assume a service group having
some service units, each comprising 3 components. One of these service units,
SU1 is made of the C1, C2 and C3 components. Now assume that SU1 is
assigned the active HA state for two service instances, SI1 and SI2. SI1 contains
3 CSIs: CSI11, CSI12 and CSI13 (assigned respectively to C1, C2 and C3) and
SI2 contains only 2 CSIs: CSI21 and CSI23 (assigned respectively to C1 and
C3).

Assume that C2 fails. C2 is abruptly terminated. As C2 was assigned CSI12,
CSI12 is failed over and the rest of SI1 needs to be switched over: CSI11 and
CSI13 are switched over. However, there may be no need to switch over SI2 as it
has no CSIs assigned to C2, which failed.

In a 2N or N+M redundancy model, SI2 also needs to be switched over; other-
wise, the number of active service units would be higher than what is allowed by
the redundancy model. However, in an N-way redundancy model, SI2 could be
left assigned to SU1, and a repair of C2 should be attempted by reinstantiating it.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.12.1.3 137

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
If the attempt to instantiate C2 fails, the service unit becomes disabled, and SI2
must be switched-over. However, if the attempt to instantiate C2 is successful
then SI2 shall remain assigned to SU1, and based on other configuration param-
eters and N-Way redundancy model semantics, even SI1 might get reassigned
to SU1.

This action is performed as a consequence of an
SA_AMF_COMPONENT_FAILOVER recommended recovery action or of an
escalation to it.

• Node Switch-Over:
This implies an abrupt termination of the failed component and the fail-over of all
component service instances, which were assigned to it. All service instances
assigned to service units on the node have their remaining component service
instances switched over. Switch-over means that component service instances
are not abruptly removed from components; The HA state of these components
for these component service instances is rather transitioned to the quiesced HA
state before being removed.
This action is performed as a consequence of an
SA_AMF_NODE_SWITCHOVER recommended recovery action.

• Node Fail-Over
This implies an abrupt termination of all local components and failing over all
service instances assigned to all service units on a node. This action is per-
formed as a consequence of an SA_AMF_NODE_FAILOVER recommended
recovery action, or as the result of a recovery escalation.

• Node Failfast
The Availability Management Framework reboots the node through a low level
interface without trying to terminate the components individually. The reboot
operation must be carried out in a way that puts all local components of the node
(including its hardware components) into the uninstantiated presence state.
Depending on the physical node configuration, this may require powering-down
or resetting some hardware entities (potentially using the HPI). As part of the
node failfast operation, a fail-over of the service instances assigned to service
units on the node is performed. This action is performed as a consequence of an
SA_AMF_NODE_FAILFAST recommended recovery action.

Note that in case that a component fails, just removing component service instance
from it and reassigning them to it (without restarting it) is not considered as a valid
recovery action.

One of the recovery methods described in this section is configured per component
as a default recovery action (referred to as recoveryOnError for convenience) that is
engaged under the following circumstances:
138 SAI-AIS-AMF-B.02.01 Section 3.12.1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
• A component does not respond to a callback invoked by the Availability Manage-
ment Framework within a reasonable period of time.

• A component responds with an error to a callback invoked by the Availability
Management Framework on the component.

3.12.1.4 Repair

This is the action which has to be performed on erroneous entities (i.e., with a dis-
abled operational state) to bring them back into a healthy state (i.e., with an enabled
operational state). There is a Availability Management Framework configuration
attribute at node and service group level that determines if the Availability Manage-
ment Framework engages in automatic repair or not.

When this configuration attribute is turned on, the Availability Management Frame-
work can perform an automatic repair action after undertaking some recovery actions
at the service unit or node levels. If this attribute is turned on at the service group
level, it applies to all service units within the service group; if this attribute is turned on
at the node level, it applies to only the node.

If the automatic repair configuration attributes are turned off, the Availability Manage-
ment Framework performs no automatic repair action and it is the responsibility of
system management applications or system administrators to perform repair actions
which are not under the control of the Availability Management Framework and then
reenable the appropriate operational states when the repair is successfully completed
using the SA_AMF_ADMIN_REPAIRED administrative operation. It is expected that
these repair actions bring the repaired service units in either the instantiated or unin-
stantiated presence state before reenabling the appropriate operational states.

The following describes, for each recovery action, the automatic repair action which
can be performed by the Availability Management Framework.

The Availability Management Framework treats the component and service unit
restart recovery actions as repair actions and does not require any additional repair
action in this case. The Availability Management Framework reenables the opera-
tional state of the component or the service unit when the restart operation completes
successfully.

In the case of a component fail-over recovery action, independently of any configura-
tion attribute setting, the Availability Management Framework always tries to rein-
stantiate the erroneous component and if it is successful, re-enables it. This is
performed in order to avoid leaving a service unit partially disabled for an indefinite
amount of time.

If a node leaves the cluster membership while the Availability Management Frame-
work is performing an automatic repair action on a service unit of that node, the fact
that the node leaves the cluster membership supersedes the service unit repair
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.12.1.4 139

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
action and the Availability Management Framework considers the repair action com-
pleted when the node re-joins the cluster membership.

However, if a node leaves the cluster membership while the Availability Management
Framework is performing an automatic repair action on that node, the fact that the
node leaves the cluster membership may not eliminate the need for the node repair
action and the Availability Management Framework may need to complete the repair
action when the node re-joins the cluster membership if the node has not been reboo-
ted in the meantime.

• Service Unit Failover Recovery - In the context of a service unit fail-over recovery
action, the Availability Management Framework attempts to terminate all compo-
nents of the service unit. If the service group containing the service unit has the
automatic repair configuration attribute set and all components have been suc-
cessfully terminated, the Availability Management Framework reenables the
operational states of the service unit and its disabled components and evaluates
the various criteria used to determine if the service unit must be reinstantiated
(such as the preferred number of in-service service units for the service group
containing that service unit) and then reinstantiates service units if deemed nec-
essary.

• Node Switch-Over, Fail-Over and Failfast Recovery - After a node switch-over or
node fail-over recovery action, if the erroneous node has the automatic repair
configuration attribute set, the Availability Management Framework reboots the
node. The Availability Management Framework treats a node failfast recovery
action as a repair action, and does not require any additional repair action in this
case. When such a node rejoins the cluster, the Availability Management Frame-
work reenables its operational state and the operational state of its disabled serv-
ice units and components (except for components with the termination-failed
presence state) and evaluates the various criteria used to determine if service
units of that node must be reinstantiated (such as the preferred number of in-
service service units service groups that have service units on that node) and
then reinstantiates service units if deemed necessary.

The following table describes the recovery policies and the associated automatic
repair policies.

Table 14 Auto Repair Actions

Recovery Action Automatic Repair

SU Failover AMF attempts to instantiate the SU

Node Switch-Over Node reboot
140 SAI-AIS-AMF-B.02.01 Section 3.12.1.4 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
3.12.1.5 Recovery Escalation

When an error is reported on a component, the error report also contains a recom-
mended recovery action. The Availability Management Framework decides whether
the recommended recovery action is executed, rejected, or escalated. The escalation
covers cases in which the recovery action is too weak to prevent further errors. The
underlying principle of the escalation is to progressively extend the scope of the error
from component to service unit, and from service unit to node (that is, considering
more and more entities to be involved in the error that shows up in a component).

3.12.2 Recovery Escalation Policy of the Availability Management Framework

3.12.2.1 Recommended Recovery Action

The following recommended recovery actions are supported by the
saAmfComponentErrorReport() API:

• SA_AMF_NO_RECOMMENDATION: used when the scope of the error is
unknown. The configured recovery policy for the component (recoveryOnError)
is engaged by the Availability Management Framework in such a case.

• SA_AMF_COMPONENT_RESTART: used when the scope of the error is the
component.

• SA_AMF_COMPONENT_FAILOVER: used when the error is related to the exe-
cution environment of the component on the current node.

• SA_AMF_NODE_SWITCHOVER:
SA_AMF_NODE_FAILOVER
SA_AMF_NODE_FAILFAST:
These three recommended recovery actions are used when the error has been
identified as being at the node level and components should not be in service on
the node. They indicate different levels or urgency to move the service instances
out of the node.

• SA_AMF_APPLICATION_RESTART: used when the error has been identified as
a global application failure.

• SA_AMF_CLUSTER_RESET: used when the error has been identified at the
cluster level.

The Availability Management Framework validates the recommended recovery action
in an implementation-dependent way. This could be done for example by putting in

Node Fail-Over Node reboot

Node Failfast None - Already part of recovery

Table 14 Auto Repair Actions
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.12.1.5 141

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
place security measures like access control and authentication schemes. If the vali-
dation succeeds, the Availability Management Framework will not implement a
weaker recovery action than the recommended one; however, the Availability Man-
agement Framework may decide to implement a stronger recovery action based on
its recovery escalation policy. If the validation fails, the Availability Management
Framework rejects the error report with return code SA_AIS_ERR_ACCESS, unless
the recommended recovery action is SA_AMF_NO_RECOMMENDATION.

The following three levels of escalation are implemented by the Availability Manage-
ment Framework:

3.12.2.2 Escalations of Levels 1 and 2

If some components of the same service unit fail and are restarted too many times
within a given time period (called the probation period), the Availability Management
Framework escalates to a restart of the entire service unit. If, after this first level of
escalation, the service unit is restarted too many times in a given time period because
of failures of its components, the Availability Management Framework fails over the
entire service unit.

Each service group can be configured with the following parameters:
• component_restart_probation (time value)
• component_restart_max (maximum count)
• SU_restart_probation (time value)
• SU_restart_max (maximum count)

The escalation policy algorithm for escalations of levels 1 and 2 starts when an error
with an SA_AMF_COMPONENT_RESTART recommended recovery action is
received by the Availability Management Framework for a component of a particular
service unit and the service unit is not already in the middle of a probation period (nei-
ther "component restart" nor "service unit restart" probation period, see below).

Table 15 Levels of Escalation

Escalation
Level Recommendation Escalated to

1 SA_AMF_COMPONENT_RESTART service unit restart

2 SA_AMF_COMPONENT_RESTART service unit fail-over

3 SA_AMF_COMPONENT_RESTART or
SA_AMF_COMPONENT_FAILOVER SA_AMF_NODE_FAILOVER
142 SAI-AIS-AMF-B.02.01 Section 3.12.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
System Description

1

5

10

15

20

25

30

35

40
At this time, the Availability Management Framework considers that it is at the begin-
ning of a new "component restart" probation period for that service unit. The Availabil-
ity Management Framework starts counting the number of components of that service
unit it has to restart due to an error report with an
SA_AMF_COMPONENT_RESTART recommended recovery action.

Components restarted due to dependencies (see Section 3.9.2) should not be
counted.

If this count does not reach the component_restart_max value before the end of the
"component restart" probation period (the length of the period is specified by
component_restart_probation), the "component restart" probation period for the
affected service unit expires.

It will be reinitiated when the Availability Management Framework receives the next
occurrence of an error with an SA_AMF_COMPONENT_RESTART recommended
recovery action for a component of the particular service unit.

If this count reaches the component_restart_max value before the end of the "compo-
nent restart" probation period, the Availability Management Framework performs the
first level of recovery escalation for that service unit: The Availability Management
Framework restarts the entire service unit.

At this time, the Availability Management Framework considers that escalation of
level 1 is active for this service unit and terminates the current "component restart"
probation period for the service unit. At the same time, it starts the "service unit
restart" probation period for the service unit. During the "service unit restart" proba-
tion period, each error report on the service unit with an
SA_AMF_COMPONENT_RESTART recommended recovery action immediately
escalates to an entire service unit restart (as level 1 escalation is active). When the
"service unit restart" probation period starts, the Availability Management Framework
also starts counting the number of times it has to perform a level 1 escalation.

If this count does not reach the SU_restart_max value before the end of the "service
unit restart" probation period (the length of the period is specified by
SU_restart_probation), the "service unit restart" probation period for the affected ser-
vice unit expires.

If this count reaches the SU_restart_max value before the end of the "service unit
restart" probation period, the Availability Management Framework performs the sec-
ond level of recovery escalation for that service unit: the Availability Management
Framework fails over the entire service unit and terminates the "service unit restart"
probation period.
AIS Specification SAI-AIS-AMF-B.02.01 Section 3.12.2.2 143

Service AvailabilityTM Application Interface Specification

System Description

1

5

10

15

20

25

30

35

40
3.12.2.3 Escalation of Level 3

If the Availability Management Framework fails over too many service units out of the
same node in a given time period as a consequence of error reports with either
SA_AMF_COMPONENT_RESTART or SA_AMF_COMPONENT_FAILOVER recom-
mended recovery actions, the Availability Management Framework escalates the
recovery to an entire node fail-over.

The Availability Management Framework maintains the following configuration
parameters on a per-node basis, which are used to implement escalations of level 3.

• SU_failover_probation
• SU_failover_max

The escalation algorithm of level 3 is very similar to the algorithm applied for levels 1
and 2.

The escalation policy algorithm for an escalation of level 3 starts when the Availability
Management Framework performs a service unit fail-over as a consequence of an
escalation of level 2 or of an error report with an
SA_AMF_COMPONENT_FAILOVER recommended recovery action on a node,
which is not already in the middle of a “service unit fail-over” probation period.

At this time, the Availability Management Framework considers that it is at the begin-
ning of a new “service unit fail-over” probation period for that node. The Availability
Management Framework starts counting the number of service unit fail-overs it has to
perform on that node as a consequence of an escalation of level 2 or an error report
with an SA_AMF_COMPONENT_FAILOVER recommended recovery action.

If this count does not reach the SU_failover_max value before the end of the “service
unit fail-over” probation period (the length of the period is specified by
SU_failover_probation), the “service unit fail-over” probation period is terminated for
all service units of the affected node.

If this count reaches the SU_failover_max value before the end of the “service unit
fail-over” probation period, the Availability Management Framework performs the
third level of recovery escalation for the node: The Availability Management Frame-
work fails over the entire node.
144 SAI-AIS-AMF-B.02.01 Section 3.12.2.3 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
4 Local Component Life Cycle Management Interfaces
The SA Forum has adopted a model for component life cycle similar to what is cur-
rently done in other clustering products. The SA Forum defines a set of command line
interfaces (CLI), which are provided by local components to enable the Availability
Management Framework to control their life cycles. In the rest of this document, this
interface will be referred to as the Component Life Cycle Command Line Interface
(CLC-CLI).

Five CLC-CLIs are included in this specification: INSTANTIATE, TERMINATE,
CLEANUP, AM_START and AM_STOP.

4.1 Common Characteristics
CLC-CLIs and associated configuration parameters are part of the component config-
uration as defined for the Availability Management Framework. Here, only the basic
semantics associated with such descriptor are described; issues like format, range,
and so on, are not explained here.

This descriptor contains for each CLC-CLI at least:

• the path name of the CLC-CLI command,
• the list of environment variables and arguments to be provided to the CLC-CLI by

the Availability Management Framework at runtime,
• a timeout value used to control the execution of the CLC-CLI. The Availability

Management Framework considers that the CLC-CLI failed if it did not complete
in the time interval specified by this timeout.

CLC-CLIs are idempotents.

4.2 CLC-CLI's Environment Variables
• SA-aware components can use regular Availability Management Framework

APIs to access the name/value pairs for each component service instance (see
Section 6.3.5.4) assigned to itself or to the components it is proxying for.
CLC-CLIs of non-proxied, non-SA-aware components can benefit from an easy
access to the configuration parameters associated to their assigned component
service instances. Therefore, the Availability Management Framework will pass
all name/value pairs of the component service instance as environment vari-
ables of each CLC-CLIs.

• The SA_AMF_COMPONENT_NAME environment variable is set in the environ-
ment of each CLC-CLI. This environment variable contains the name of the com-
ponent the CLC-CLI is acting upon.
AIS Specification SAI-AIS-AMF-B.02.01 Section 4 145

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
• To avoid non printable values for environment variables, values containing uni-
code characters (such as component names) are encoded by the Availability
Management Framework in the following way:

• First, the unicode characters are translated into UTF-8 encoding as
described in RFC 2253 ([7]) to obtain a character string.

• Then, the quoted-printable encoding from RFC 2045 ([8]) is used to substi-
tute non-printable characters in the string.

4.3 Exit Status
The valid range for the exit status is 0 <= exit status <= 255. CLC-CLIs have a zero
exit status in case of success, non-zero in case of failure. Values in the range 200 <=
exit status <= 254 have either pre-defined meanings or are reserved for future usage.

The reaction of the Availability Management Framework to these errors is described
for each CLC-CLI command in the next sections.

4.4 INSTANTIATE Command
The Availability Management Framework runs the INSTANTIATE command when it
wants to instantiate a new instance of a non-proxied, local component.

This command is mandatory for all non-proxied, local components and may not be
used for proxied components: A proxied component must be instantiated by its proxy
component.

The INSTANTIATE command may create zero, one, or several processes, files,
shared memory segments, etc.

Note that some components may not have any processes and the INSTANTIATE
command may be limited to some administrative action such as configuring an IP
address on the local node or mounting a file system.

INSTANTIATE must report success if the component is already instantiated when the
command is run. If the INSTANTIATE command is completed successfully, the com-
ponent must be fully instantiated. The timeout associated with the INSTANTIATE
command is used to set a limit on the time the Availability Management Framework
will give for the component instantiation to complete. This time includes the comple-
tion of the INSTANTIATE command itself; for SA-aware components, it also includes
the extra time which may be needed by the component, after INSTANTIATE returns,
to register with the Availability Management Framework. Hence, for SA-aware com-
ponents, this timeout sets a time limit for the newly instantiated component to register.
146 SAI-AIS-AMF-B.02.01 Section 4.3 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
Note that when an SA-aware component unregisters itself with the Availability Man-
agement Framework, it does not transition to the uninstantiated presence state.

INSTANTIATE must return a non-zero exit status if the component is not instantiated
successfully. If INSTANTIATE returns a non-zero exit status (even if it is outside the
range valid for the Availability Management Framework as described in Section 4.3),
or the instantiation of the component does not complete in the time period specified
by the INSTANTIATE timeout, the Availability Management Framework generates an
error report on the failed component and runs the CLEANUP command, described in
Section 4.6, to perform all necessary cleanup.

The Availability Management Framework makes few attempts to recover from this
error by trying to restart (for instance, reinstantiate) the component if restart is not dis-
abled. The Availability Management Framework first makes a configurable number of
attempts to immediately reinstantiate the component followed by a configurable num-
ber of attempts to reinstantiate the component with a configurable delay between
each attempt. If this fails, the Availability Management Framework makes a single
attempt to reboot the node to solve the problem. There is a Availability Management
Framework configuration parameter at the node level to disable node reboot in this
situation.

If node reboot is disabled, or if a single reboot did not solve the problem, the Availabil-
ity Management Framework sets the component's operational state to disabled and
its presence state to instantiation-failed. The presence state of the enclosing service
unit becomes also instantiation-failed (it may also become termination-failed if other
components of the service units failed to terminate successfully. Note termination-
failed state in this case overrides instantiation-failed state). The Availability Manage-
ment Framework performs a service unit level recovery action if the error occurred
when some service instances were already assigned or being assigned to the service
unit. However, no further automatic repair (beyond the node reboot attempt already
performed) is attempted by the Availability Management Framework for this service
unit and an explicit administration action is required to repair it.

The following error code is recognized by the Availability Management Framework:

SAF_CLC_NO_RETRY (200): the error that occurred when attempting to instantiate
this component is persistent, and no retries or node reboot should be attempted.

4.5 TERMINATE Command
SA-aware or proxied components are terminated by the Availability Management
Framework by invoking the saAmfComponentTerminateCallback() callback function.
AIS Specification SAI-AIS-AMF-B.02.01 Section 4.5 147

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
However, when the Availability Management Framework needs to stop a service pro-
vided by a non-proxied, non-SA-aware component, or needs to terminate such a
component, no callback can be invoked, and the Availability Management Framework
executes the TERMINATE command. The TERMINATE command should stop the
service being provided in such a way that it could be resumed by another instance of
the same component or another component with minimal disruption.

This CLC-CLI is mandatory for all local non-proxied, non-SA-aware components and
may not be used for SA-aware components and proxied components.

When the TERMINATE command completes successfully, it must leave the compo-
nent un-instantiated. The un-instantiated state of a local component can be defined
as the state of the component just after a node reboot and before the INSTANTIATE
command is run. TERMINATE should succeed if the component is not instantiated
when the command is run.

TERMINATE should release all resources allocated by the component. TERMINATE
must return an error if the component is not fully terminated or if some resources
could not be released.

If the TERMINATE command returns an error or does not complete in the time period
specified by the TERMINATE timeout, the Availability Management Framework runs
the CLEANUP command to perform all necessary cleanup actions.

4.6 CLEANUP Command
When recovering from errors, the Availability Management Framework does not trust
erroneous components to execute any callbacks, but still needs a method to termi-
nate the particular instance of a component with the minimum interaction with the
component itself. The same situation happens when either the
SaAmfComponentTerminateCallbackT callback (for SA-aware components) or the
TERMINATE command (for non-proxied, non-SA-aware components) failed to termi-
nate a component. In this case, the Availability Management Framework forces a
cleanup of the component by running the CLEANUP command.

This command is mandatory for all local components (proxied or non-proxied) and
may not be used for external components.

When the CLEANUP command completes successfully, it must leave the component
un-instantiated. CLEANUP should succeed if the component is not instantiated when
the command is run.
148 SAI-AIS-AMF-B.02.01 Section 4.6 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
CLEANUP should perform any cleanup of resources allocated by the component and
should execute under the assumption that the component may be in an erroneous
state in which it cannot actively perform any cleanup actions itself. CLEANUP must
return an error if the component is not fully terminated or if some necessary cleanup
could not be performed. If the component has been configured with a monitor (see
AM_START below), the CLEANUP command also needs to cleanup any resources
that the AM_STOP command may have failed to cleanup.

If the CLEANUP command returns an error or does not complete in the time period
specified by the CLEANUP timeout, the Availability Management Framework has the
possibility (controlled by a configuration attribute of the node) to force a node failfast
recovery action. The node failfast includes an implicit node reboot that puts all local
components of the node (including its hardware components) into the uninstantiated
presence state. (see Section 3.12.1.3 for more details)

If the node reboot is not allowed by the node’s configuration, the Availability Manage-
ment Framework sets the component's operational state to disabled and its presence
state to termination-failed. The presence state of the enclosing service unit becomes
also termination-failed and its operational state becomes disabled. No further auto-
matic repair is attempted by the Availability Management Framework for that service
unit and an explicit administration action is required to repair it.

If the component was assigned the active HA state for some CSIs when the
CLEANUP command was executed, and semantics of the redundancy model of its
enclosing service group guarantees that, at a point in time, only one component can
be in the active HA state for a given CSI, the failure to terminate that component pre-
vents the Availability Management Framework to assign another component the
active HA state for these CSIs (and by the same token prevents the assignment of
other service units active for the service instances that contains the involved CSIs). In
this case, the service instances will stay unassigned until an administrative action is
performed to terminate the failed component.

4.7 AM_START Command

The Availability Management Framework executes the AM_START command after
the component has been successfully instantiated or to resume monitoring after it has
been stopped by some administrative operations. The monitor processes started by
AM_START should periodically assess the health of the component and report any
error using the saAmfComponentErrorReport() interface.

The AM_START command is optional for all local components and may not be used
for external components.
AIS Specification SAI-AIS-AMF-B.02.01 Section 4.7 149

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
If the AM_START command returns an error or fails to complete in the configured tim-
eout, the Availability Management Framework will retry a few times to start the moni-
tor. If AM_START did not complete in the timeout period, the Availability Management
Framework runs AM_STOP before running AM_START again. If after a configurable
amount of retries, the Availability Management Framework fails to start the monitor,
the Availability Management Framework reports an error on the component level.

4.8 AM_STOP Command
The Availability Management Framework runs the AM_STOP command when active
monitoring of the component must be stopped. The Availability Management Frame-
work stops active monitoring before terminating a component and when requested to
do so through administrative operations.

The AM_STOP command is mandatory for components, which have an AM_START
command, and may not be used for components, which do not have an AM_START
command.

If the AM_STOP command returns an error or fails to complete in the configured tim-
eout period, the Availability Management Framework will retry a few times to stop the
monitor. If AM_STOP is invoked in the context of a component termination, and if
AM_STOP still fails after all retries, the Availability Management Framework termi-
nates the component and then invokes the CLEANUP command to ensure that the
monitor eventually gets stopped. If AM_STOP fails while the Availability Management
Framework tries to terminate a component in the context of a recovery action, the
Availability Management Framework may skip the retries and go ahead immediately
by terminating the component.
150 SAI-AIS-AMF-B.02.01 Section 4.8 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
4.9 Summary of Usage of CLC-CLI Commands Based on the Component Category

For further details on component categories, refer to Table 2 on page 34.

Table 16 Usage of CLC-CLI Commands for each Component Category

CLC-CLI
command Mandatory Forbidden Optional

INSTANTIATE non-proxied, local compo-
nents proxied components -

TERMINATE non-proxied, non-SA-aware
components

SA-aware and proxied
components -

CLEANUP local components external components -

AM_START
AM_STOP - external components local components
AIS Specification SAI-AIS-AMF-B.02.01 Section 4.9 151

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
152 SAI-AIS-AMF-B.02.01 Section 4.9 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
5 Proxied Component Management

5.1 Assumptions About Proxied/Proxy Components
To make the management of proxied components simpler, the following assumptions
are adopted:

• Although the proxied/proxy solution is recommended when the proxied compo-
nents are located outside of nodes, it is also valid to have proxied components
within local service units.

• Pre-instantiable proxied components cannot be located on the same service unit
as proxy components. This is devised to prevent potential cyclic dependencies
during the service unit instantiations.

• The configuration of proxy/proxied components should include information about
the association of a proxied component to the CSI through which the proxied
component will be proxied (termed proxy CSI). To realize this, a proxied compo-
nent configuration should have a configuration attribute, which includes the
name of the CSI through which the proxied component will be proxied.

• A proxy CSI can be dedicated to proxy one or more proxied components.
• A proxy component can be configured to accept multiple CSIs; some for proxying

proxied component sets and others for providing non-proxy services. Note that,
functionally, there is no difference between proxy CSIs and other CSIs. The
proxy CSI corresponds to the workload of ‘proxying’ a proxied component and
needs to be configured as a configuration attribute of a proxied component.

• Only the proxy component with the active HA assignment for a proxy CSI may
register the proxied components associated with the CSI.

5.2 Life-Cycle Management of Proxied Components
It is assumed that a proxied component configuration will have information about
which CSI is configured to proxy the proxied component. Thus, using this configura-
tion knowledge for all proxied components, the Availability Management Framework
determines the associations amongst each proxy CSI and proxied components to be
proxied by the CSI.

After the Availability Management Framework successfully assigns a proxy CSI with
active HA state to a proxy component, the Availability Management Framework will
request the active proxy component to instantiate the corresponding pre-instantiable
proxied components using the SaAmfProxiedComponentInstantiateCallbackT. It is
important to note that the instantiation of a non-pre-instantiable proxied component
will be done by its proxy component when the Availability Management Framework
AIS Specification SAI-AIS-AMF-B.02.01 Section 5 153

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
assigns the CSI with active HA state to the proxied component; hence, this step is not
applicable for non-pre-instantiable components.

After a proxied component is instantiated, the respective proxy component should
register the proxied component with the Availability Management Framework. Just
like an SA-aware component, a proxied component is considered to be fully instanti-
ated only after the registration of the proxied component is successful. After registra-
tion of the proxied component, the Availability Management Framework shall assign
CSI(s) to those registered proxied components (via the respective proxy component),
with appropriate HA states. If it so happens that certain proxied components fail to
register after the instantiation phase, then the CSI(s) for such components are not
assigned by the Availability Management Framework. Subsequently, the Availability
Management Framework should try to revive the failed component by invoking the
SaAmfProxiedComponentCleanupCallbackT API and reinstantiating it in the same
way as it would for an SA-aware component (see Section 4.4). Also refer to Appendix
C, which uses a sample configuration to illustrate a typical proxy and proxied instanti-
ation and registration sequence as explained in this section.

When a component registers another component, the Availability Management
Framework shall verify if the component invoking the registration is a proxy and has
the active assignment for the CSI through which the component being registered can
be proxied. If not, the Availability Management Framework will assume that the call-
ing component does not have the authority to register the proxied component and will
return the error code SA_AIS_ERR_BAD_OPERATION (Refer Section 6.5.1 for com-
ponent registration interface).

5.3 Proxy Component Failure Handling
If a proxy component fails, the Availability Management Framework may perform a
fail-over, if it is allowed by the redundancy model of the service group to which the
proxy belongs. During the proxy component fail-over procedure, the Availability Man-
agement Framework implicitly unregisters all registered proxied components associ-
ated with the failing proxy component. However, this implicit unregistration should not
be considered by the Availability Management Framework as a sign of proxied com-
ponent failure. The implicit unregistration simply indicates that the proxy component
is unable to continue proxying work, and the Availability Management Framework
should find another proxy component to take over the proxying work.

If the Availability Management Framework can find another proxy component, which
is capable of proxying the given proxied components, then it will make an active
assignment of the proxy CSI(s) of the proxied components to this other proxy compo-
nent. The proxy component, which is chosen to take over the proxy job, is selected
based on the redundancy model of the service group containing the proxy compo-
154 SAI-AIS-AMF-B.02.01 Section 5.3 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
nent. For example, for a proxy component contained in a service unit, which pertains
to a service group with the 2N redundancy model (termed here the proxy’s service
group), the newly selected proxy component should be the one which had standby
HA assignment for the proxy CSI (i.e., the CSI through which the proxied components
are proxied). A similar procedure is followed during a switch-over in the proxy’s ser-
vice group.
In this case the newly selected proxy component re-registers the proxied component
without an explicit instantiation step.

If the Availability Management Framework is unable to find another proxy component
to proxy a given proxied component, the given proxied component shall enter the
SA_AMF_PROXY_STATUS_UNPROXIED status and an appropriate alarm shall be
issued by the Availability Management Framework (Refer Section 8) to indicate this
situation. Whenever a proxied component enters the
SA_AMF_PROXY_STATUS_PROXIED status, an appropriate notification will be
issued to indicate the change in the status of the proxied component.
AIS Specification SAI-AIS-AMF-B.02.01 Section 5.3 155

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
156 SAI-AIS-AMF-B.02.01 Section 5.3 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
6 Availability Management Framework API
The Availability Management Framework API, described in this chapter, is based on
the system description and the system model presented in Chapter 3 on page 23. It
provides the following services to application components.

• Library Life Cycle
• Component Registration and Unregistration
• Passive Monitoring of Processes of a Component
• Component Health Monitoring
• Availability Management (Component Service Instance Management)
• Component Life Cycle
• Protection Group Management
• Error Reporting
• Component Response to Framework Requests

A component exists in a single service unit, and it typically consists of one or more
processes executing on a node. It is the responsibility of the component to monitor
and isolate faults within its scope and to generate error reports accordingly. As a func-
tion of these error reports, cluster membership changes, health monitor reports, and
administrative operations, the Availability Management Framework manages inter-
nally the readiness state of the affected components. The Availability Management
Framework drives the HA state of components on behalf of component service
instances to provide service availability.

The function calls described in this chapter cover only the interactions between an
SA-aware or a proxied component (via its proxy component) and the Availability Man-
agement Framework, and it does not cover operational or administrative aspects.
Consequently, the logical entities that are represented in the parameters of the calls
are limited to:

• SA-aware Components
• Proxy Components
• Proxied Components (local or external)
• Component Service Instances
• Protection Groups

The other logical entities, such as service units, service groups (including their redun-
dancy model), and service instances are used in specifying the configuration to
describe the relationships between the components that the Availability Management
AIS Specification SAI-AIS-AMF-B.02.01 Section 6 157

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
Framework has to maintain. Configuration and administrative APIs are the subject of
future specifications.

6.1 Availability Management Framework Model for the APIs

6.1.1 Callback Semantics and Component Registration and Unregistration

The Availability Management Framework issues requests to a component by invoking
the callback functions provided by the component. A process of an SA-aware compo-
nent intending to use the API functions of the Availability Management Framework
must first initialize the Availability Management Framework library, by invoking the
saAmfInitialize() function, defined in Section 6.4.1 on page 184. A handle is returned
to the invoking process, denoting this particular initialization of the Availability Man-
agement Framework library. One of the input parameters of the saAmfInitialize() func-
tion is the set of callback functions associated with this initialization.

One of the processes of SA-aware component registers the component it represents
with the Availability Management Framework, using the saAmfComponentRegister()
function, defined in Section 6.5.1 on page 189, providing the handle returned by the
saAmfInitialize() function.
A component is registered with the Availability Management Framework to inform the
Availability Management Framework that the component is ready to provide service,
i.e., to provide services for component service instances. Conversely, a component
may unregister with the Availability Management Framework only when either

• the unregistration is done for the component to perform diagnosis and repair
on its own in case it is no longer able to provide service, possibly due to a fault,
or

• it is explicitly instructed by the Availability Management Framework to be ter-
minated or restarted (See Section 7.4.7 on page 242). In this case, the Avail-
ability Management Framework does not disable the component.

What has been said in this section is only applicable for non-proxied components
because if a proxy component unregisters one of its proxied components, the compo-
nent service instances for the proxied components are not removed but rather kept
assigned. Moreover, the operational and HA states of the proxied components do not
change. This is motivated by the assumption that another proxy will soon take over
the role of the previous proxy.

A proxy component must first register itself and then register one or more proxied
components on their behalf.
158 SAI-AIS-AMF-B.02.01 Section 6.1 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
A process, that is part of a proxy component and that registers several proxied com-
ponents, may issue several calls to the saAmfInitialize() function to provide different
sets of callback functions and obtain different handles that can be used to register the
various proxied components.

The process of an SA-aware component COMP that registers a component (SA-
aware or proxied) is called the registered process for this component and the other
processes of the component COMP are named unregistered processes. There is a
set of callback functions that are called by the Availability Management Framework in
the context of the registered process only. Additionally, there are other API functions
that may be called only by a registered process. If an API function may only be called
by a registered process or if a callback function may only be invoked for the regis-
tered process, this is made explicit in the description of the APIs of the Availability
Management Framework. Appendix B provides a table showing which functions may
be invoked by unregistered processes.

When the Availability Management Framework issues a request to a particular com-
ponent, it triggers the invocation of a callback function. Some of the callback calls
require a response from the component. In these cases, the component invokes the
saAmfResponse() function, defined in Section 6.12.1 on page 226, when it has suc-
cessfully completed the action or has failed to perform the action.

More precisely, the following principles are applied in the Availability Management
Framework/component interactions:

• The process is not required to complete the action requested by the Availability
Management Framework within the invocation of the callback function. It may
return from the callback function and complete the action later.

• The process is expected to notify the completion of the action (or any error that
prevented it from performing the action) by invoking the saAmfResponse() func-
tion. The saAmfResponse() function must identify the callback action with which
it is associated by providing the invocation parameter that the Availability Man-
agement Framework supplied in the callback.

• Any function of the Availability Management Framework API, including
saAmfResponse(), can be invoked from callback functions.

6.1.2 Component Healthcheck Monitoring

6.1.2.1 Overview

A component (or more specifically each of its processes) is allowed to dynamically
start and stop a specific healthcheck. Each healthcheck has an identification (key)
that is associated with a set of configuration attributes. Though some of the health-
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.1.2 159

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
check attributes can be specified at the component level, the deployer may finalize
healthcheck attributes for each component instance. Healthchecks can be invoked by
the Availability Management Framework or by the component.

The issue of potential transient overload caused by (or affected) healthcheck invoca-
tions is not considered in this proposal. Overload is a global issue, and should be
handled in a consistent global level; it will be considered in a future version of the AIS
specification.

6.1.2.2 Healthcheck Types

There are two types of healthcheck depending on the invoker of the healthcheck:

• Framework-invoked healthcheck: With this type of healthcheck, the Availability
Management Framework invokes the saAmfHealthcheckCallback() callback
periodically according to the healthcheck configuration attributes. The Availabil-
ity Management Framework expects the component to respond to an invoked
healthcheck by replying to the healthcheck invocation through
SaAmfResponse().

• Component-invoked healthcheck: This type of healthcheck is invoked by the
component itself (according to its configured parameters), and the result of the
healthcheck is reported to the Availability Management Framework through
saAmfHealthcheckConfirm().

6.1.2.3 Starting and Stopping Healthchecks

Healthchecks are started when a process invokes the saAmfHealthcheckStart() func-
tion; they are stopped when a process invokes the saAmfHealthcheckStop() function.
There is no default healthcheck which is invoked by the Availability Management
Framework without an explicit start request by the component.

Multiple processes of a component can start healthcheck and each one can decide
which healthcheck should be performed. Moreover, when a process starts a health-
check, it can also specify the recommended recovery action to be applied by the
Availability Management Framework when it reports an error on the component if its
healthcheck reports to the Availability Management Framework are not made in a
timely manner.

The start of healthchecks is independent from the component registration, i.e., it is
possible to start healthchecks before the component is registered or after the compo-
nent is unregistered.
160 SAI-AIS-AMF-B.02.01 Section 6.1.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
6.1.2.4 Healthcheck Configuration Issues

Only the basic semantics of the configuration attributes of healthchecks are treated
here; issues like syntax, range, and so on, are left to the upcoming SA Forum System
Management Specification. The Availability Management Framework retrieves the
healthcheck configuration via the healthcheckKey parameter, specified in the health-
check API calls. The scope of the healthcheckKey is limited to the component and is
not cluster-wide.

It is assumed that the component configuration retrieved by the Availability Manage-
ment Framework has gone through a series of sanity checks and configuration vali-
dations before the cluster startup. Hence, this rules out errors like specifying too
frequent healthcheck in the configuration. Also based on these validations, the only
reason that the Availability Management Framework may reject a healthcheck start
request is when some of given parameters such as component name or
healthcheckKey are invalid.

A healthcheck configuration comprises two attributes:

• period: This indicates the period at which the corresponding healthcheck should
be initiated. This attribute is defined for both the framework-invoked and the
component-invoked healthchecks; however, it has different meanings for these
two types of healthchecks as will be explained below.

• maximum-duration: This attribute indicates the time-limit after which the Availabil-
ity Management Framework will report an error on the component if no response
for a healthcheck is received by the Availability Management Framework. This is
applied only for the framework-invoked healthcheck type.

The component developer is aware of the healthcheck type supported by a compo-
nent, and the component developer specifies this healthcheck type in the corre-
sponding healthcheck API calls.
The period and maximum-duration configuration attributes are specified at deploy-
ment time.

Role of period and maximum-duration in the framework-invoked healthchecks

• period: For a given framework-invoked healthcheck started by a process and for
every "period", the Availability Management Framework will invoke the corre-
sponding healthcheck callback; however, if the process does not respond to a
given healthcheck callback before the start of the next healthcheck period, the
Availability Management Framework will not trigger the next invocation of the
healthcheck callback until the response to the previous invocation is received. In
other words, for each healthcheck, there is at most one callback invocation
pending for the response, at any given time. Of course, as a process may have
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.1.2.4 161

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
started several healthchecks in parallel, the Availability Management Framework
will invoke callbacks for these different healthchecks, independently. In the next
bullet, it is described what happens when a process does not respond timely to a
framework-invoked healthcheck.

• maximum-duration: To correctly specify the value for the period of a healthcheck,
the deployer has to make sure that the period is set larger than the average
duration of the interval between the Availability Management Framework trigger-
ing a callback invocation and receiving the corresponding response. This guar-
antees that in normal conditions with expected load, the response of the healthy
process for the invoked healthcheck callbacks will arrive at the Availability Man-
agement Framework timely (and before the Availability Management Framework
attempts to issue another callback for the same healthcheck). However, it may
not be very easy for the deployer to estimate the expected normal condition and
load on the cluster; therefore, the Availability Management Framework should
wait somewhat longer than this average time before concluding that the process
is unable to respond to the healthcheck. The
maximum-duration attribute is defined for such a purpose. The Availability Man-
agement Framework will wait for maximum-duration to receive a response from
the process (component) for a given callback invocation. The deployer should
allow enough slack in the maximum-duration attribute, so that the response of
the healthy process (component) will definitely arrive at the Availability Manage-
ment Framework before maximum-duration expires, even in presence of situa-
tions such as high-load on the network and/or high-load on the processing
resources of nodes in the cluster.

In short, one has to consider the following trade-off in defining values for period and
maximum-duration for the framework-invoked healthchecks:

• period: This value should be set as short as possible, but it should be larger than
the average time-duration accounted for the arrival of the corresponding reply to
the Availability Management Framework. If the period is set too short, the Avail-
ability Management Framework may consider the component of a healthy pro-
cess, running in highly load environment, as faulty. On the other hand, if period is
set too large, then the process may be checked too sparsely, and thus the
latency in detecting process (component) failures (mostly latent fault detection)
becomes larger.

• maximum-duration: As discussed earlier, maximum-duration should be larger
than the average time-duration accounted for the process's response for a call-
back invocation. The maximum-duration attribute should also include enough
slack time so that, even in the presence of anomalies other than component fail-
ures, the healthcheck response arrives at the Availability Management Frame-
work before maximum-duration expires. If maximum-duration is set too short,
162 SAI-AIS-AMF-B.02.01 Section 6.1.2.4 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
then it is possible that a healthy process (component) has not been given
enough time to respond to the healthcheck. In this case, the Availability Manage-
ment Framework will falsely assume that the component is faulty. On the other
hand, if maximum-duration is set too large, then the latency for the detection of a
faulty component being healthchecked may be increased.

Role of period in the component-invoked healthchecks

As already explained, component-invoked healthchecks do not have the
maximum-duration attribute (if it is given, it will be ignored by the Availability Manage-
ment Framework). When a process informs the Availability Management Framework
of its intention of starting a component- invoked healthcheck (by calling
saAmfHealthcheckStart()), the Availability Management Framework expects that the
process invokes healthchecks periodically via saAmfHealthcheckConfirm() calls, no
later than at the end of every period. More specifically, the Availability Management
Framework reports an error on the component if it does not receive a healthcheck
confirmation from the component before the end of every period. The recommended
recovery for this error was specified by the process when it invoked the
saAmfHealthcheckStart() call. The deployer should add enough slack time to period
such that the healthcheck invoked by a healthy process can reach the Availability
Management Framework on-time.

6.1.3 Availability Management (Component Service Instance Management)

The basic concepts have been explained in Chapter 3.

Administrative, operational, and presence states are managed by the Availability
Management Framework but are not exposed to the components. The readiness
state of a component is a private state managed by the Availability Management
Framework. It is neither exposed to components nor to system management, and it is
solely used to determine the eligibility of components to receive component service
instance assignments.

The APIs exposed by the availability management are limited to the management of
the HA state for components. The Availability Management Framework uses call-
backs to request components to:

• Add or remove component service instances from components that are in the in-
service state.

• Change the HA state of a component on behalf of a component service instance
(active, standby, quiescing, quiesced).

The Availability Management Framework enforces that there are no overlapping
requests to set the state of a component at any specific time. Two state change
requests are said to overlap, if the Availability Management Framework requests a
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.1.3 163

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
component to enter the new state, before the first request is acknowledged by the
component (this is done by using the saAmfResponse() API function, as described in
Section 6.11.1). The rationale for avoiding overlapping requests is that it is simpler to
program a component when overlapping requests are prohibited than when the com-
ponent must check and report such overlapping.

Component service instances can be assigned to a component only if the component
is in the in-service state. For details, refer to the readiness state in Section 3.3.2.3
and to the HA state in Section 3.3.2.4.

The component service instance management comprises data structures and APIs.
The API functions are described in Section 6.8 on page 206.

6.1.4 Component Life Cycle Management

In this section, the callback function to request a component to terminate is
described. This section contains also additional callback functions that proxy compo-
nents export to enable the Availability Management Framework to manage proxied
components. The API functions are described in Section 6.9 on page 212.

6.1.5 Protection Group Management

The basic concepts have been explained in Chapter 3. For the API functions, refer to
Section 6.10 on page 216.

6.1.6 Error Reporting

For the API interfaces, refer to Section 6.11 on page 223.

6.1.7 Component Response to Framework Requests

For the API interfaces, refer to Section 6.12 on page 226.

6.1.8 API Usage Illustrations

This section illustrates the usage of the Availability Management Framework API by
different categories of components.

Figure 23 next shows an example of a local component consisting of a single pro-
cess. The numbers in circles indicate the sequence of events in time.
164 SAI-AIS-AMF-B.02.01 Section 6.1.4 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
Figure 23 Local SA-Aware Component Consisting of a Single Process

Save the compo-
nent name to pass
it to API calls
requiring them.

Local SA-aware Component

AMF manages the life cycle
of the local component

Application Code

AMF

Local
Component Name

saAmfComponentRegister

state change
callbacksLibrary saAmfInitialize

saAmfComponentNameGet

Registered Process

API calls

1 2

3

5 64
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.1.8 165

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
Figure 24 next shows an example of an SA-aware component consisting of multiple
processes. The numbers in circles indicate the sequence of events in time.

Figure 24 Local SA-Aware Component Consisting of Multiple Processes

Figure 25 next shows an example of a single-process proxy component that registers
itself and two proxied components with the Availability Management Framework. The
numbers in circles indicate the sequence of events in time.

Local SA-aware Component

Application Code

AMF

Local
Component Name

saAmfInitialize

AMF manages the life cycle
of the local component

Application Code

AMF

Local
Component Name

saAmfComponentRegister

state change
callbacks

Library

saAmfComponentNameGet

Save the component
name to pass it API
calls requiring it.

Library
saAmfInitialize

saAmfComponentNameGet

Save the compo-
nent name to pass
it to API calls
requiring it.

Same Component Name
Registered Process A

Unregistered Process C Unregistered Process B

1

7 8

9

2

3

4

API calls

5 6

API calls

10

Application Code

AMF

Local
Component Name

saAmfInitialize
Library

saAmfComponentNameGet

Save the component
name to pass it API
calls requiring it.

API calls

14
11 12

13
166 SAI-AIS-AMF-B.02.01 Section 6.1.8 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
Figure 25 A Single-Process Proxy Component and Two Proxied Components

Proxy Component

AMF manages the life cycle
of the proxy component

Application Code

AMF

Proxy
Component Name

saAmfComponentRegister

state change call-
backs for all three
components

Library saAmfInitialize
saAmfComponentNameGet

Save the proxy compo-
nent name to pass it to
API calls requiring it.

Registered Process

Proxied
Component Name

Proxied
Component Name

Local or External
Proxied Component

Refers toRefers to

Local or External
Proxied Component

1 2

Register all
three
components

3

4

API calls

5 6
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.1.8 167

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.2 Include File and Library Names
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the Availability Management
Framework API:

#include <saAmf.h>

and

#include <saNtf.h>

(for saAmfComponentErrorReport() and saAmfComponentErrorClear())

To use the Availability Management Framework API, an application must be bound
with the following library:

libSaAmf.so
168 SAI-AIS-AMF-B.02.01 Section 6.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
6.3 Type Definitions
The Availability Management Framework uses the types described in the following
sections.

6.3.1 SaAmfHandleT

typedef SaUint64T SaAmfHandleT;

The handle to the Availability Management Framework that a process acquires
through the saAmfInitialize() function and uses in subsequent invocations of the func-
tions of the Availability Management Framework.

6.3.2 Component Process Monitoring

This section describes the data types required for the passive monitoring of pro-
cesses of a component by the Availability Management Framework.

6.3.2.1 SaAmfPmErrorsT Type

#define SA_AMF_PM_ZERO_EXIT 0x1

#define SA_AMF_PM_NON_ZERO_EXIT 0x2

#define SA_AMF_PM_ABNORMAL_END 0x4

typedef SaUint32T SaAmfPmErrorsT;

6.3.2.2 SaAmfPmStopT type

typedef enum {

SA_AMF_PM_PROC = 1,

SA_AMF_PM_PROC_AND_DESCENDENTS = 2,

SA_AMF_PM_ALL_PROCESSES = 3

} SaAmfPmStopQualifierT;

Refer to Section 6.6.2 on page 198 for explanation of the enum values in
SaAmfPmStopQualifierT.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.3 169

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.3.3 Component Healthcheck Monitoring

6.3.3.1 SaAmfHealthcheckInvocationT

typedef enum {

SA_AMF_HEALTHCHECK_AMF_INVOKED = 1,

SA_AMF_HEALTHCHECK_COMPONENT_INVOKED = 2

} SaAmfHealthcheckInvocationT;

The values of the SaAmfHeathcheckInvocationT enumeration type are:

• SA_AMF_HEALTHCHECK_AMF_INVOKED - The healthchecks are invoked
by the Availability Management Framework.

• SA_AMF_HEALTHCHECK_COMPONENT_INVOKED - The healthchecks are
invoked by the component.

6.3.3.2 SaAmfHealthcheckKeyT

#define SA_AMF_HEALTHCHECK_KEY_MAX 32

typedef struct {

SaUint8T key[SA_AMF_HEALTHCHECK_KEY_MAX];

SaUint16T keyLen;

} SaAmfHealthcheckKeyT;

6.3.4 Types for State Management

6.3.4.1 HA State

typedef enum {

SA_AMF_HA_ACTIVE = 1,

SA_AMF_HA_STANDBY = 2,

SA_AMF_HA_QUIESCED = 3,

SA_AMF_HA_QUIESCING = 4

} SaAmfHAStateT;

The HA state is active, standby, quiesced, or quiescing.
170 SAI-AIS-AMF-B.02.01 Section 6.3.3 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
6.3.4.2 Readiness State

typedef enum {

SA_AMF_READINESS_OUT_OF_SERVICE = 1,

SA_AMF_READINESS_IN_SERVICE = 2,

SA_AMF_READINESS_STOPPING = 3

} SaAmfReadinessStateT;

The readiness state is out-of-service, in-service, or stopping.

6.3.4.3 Presence State

typedef enum {

SA_AMF_PRESENCE_UNINSTANTIATED = 1,

SA_AMF_PRESENCE_INSTANTIATING = 2,

SA_AMF_PRESENCE_INSTANTIATED = 3,

SA_AMF_PRESENCE_TERMINATING = 4,

SA_AMF_PRESENCE_RESTARTING, = 5

SA_AMF_PRESENCE_INSTANTIATION_FAILED = 6,

SA_AMF_PRESENCE_TERMINATION_FAILED = 7

} SaAmfPresenceStateT;

The presence state is uninstantiated, instantiating, instantiated, terminating,
restarting, instantiation-failed, or termination-failed.

6.3.4.4 Operational State

typedef enum {

SA_AMF_OPERATIONAL_ENABLED = 1,

SA_AMF_OPERATIONAL_DISABLED = 2

}SaAmfOperationalStateT;

The operational state is enabled or disabled.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.3.4.2 171

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.3.4.5 Administrative State

typedef enum {

SA_AMF_ADMIN_UNLOCKED =1,

SA_AMF_ADMIN_LOCKED = 2,

SA_AMF_ADMIN_LOCKED_INSTANTIATION = 3,

SA_AMF_ADMIN_SHUTTING_DOWN = 4

} SaAmfAdminStateT;

The administrative state is unlocked, locked, locked-instantiation, or shutting-down.

6.3.4.6 Assignment State

typedef enum {

SA_AMF_ASSIGNMENT_UNASSIGNED=1,

SA_AMF_ASSIGNMENT_FULLY_ASSIGNED=2,

SA_AMF_ASSIGNMENT_PARTIALLY_ASSIGNED=3

} SaAmfAssignmentStateT;

The assignment state of a SI is unassigned, fully-assigned or partially-assigned.

6.3.4.7 Proxy Status

typedef enum {

 SA_AMF_PROXY_STATUS_UNPROXIED = 1,

 SA_AMF_PROXY_STATUS_PROXIED = 2

} SaAmfProxyStatusT;

The proxy status of a component is proxied or unproxied.

6.3.4.8 All Defined States

typedef enum {

SA_AMF_READINESS_STATE =1,

SA_AMF_HA_STATE = 2,

SA_AMF_PRESENCE_STATE = 3,

SA_AMF_OP_STATE = 4,

SA_AMF_ADMIN_STATE = 5,
172 SAI-AIS-AMF-B.02.01 Section 6.3.4.5 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AMF_ASSIGNMENT_STATE = 6,

SA_AMF_PROXY_STATUS = 7

} SaAmfStateT;

All defined states are readiness, HA state, presence, operational, and administrative.

6.3.5 Component Service Instance Types

6.3.5.1 SaAmfCSIFlagsT

#define SA_AMF_CSI_ADD_ONE 0X1

#define SA_AMF_CSI_TARGET_ONE 0X2

#define SA_AMF_CSI_TARGET_ALL 0X4

typedef SaUint32T SaAmfCSIFlagsT;

The values for the SaAmfCSIFlagsT are the following:

• SA_AMF_CSI_ADD_ONE - A new component service instance is assigned to
the component. The component is requested to assume a particular HA state
for the new component service instance.

• SA_AMF_CSI_TARGET_ONE - The request made to the component targets
only one of its component service instances.

• SA_AMF_CSI_TARGET_ALL - The request made to the component targets all
of its component service instances. This flag is used for cases in which all
component service instances are managed as a bundle: The component is
assigned the same HA state for all component service instances at the same
time, or all component service instances are removed at the same time. For
assignments, this flag is set for components providing the
'x_active_or_y_standby' capability model. The Availability Management
Framework can use this flag in other cases for removing all component service
instances at once, if it makes sense.

These values are mutually exclusive. Only one value can be set in SaAmfCSIFlagsT.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.3.5 173

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.3.5.2 SaAmfCSITransitionDescriptorT

typedef enum {

SA_AMF_CSI_NEW_ASSIGN = 1,

SA_AMF_CSI_QUIESCED = 2,

 SA_AMF_CSI_NOT_QUIESCED = 3,

SA_AMF_CSI_STILL_ACTIVE = 4

} SaAmfCSITransitionDescriptorT;

This enumeration type provides information on the component that was or still is
active for the specified component service instance. The values of the
SaAmfCSITransitionDescriptorT enumeration type have the following interpretation:

• SA_AMF_CSI_NEW_ASSIGN - This assignment is not the result of a switch-
over or fail-over of the specified component service instance from another
component to this component. No component was previously active for this
component service instance.

• SA_AMF_CSI_QUIESCED - This assignment is the result of a switch-over of
the specified component service instance from another component to this
component. The component that was previously active for this component ser-
vice instance has been quiesced.

• SA_AMF_CSI_NOT_QUIESCED - This assignment is the result of a fail-over
of the specified component service instance from another component to this
component. The component that was previously active for this component ser-
vice instance has not been quiesced.

• SA_AMF_CSI_STILL_ACTIVE - This assignment is not the result of a switch-
over or fail-over of the specified component service instance from another
component to this component. At least one other component is still active for
this component service instance. This flag is used, for example, in the N-way
active redundancy model when a new component is assigned active for a
component service instance while other components are already assigned
active for that component service instance.
174 SAI-AIS-AMF-B.02.01 Section 6.3.5.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
6.3.5.3 SaAmfCSIStateDescriptorT

typedef struct {

 SaAmfCSITransitionDescriptorT transitionDescriptor;

 SaNameT activeCompName;

} SaAmfCSIActiveDescriptorT;

The fields of the SaAmfCSIActiveDescriptorT structure have the following interpreta-
tion:

• transitionDescriptor - This descriptor provides information on the component
that was or is still active for the one or all of the specified component service
instances (see previous section).

• activeCompName - The name of the component that was previously active for
the specified component service instance.

When a component is requested to assume the active HA state for one or for all com-
ponent service instances assigned to the component, SaAmfCSIActiveDescriptorT
holds the information shown below:

• The Availability Management Framework uses the transitionDescriptor that is
appropriate for the redundancy model of the service group this component
belongs to.

• If transitionDescriptor is set to SA_AMF_CSI_NOT_QUIESCED or
SA_AMF_CSI_QUIESCED, activeCompName holds the name of the compo-
nent that was previously assigned the active state for the component service
instances and no longer has that assignment.

• If transitionDescriptor is set to SA_AMF_CSI_NEW_ASSIGN, activeCompName
is not used.

• If transitionDescriptor is set to SA_AMF_CSI_STILL_ACTIVE, activeCompName
holds the name of one of the components which is still assigned the active HA
state for all targeted component service instances. The choice of the component
selected in that case is arbitrary.

typedef struct {

 SaNameT activeCompName;

 SaUint32T standbyRank;

} SaAmfCSIStandbyDescriptorT;

The fields of the SaAmfCSIStandbyDescriptorT structure have the following interpre-
tation:
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.3.5.3 175

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
• activeCompName - This is the name of the component that is currently active
for the one or all of the specified component service instances. The name is
empty if no active component exists.

• standbyRank - The rank of the component for assignments of the standby HA
state to the component for the one or all of the specified component service
instances.

When a component is requested to assume the standby HA state for one or for all
component service instances assigned to the component,
SaAmfCSIStandbyDescriptorT holds in activeCompName the name of the compo-
nent that is currently assigned the active state for the one or all these component ser-
vice instances. In redundancy models where several components may assume the
standby HA state for the same component service instance at the same time,
standbyRank indicates to the component which rank it must assume. When the Avail-
ability Management Framework selects a component to assume the active HA state
for a component service instance, the component assuming the standby state for that
component service instance with the lowest standbyRank value is chosen.

typedef union {

SaAmfCSIActiveDescriptorT activeDescriptor;

SaAmfCSIStandbyDescriptorT standbyDescriptor;

} SaAmfCSIStateDescriptorT;

The SaAmfCSIStateDescriptorT holds additional information about the assignment of
a component service instance to a component when the component is requested to
assume the active or standby HA state for this component service instance.

6.3.5.4 SaAmfCSIAttributeListT

typedef struct {

SaUint8T *attrName;

SaUint8T *attrValue;

} SaAmfCSIAttributeT;

SaAmfCSIAttributeT represents a single component service instance attribute by its
name and value strings. Each string consists of UTF-8 encoded characters and is ter-
minated by the NULL character.
176 SAI-AIS-AMF-B.02.01 Section 6.3.5.4 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
typedef struct {

SaAmfCSIAttributeT *attr;

SaUint32T number;

} SaAmfCSIAttributeListT;

SaAmfCSIAttributeListT represents the list of all attributes for a single component
service instance. The attr pointer points to an array of number elements of
SaAmfCSIAttributeT attribute descriptors.

6.3.5.5 SaAmfCSIDescriptorT

typedef struct {

SaAmfCSIFlagsT csiFlags;

SaNameT csiName;

SaAmfCSIStateDescriptorT csiStateDescriptor;

SaAmfCSIAttributeListT csiAttr;

} SaAmfCSIDescriptorT;

SaAmfCSIDescriptorT provides information about the component service instances
targeted by the saAmfCSISetCallback() callback API.

When SA_AMF_CSI_TARGET_ALL is set in csiFlags, csiName is not used; other-
wise, csiName contains the name of the component service instance targeted by the
callback.

When SA_AMF_CSI_ADD_ONE is set in csiFlags, csiAttr refers to the attributes of
the newly assigned component service instance; otherwise, no attributes are pro-
vided and csiAttr is not used.

When the component is requested to assume the active or standby state for the tar-
geted service instances, csiStateDescriptor holds additional information relative to
that state transition; otherwise, csiStateDescriptor is not used.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.3.5.5 177

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.3.6 Types for Protection Group Management

6.3.6.1 SaAmfProtectionGroupMemberT

typedef struct {

SaNameT compName;

SaAmfHAStateT haState;

SaUint32T rank;

} SaAmfProtectionGroupMemberT;

The fields of the SaAmfProtectionGroupMemberT structure have the following inter-
pretation:

• compName - The name of the component that is a member of the protection
group.

• haState - The haState of the member component for the component service
instance supported by the member component.

• rank- The rank of the member component in the protection group if haState is
standby.

6.3.6.2 SaAmfProtectionGroupChangesT

typedef enum {

 SA_AMF_PROTECTION_GROUP_NO_CHANGE = 1,

 SA_AMF_PROTECTION_GROUP_ADDED = 2,

 SA_AMF_PROTECTION_GROUP_REMOVED = 3,

 SA_AMF_PROTECTION_GROUP_STATE_CHANGE = 4

} SaAmfProtectionGroupChangesT;

The values of the SaAmfProtectionGroupChangesT enumeration type have the fol-
lowing interpretation:

• SA_AMF_PROTECTION_GROUP_NO_CHANGE - This value is used when
the trackFlags parameter of the saAmfProtectionGroupTrack() function,
defined in Section 6.10.1, is either

• SA_TRACK_CURRENT or
• SA_TRACK_CHANGES and the member component was already a

member of the protection group in the previous
saAmfProtectionGroupTrackCallback() callback call, and the component
service instance has not been removed from the member component,
178 SAI-AIS-AMF-B.02.01 Section 6.3.6 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
and neither haState nor rank of the saAmfProtectionGroupMemberT
structure of this member component has changed.

• SA_AMF_PROTECTION_GROUP_ADDED - The associated component ser-
vice instance has been added to the member component.

• SA_AMF_PROTECTION_GROUP_REMOVED - The associated component
service instance has been removed from the member component.

• SA_AMF_PROTECTION_GROUP_STATE_CHANGE - Any of the elements
haState or rank of the SaAmfProtectionGroupMemberT structure for the mem-
ber component have changed.

6.3.6.3 SaAmfProtectionGroupNotificationT

typedef struct {

SaAmfProtectionGroupMemberT member;

SaAmfProtectionGroupChangesT change;

 } SaAmfProtectionGroupNotificationT;

The fields of the SaAmfProtectionGroupNotificationT structure have the following
interpretation:

• member - The information associated with the component member of the pro-
tection group

• change - The kind of change in the associated component member

6.3.6.4 SaAmfProtectionGroupNotificationBufferT

typedef struct {

SaUint32T numberOfItems;

SaAmfProtectionGroupNotificationT *notification;

} SaAmfProtectionGroupNotificationBufferT;

The fields of the SaAmfProtectionGroupNotificationBufferT structure have the follow-
ing interpretation:

• numberOfItems - number of elements of type
SaAmfProtectionGroupNotificationT in the notification buffer

• notification - start address of the notification buffer
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.3.6.3 179

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.3.7 SaAmfRecommendedRecoveryT

typedef enum {

SA_AMF_NO_RECOMMENDATION = 1,

SA_AMF_COMPONENT_RESTART = 2,

SA_AMF_COMPONENT_FAILOVER = 3,

SA_AMF_NODE_SWITCHOVER = 4,

SA_AMF_NODE_FAILOVER = 5,

SA_AMF_NODE_FAILFAST = 6,

SA_AMF_CLUSTER_RESET = 7,

SA_AMF_APPLICATION_RESTART = 8

} SaAmfRecommendedRecoveryT;

The values of this enumeration type have the following interpretation:

• SA_AMF_NO_RECOMMENDATION - This report makes no recommendation
for recovery. However, the Availability Management Framework should
engage the configured per-component recovery policy (recoveryOnError) in
such a scenario.

• SA_AMF_COMPONENT_RESTART - The erroneous component should be
terminated and reinstantiated.

• SA_AMF_COMPONENT_FAILOVER - The error is related to the execution
environment of the component on the current node. Depending on the redun-
dancy model used, either the component or the service unit containing the
component should fail over to another node.

• SA_AMF_NODE_SWITCHOVER - The error has been identified as being at
the node level, and no service instance should be assigned to service units on
that node. Service instances containing component service instances
assigned to the failed component are failed over while other service instances
are switched over to other nodes (component service instances are not
abruptly removed; instead, they are brought to the quiesced state before being
removed).

• SA_AMF_NODE_FAILOVER - The error has been identified as being at the
node level, and no service instance should be assigned to service units on that
node. All service instances assigned to service units contained on the node
are failed over to other nodes (via an abrupt termination of all node-local com-
ponents).
180 SAI-AIS-AMF-B.02.01 Section 6.3.7 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
• SA_AMF_NODE_FAILFAST - The error has been identified as being at the
node level, and components should not be in service on the node. The node
should be rebooted via a low-level interface.

• SA_AMF_APPLICATION_RESTART - The application should be completely
terminated and then started again by first terminating all of its service units and
then starting them again, ensuring that during the termination phase of the
restart procedure it is not required to reassign service instances (refer addi-
tionally to Section 7.4.7 on page 242). This recommendation should be used
when the failure is deemed to be a global application failure. It is important to
note that it is not required to preserve the pre-restart service instance assign-
ments to various service units in the application upon re-starting an applica-
tion. The instantiation phase of this recovery action should be carried out in
accordance with the redundancy model configuration of the various service
groups that belong to the application.

• SA_AMF_CLUSTER_RESET - The cluster should be reset. In order to exe-
cute this function, the Availability Management Framework reboots all nodes
that are part of the cluster through a low level interface without trying to termi-
nate the components individually. To be effective, this operation must be per-
formed such that all nodes are first halted before any of the nodes boots again.
This recommendation should be used only in the rare case in which a compo-
nent (most likely itself involved in error management) has enough knowledge
to foresee a "cluster reset" as the only viable recovery action from a global fail-
ure.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.3.7 181

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.3.8 saAmfCompCategoryT

#define SA_AMF_COMP_SA_AWARE 0x0001

#define SA_AMF_COMP_PROXY 0x0002

#define SA_AMF_COMP_PROXIED 0x0004

#define SA_AMF_COMP_LOCAL 0x0008

typedef SaUint32T saAmfCompCategoryT;

6.3.9 saAmfRedandancyModelT

typedef enum {

SA_AMF_2N_REDUNDANCY_MODEL = 1,

SA_AMF_NPM_REDUNDANCY_MODEL =2.

SA_AMF_N-WAY_REDUNDANCY-MODEL = 3,

SA_AMF_N_WAY_ACTIVE_REDUNDACY_MODEL = 4,

SA_AMF_NO_REDUNDANCY_MODEL= 5

} saAmfRedandancyModelT;

Refer to Section 3.7 on page 69 for a description of the various redundancy models
described in the above enum.

6.3.10 saAmfCompCapabilityModelT

typedef enum {

SA_AMF_COMP_X_ACTIVE_AND_Y_STANDBY = 1,

SA_AMF_COMP_X_ACTIVE_OR_Y_STANDBY = 2,

SA_AMF_COMP_ONE_ACTIVE_OR_Y_STANDBY = 3,

SA_AMF_COMP_ONE_ACTIVE_OR_ONE_STANDBY = 4,

SA_AMF_COMP_X_ACTIVE = 5,

SA_AMF_COMP_1_ACTIVE = 6,

SA_AMF_COMP_NON_PRE_INSTANTIABLE = 7

} saAmfCompCapabilityModelT;

Refer to Section 3.6 on page 68 for a description of the values described in the above enum.

6.3.11 Notification Related Types
182 SAI-AIS-AMF-B.02.01 Section 6.3.8 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
typedef enum {

SA_AMF_NODE_NAME = 1,

SA_AMF_SI_NAME = 2

}SaAmfAdditionalInfoIdT;

The preceding types are used in Availability Management Framework Alarms and
Notifications to convey additional information elements in the “Additional Information ID”
field associated with alarms and notifications.

6.3.12 SaAmfCallbacksT

typedef struct {

SaAmfHealthcheckCallbackT

saAmfHealthcheckCallback;

SaAmfComponentTerminateCallbackT

saAmfComponentTerminateCallback;

SaAmfCSISetCallbackT

saAmfCSISetCallback;

SaAmfCSIRemoveCallbackT

saAmfCSIRemoveCallback;

SaAmfProtectionGroupTrackCallbackT

saAmfProtectionGroupTrackCallback;

SaAmfProxiedComponentInstantiateCallbackT

saAmfProxiedComponentInstantiateCallback;

SaAmfProxiedComponentCleanupCallbackT

saAmfProxiedComponentCleanupCallback;

} SaAmfCallbacksT;

The SaAmfCallbacksT structure defines the various callback functions that the Avail-
ability Management Framework may invoke on a component.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.3.12 183

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.4 Library Life Cycle

6.4.1 saAmfInitialize()

Prototype

SaAisErrorT saAmfInitialize(

SaAmfHandleT *amfHandle,

const SaAmfCallbacksT *amfCallbacks,

SaVersionT *version

);

Parameters
amfHandle - [out] A pointer to the handle designating this particular initialization of the
Availability Management Framework that is to be returned by the Availability Manage-
ment Framework.

amfCallbacks - [in] If amfCallbacks is set to NULL, no callbacks are registered; other-
wise, it is a pointer to an SaAmfCallbacksT structure, containing the callback func-
tions of the process that the Availability Management Framework may invoke. Only
non-NULL callback functions in this structure will be registered.

version - [in/out] As an input parameter, version is a pointer to the required Availability
Management Framework version. In this case, minorVersion is ignored and should be
set to 0x00.
As an output parameter, the version actually supported by the Availability Manage-
ment Framework is delivered.

Description

This function initializes the Availability Management Framework for the invoking pro-
cess and registers the various callback functions. This function must be invoked prior
to the invocation of any other Availability Management Framework API function. The
handle amfHandle is returned as the reference to this association between the pro-
cess and the Availability Management Framework. The process uses this handle in
subsequent communication with the Availability Management Framework.
The amfCallbacks parameter designates the callbacks that the Availability Manage-
ment Framework can invoke.

If the implementation supports the required releaseCode, and a major version >= the
required majorVersion, SA_AIS_OK is returned. In this case, the version parameter is
set by this function to:

• releaseCode = required release code
184 SAI-AIS-AMF-B.02.01 Section 6.4 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
• majorVersion = highest value of the major version that this implementation can
support for the required releaseCode

• minorVersion = highest value of the minor version that this implementation can
support for the required value of releaseCode and the returned value of
majorVersion

If the above mentioned condition cannot be met, SA_AIS_ERR_VERSION is
returned, and the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the least value of the supported release codes that is
higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that is
less than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.4.1 185

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or a process that is providing the service is out of memory and cannot provide
the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_VERSION - The version parameter is not compatible with the version
of the Availability Management Framework implementation.

See Also

saAmfFinalize()

6.4.2 saAmfSelectionObjectGet()

Prototype

SaAisErrorT saAmfSelectionObjectGet(

SaAmfHandleT amfHandle,

SaSelectionObjectT *selectionObject

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating this particular initialization of the Availability Management Framework.

selectionObject - [out] A pointer to the operating system handle that the process can
use to detect pending callbacks.

Description

This function returns the operating system handle selectionObject, associated with
the handle amfHandle. The process can use this operating system handle to detect
pending callbacks, instead of repeatedly invoking saAmfDispatch() for this purpose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.

The selectionObject returned by saAmfSelectionObjectGet() is valid until
saAmfFinalize() is invoked on the same handle amfHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
186 SAI-AIS-AMF-B.02.01 Section 6.4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

See Also

 saAmfInitialize(), saAmfDispatch()

6.4.3 saAmfDispatch()

Prototype

SaAisErrorT saAmfDispatch(

SaAmfHandleT amfHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating this particular initialization of the Availability Management Framework.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saAmfDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING, as defined in the SA Forum
Overview document.

Description

This function invokes, in the context of the calling thread, pending callbacks for the
handle amfHandle in a way that is specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.4.3 187

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.

See Also

saAmfInitialize(), saAmfSelectionObjectGet()

6.4.4 saAmfFinalize()

Prototype

SaAisErrorT saAmfFinalize(

SaAmfHandleT amfHandle

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating this particular initialization of the Availability Management Framework.

Description

The saAmfFinalize() function closes the association, represented by the amfHandle
parameter, between the invoking process and the Availability Management Frame-
work. The process must have invoked saAmfInitialize() before it invokes this function.
A process must call this function once for each handle it acquired by invoking
saAmfInitialize().

If the saAmfFinalize() function returns successfully, the saAmfFinalize() function
releases all resources acquired when saAmfInitialize() was called. Moreover, it unreg-
isters all components registered for the particular handle. Furthermore, it stops any
tracking associated with the particular handle and cancels all pending callbacks
related to the particular handle. Note that because the callback invocation is asyn-
chronous, it is still possible that some callback calls are processed after this call
returns successfully.
188 SAI-AIS-AMF-B.02.01 Section 6.4.4 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
After saAmfFinalize() is called, the selection object is no longer valid.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saAmfInitialize()

6.5 Component Registration and Unregistration
The following functions are used to register and unregister components with the
Availability Management Framework.

6.5.1 saAmfComponentRegister()

Prototype

SaAisErrorT saAmfComponentRegister(

SaAmfHandleT amfHandle,

const SaNameT *compName,

const SaNameT *proxyCompName

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating this particular initialization of the Availability Management Framework. The
Availability Management Framework must maintain the list of components registered
via each such handle.

compName - [in] A pointer to the name of the component to be registered.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.5 189

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
proxyCompName - [in] A pointer to the name of the proxy component that is register-
ing the proxied component, identified by compName. The proxyCompName parame-
ter is used only when a proxied component is being registered by a proxy component;
otherwise, it must be set to NULL.

Description
The saAmfComponentRegister() function can be used by an SA-aware component to
register itself with the Availability Management Framework. It can also be used by a
proxy component to register a proxied component.

An SA-aware component calls saAmfComponentRegister() in order to indicate to the
Availability Management Framework that it is ready to take component service
instance assignments.

The process of an SA-aware component that registers a (possibly different) compo-
nent is called the registered process for the registered component. The other pro-
cesses of the SA-aware component are called unregistered processes.

A registered process for an SA-aware or proxied component differs from the unregis-
tered processes in that some of the API functions and callbacks are only valid for the
registered process. Refer to Appendix B for a detailed listing of the various APIs and
callbacks that are valid for unregistered processes.

The registered process must have supplied, in its saAmfInitialize() call, the
saAmfCSISetCallback(), saAmfCSIRemoveCallback() and
saAmfComponentTerminateCallback() callback functions.

The registered process for a proxied component must have also supplied, in its
saAmfInitialize() call, the saAmfProxiedComponentInstantiateCallback() and
saAmfProxiedComponentCleanupCallback() callback functions.

A component (SA-aware or proxied) cannot register or (be registered) twice before
having (been) unregistered, even with a different handle, obtained via the
saAmfInitialize() call.

If an SA-aware component fails, it is implicitly unregistered by the Availability Man-
agement Framework. The same is true for a proxied component, if its proxy fails - but
it itself does not fail. In case the proxied component fails, it is the task of the proxy to
explicitly unregister the failed component, if this is desired.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
190 SAI-AIS-AMF-B.02.01 Section 6.5.1 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saAmfInitialize() was incomplete,
since one or more of the callback functions that are listed below were not supplied:

• If a component registers itself: saAmfComponentTerminateCallback(),
saAmfCSISetCallback(), and saAmfCSIRemoveCallback()

• If a proxy component registers another component:
saAmfProxiedComponentInstantiateCallback() and
saAmfProxiedComponentCleanupCallback()

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
value returned if either compName is not a configured component, or compName or
proxyCompName are not DNs or the types of their first RDNs are not safComp.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - The proxy component, identified by proxyCompName,
has not been registered previously.

SA_AIS_ERR_EXIST - The component, identified by compName, has been regis-
tered previously, either via the amfHandle handle or another handle, obtained via the
saAmfInitialize() call.

SA_AIS_ERR_BAD_OPERATION - The proxy component, identified by
proxyCompName, which is registering a proxied component, has not been assigned
the proxy CSI with the active HA state, through which the proxied component being
registered is supposed to be proxied.

See Also

saAmfComponentUnregister(), SaAmfCSISetCallbackT,
SaAmfCSIRemoveCallbackT, SaAmfComponentTerminateCallbackT,
SaAmfProxiedComponentInstantiateCallbackT,
SaAmfProxiedComponentCleanupCallbackT, saAmfInitialize()
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.5.1 191

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.5.2 saAmfComponentUnregister()

Prototype

SaAisErrorT saAmfComponentUnregister(

SaAmfHandleT amfHandle,

const SaNameT *compName,

const SaNameT *proxyCompName

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating this particular initialization of the Availability Management Framework.

compName - [in] A pointer to the name of the component to be unregistered.

proxyCompName - [in] A pointer to the name of the proxy component unregistering
the proxied component identified by compName. This parameter is used only for
unregistering a proxied component by a proxy component; otherwise, it must be set
to NULL.

Description

The saAmfComponentUnregister() function can be used for two purposes:

A proxy component can unregister one of its proxied components or an SA-aware
component can unregister itself.

The former case will usually apply to enable another proxy to register for the proxied
component. Recall that at a given time at most one proxy can exist for a component.

The latter case is used by an SA-aware component to indicate to the Availability Man-
agement Framework that it is unable to continue providing the service, possibly
because of a fault condition that is hindering its ability to provide service.

When an SA-aware component unregisters with the Availability Management Frame-
work, the framework treats such an unregistration as an error condition (similar to one
signaled by an saAmfComponentErrorReport()) and engages the configured default
recovery action (recoveryOnError) on the component. As a consequence, its opera-
tional state may become disabled (refer to Section 6.1.1), and, therefore, all of its
component service instances are removed from it.

If a proxy component unregisters one of its proxied components, the operational state
of the latter does not change because unregistration does not indicate a failure in this
case. This is motivated by the assumption that another proxy will soon take over the
role of the previous proxy.
192 SAI-AIS-AMF-B.02.01 Section 6.5.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
During its life cycle, an SA-aware component can register or unregister multiple
times. Also a proxy component can register or unregister a proxied component multi-
ple times.

Before unregistering itself, a proxy component must unregister all of its proxied com-
ponents.

It is understood that a failed component is implicitly unregistered while it is cleaned
up.

The amfHandle in the saAmfComponentUnregister() call must be the same as that
used in the corresponding saAmfComponentRegister() call.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or the component has not been reg-
istered using this handle.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - The proxy component, identified by proxyCompName,
or the proxied component, identified by compName, has not been registered previ-
ously.

SA_AIS_ERR_BAD_OPERATION - The requested unregistration is not acceptable
because:

• The component identified by proxyCompName is not the proxy of the proxied
component identified by compName, or

• The component identified by compName has not unregistered its proxied compo-
nents before unregistering itself.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.5.2 193

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
See Also

saAmfComponentRegister(), saAmfInitialize()

6.5.3 saAmfComponentNameGet()

Prototype

SaAisErrorT saAmfComponentNameGet(

SaAmfHandleT amfHandle,

SaNameT *compName

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating a particular initialization of the Availability Management Framework.

compName - [out] A pointer to the name of the component to which the process
invoking this function belongs.

Description

This function returns the name of the component the calling process belongs to. This
function can be invoked by the process before its component has been registered
with the Availability Management Framework by saAmfComponentRegister(). The
component name provided by saAmfComponentNameGet() should be used by a pro-
cess when it registers its local component.

As the Availability Management Framework does not control the creation of all pro-
cesses that constitute a component, some conventions must be respected by the cre-
ators of these processes to allow the saAmfComponentNameGet() function to work
properly in the different processes which constitute a component.

On operating systems supporting the concept of environment variables, the Availabil-
ity Management Framework ensures that the SA_AMF_COMPONENT_NAME envi-
ronment variable is properly set when it invokes the INSTANTIATE command to
create a component. It is the responsibility of the INSTANTIATE commands, and
more generally of any entity, which creates processes for a component (also when
the components are not instantiated by the Availability Management Framework) to
ensure that the SA_AMF_COMPONENT_NAME environment variable is properly set
to contain the component name when creating new processes. For more information
about the environment variables supported by the Availability Management Frame-
work, refer to Section 4.2 on page 145.
194 SAI-AIS-AMF-B.02.01 Section 6.5.3 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - The Availability Management Framework is not aware
of any component associated with the invoking process.

See Also

saAmfComponentRegister(), saAmfInitialize()

6.6 Passive Monitoring of Processes of a Component
This section describes the API functions, which enable components to request pas-
sive monitoring of their processes by the Availability Management Framework.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.6 195

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.6.1 saAmfPmStart()

Prototype

SaAisErrorT saAmfPmStart(

SaAmfHandleT amfHandle,

const SaNameT *compName,

SaUint64T processId,

SaInt32T descendentsTreeDepth,

SaAmfPmErrorsT pmErrors,

SaAmfRecommendedRecoveryT recommendedRecovery

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating a particular initialization of the Availability Management Framework.

compName - [in] A pointer to the name of the component to which the monitored pro-
cesses belong.

processId - [in] Identifier of a process to be monitored.

descendentsTreeDepth - [in] Depth of the tree of descendents of the process, desig-
nated by processId, to be also monitored.

• A value of 0 indicates that no descendents of the designated process will be
monitored.

• A value of 1 indicates that direct children of the designated process will be moni-
tored.

• A value of 2 indicates that direct children and grand children of the designated
process will be monitored, and so on.

• A value of -1 indicates that descendents at any level in the descendents tree will
be monitored.

pmErrors - [in] Specifies the type of process errors to monitor. Monitoring for several
errors can be requested in a single call by ORing different SaAmfPmErrorsT values.

• SA_AMF_PM_NON_ZERO_EXIT requests the monitoring of processes exiting
with a non-zero exit status.

• SA_AMF_PM_ZERO_EXIT requests the monitoring of processes exiting with a
zero exit status.
196 SAI-AIS-AMF-B.02.01 Section 6.6.1 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
recommendedRecovery - [in] Recommended recovery to be performed by the Avail-
ability Management Framework. For details, refer to Section 6.3.7 on page 180.

Description

The saAmfPmStart() function requests the Availability Management Framework to
start passive monitoring of specific errors, which may occur to a process and its
descendents. Currently, only death of processes can be monitored. If one of the
errors being monitored occurs for the process or one of its descendents, the Availabil-
ity Management Framework will automatically report an error on the component iden-
tified by compName (see saAmfComponentErrorReport() for details regarding error
reports). The recommended recovery action will be set according to the
recommendedRecovery parameter.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - Either one or both of the cases that follow apply:

• The component, identified by compName, is not configured in the Availability
Management Framework to execute on the local node.

• The process identified by processId does not exist on the local node.

SA_AIS_ERR_ACCESS - The Availability Management rejects the requested recom-
mended recovery.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.6.1 197

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
See Also

saAmfPmStop(), saAmfComponentErrorReport(), saAmfInitialize()

6.6.2 saAmfPmStop()

Prototype

SaAisErrorT saAmfPmStop(

SaAmfHandleT amfHandle,

const SaNameT *compName,

SaAmfPmStopQualifierT stopQualifier,

SaInt64T processId,

SaAmfPmErrorsT pmErrors

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating a particular initialization of the Availability Management Framework.

compName - [in] A pointer to the name of the component to which the monitored pro-
cesses belong.

stopQualifier - [in] Qualifies which processes should stop being monitored.

• SA_AMF_PM_PROC: The Availability Management Framework stops monitoring
the process identified by processId.

• SA_AMF_PM_PROC_AND_DESCENDENTS: The Availability Management
Framework stops monitoring the process identified by processId and all its
descendents.

• SA_AMF_PM_ALL_PROCESSES: The Availability Management Framework
stop monitoring of all processes, which belong to the component identified by
compName.

processId - [in] Identifier of the process for which passive monitoring is to be stopped.

pmErrors - [in] Specifies the type of process errors that the Availability Management
Framework should stop monitoring for the designated processes. Stopping the moni-
toring for several errors can be requested in a single call by ORing different
SaAmfPmErrorsT values.
198 SAI-AIS-AMF-B.02.01 Section 6.6.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
Description

The saAmfPmStop() function requests the Availability Management Framework to
stop passive monitoring of specific errors, which may occur to a set of processes
belonging to a component.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - Either one, two, or all cases that follow apply:

• The component, identified by compName, is not configured in the Availability
Management Framework to execute on the local node.

• The process identified by processId does not execute on the local node.
• The process, identified by processId, was not monitored by the Availability Man-

agement Framework for errors specified by pmErrors.

See Also

saAmfInitialize(), saAmfPmStart()

6.7 Component Health Monitoring
The following calls are used to monitor the health of a component.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.7 199

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.7.1 saAmfHealthcheckStart()

Prototype

SaAisErrorT saAmfHealthcheckStart(

SaAmfHandleT amfHandle,

const SaNameT *compName,

const SaAmfHealthcheckKeyT *healthcheckKey,

SaAmfHealthcheckInvocationT invocationType,

SaAmfRecommendedRecoveryT recommendedRecovery

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating a particular initialization of the Availability Management Framework.

compName - [in] A pointer to the name of the component to be healthchecked.

healthcheckKey - [in] The key of the healthcheck to be executed. Using this key, the
Availability Management Framework can retrieve the corresponding healthcheck
parameters.

invocationType - [in] This parameter indicates whether the Availability Management
Framework or the process itself will invoke the healthcheck calls.

recommendedRecovery - [in] Recommended recovery to be performed by the Avail-
ability Management Framework if the component fails a healthcheck. For details,
refer to Section 6.3.7 on page 180.

Description

This function starts healthchecks via the invoking process for the component desig-
nated by compName. The type of the healthcheck (component-invoked or frame-
work-invoked) is specified by invocationType. If invocationType is
SA_HEALTHCHECK_AMF_INVOKED, the saAmfHealthcheckCallback() callback
function must have been supplied when the process invoked the saAmfInitialize()
call.
If a component wants to start more than one healthcheck, it should invoke this func-
tion once for each individual healthcheck. It is, however, not possible to have at a
given time and on the same amfHandle two healthchecks started for the same com-
ponent name and healthcheck key.

Return Values

SA_AIS_OK - The function returned successfully.
200 SAI-AIS-AMF-B.02.01 Section 6.7.1 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saAmfInitialize() was incomplete,
since the saAmfHealthcheckCallback() callback function is missing and
invocationType specifies SA_HEALTHCHECK_AMF_INVOKED.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - Either one or both of the cases that follow apply:

• The Availability Management Framework is not aware of a component desig-
nated by compName.

• The healthcheck with healthcheckKey is not configured for the component
named compName.

SA_AIS_ERR_ACCESS - The Availability Management rejects the requested recom-
mended recovery.

SA_AIS_ERR_EXIST - The healthcheck has already been started on the handle
amfHandle for the component, designated by compName, and the same value of
healthcheckKey.

See Also

SaAmfHealthcheckCallbackT, saAmfHealthcheckConfirm(),
saAmfHealthcheckStop(), saAmfInitialize()
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.7.1 201

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.7.2 SaAmfHealthcheckCallbackT

Prototype

typedef void (*SaAmfHealthcheckCallbackT)(

SaInvocationT invocation,

const SaNameT *compName,

SaAmfHealthcheckKeyT *healthcheckKey

);

Parameters
invocation - [in] The particular invocation of this callback function. The invoked pro-
cess returns invocation when it responds to the Availability Management Framework
by invoking the saAmfResponse() function.

compName - [in] A pointer to the name of the component that must undergo the par-
ticular healthcheck.

healthcheckKey - [in] The key of the healthcheck to be executed.

Description

The Availability Management Framework requests the component, identified by
compName, to perform a healthcheck specified by healthcheckKey. The Availability
Management Framework may ask a proxy component to execute a healthcheck on
one of its proxied components.
This callback is invoked in the context of a thread issuing an saAmfDispatch() call on
the handle amfHandle, which was specified when starting the healthcheck operation
via the saAmfHealthcheckStart() call. The Availability Management Framework pro-
vides the invocation parameter that the invoked process uses in the
saAmfResponse() function to notify the Availability Management Framework that it
has completed the healthcheck. The component reports the result of its healthcheck
to the Availability Management Framework using the error parameter of the
saAmfResponse() function, which in this case has one of the following values:

• SA_AIS_OK - The healthcheck completed successfully.
• SA_AIS_ERR_FAILED_OPERATION - The component failed to successfully

execute the given healthcheck and has reported an error on the faulty compo-
nent using saAmfComponentErrorReport().

If the invoked process does not respond with the saAmfResponse() function within a
configured time interval or returns an error, the Availability Management Framework
must engage the configured recovery policy (recoveryOnError) for the component to
which the process belongs.
202 SAI-AIS-AMF-B.02.01 Section 6.7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
See Also

saAmfResponse(), saAmfHealthcheckStart(), saAmfComponentErrorReport(),
saAmfDispatch()

6.7.3 saAmfHealthcheckConfirm()

Prototype

SaAisErrorT saAmfHealthcheckConfirm(

SaAmfHandleT amfHandle,

const SaNameT *compName,

const SaAmfHealthcheckKeyT *healthcheckKey,

SaAisErrorT healthcheckResult

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating a particular initialization of the Availability Management Framework.

compName - [in] A pointer to the name of the component the healthcheck result is
being reported for.

healthcheckKey - [in] The key of the healthcheck whose result is being reported.
Using this key, the Availability Management Framework can retrieve the correspond-
ing healthcheck parameters.

healthcheckResult - [in] This parameter indicates the result of the healthcheck per-
formed by the component. It can take one of the following values:

• SA_AIS_OK - The healthcheck completed successfully.
• SA_AIS_ERR_FAILED_OPERATION: The component failed to successfully

execute the given healthcheck and has reported an error on itself using
saAmfComponentErrorReport().

Description

This function allows a process to inform the Availability Management Framework that
it has performed the healthcheck identified by healthcheckKey for the component
designated by compName, and whether the healthcheck was successful or not.

Return Values

SA_AIS_OK - The function returned successfully.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.7.3 203

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
value is returned if the calling process is not the process that started the healthcheck
via saAmfHealthcheckStart().

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - Either one or both of the cases that follow apply:

• The Availability Management Framework is not aware of a component desig-
nated by compName.

• No component-invoked healthcheck has been started for the component, desig-
nated by compName, and the specified healthcheckKey parameter.

See Also

saAmfHealthcheckStart(), saAmfComponentErrorReport(), saAmfInitialize()
204 SAI-AIS-AMF-B.02.01 Section 6.7.3 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
6.7.4 saAmfHealthcheckStop()

Prototype

SaAisErrorT saAmfHealthcheckStop(

SaAmfHandleT amfHandle,

const SaNameT *compName,

const SaAmfHealthcheckKeyT *healthcheckKey

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating a particular initialization of the Availability Management Framework.

compName - [in] A pointer to the name of the component for which healthchecks are
to be stopped.

healthcheckKey - [in] The key of the healthcheck to be stopped. Using this key, the
Availability Management Framework can retrieve the corresponding healthcheck
parameters.

Description

This function is used to stop the healthcheck, referred to by healthcheckKey, for the
component designated by compName.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. A specific exam-
ple is when the calling process is not the process that has started the associated
healthcheck.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.7.4 205

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - Either one or both of the cases that follow apply:

• The Availability Management Framework is not aware of a component desig-
nated by compName.

• No healthcheck has been started for the component, designated by compName,
and the specified parameters healthcheckKey.

See Also

saAmfHealthcheckStart(), saAmfInitialize()

6.8 Component Service Instance Management
The following calls are used to manage the HA state of components on behalf of the
component service instances that they support.

6.8.1 saAmfHAStateGet()

Prototype

SaAisErrorT saAmfHAStateGet(

SaAmfHandleT amfHandle,

const SaNameT *compName,

const SaNameT *csiName,

SaAmfHAStateT *haState

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating a particular initialization of the Availability Management Framework.

compName - [in] A pointer to the name of the component for which the information is
requested.

csiName - [in] A pointer to the name of the component service instance for which the
information is requested.

haState - [out] A pointer to the HA state that the Availability Management Framework
has currently assigned to the component, identified by compName, on behalf of the
206 SAI-AIS-AMF-B.02.01 Section 6.8 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
component service instance, identified by csiName. The HA state is active, standby,
quiescing, or quiesced, as defined by the SaAmfHAStateT enumeration type.

Description

The Availability Management Framework returns the HA state of a component, identi-
fied by compName, on behalf of the component service instance, identified by
csiName.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - The component, identified by compName, has not reg-
istered with the Availability Management Framework, or the component has not been
assigned the component service instance, identified by csiName.

See Also

SaAmfCSISetCallbackT, saAmfInitialize()
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.8.1 207

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
6.8.2 SaAmfCSISetCallbackT

Prototype

typedef void (*SaAmfCSISetCallbackT)(

SaInvocationT invocation,

const SaNameT *compName,

SaAmfHAStateT haState,

SaAmfCSIDescriptorT csiDescriptor

);

Parameters
invocation - [in] This parameter designates a particular invocation of the callback
function. The invoked process returns invocation when it responds to the Availability
Management Framework using the saAmfResponse() or saAmfQuiescingComplete()
functions.

compName - [in] A pointer to the name of the component to which a new component
service instance is assigned or for which the HA state of one or all supported compo-
nent service instances is changed.

haState - [in] The new HA state to be assumed by the component for the component
service instance, identified by csiDescriptor, or for all component service instances
already supported by the component (if SA_AMF_CSI_TARGET_ALL is set in
csiFlags of the csiDescriptor parameter).

csiDescriptor - [in] A pointer to the descriptor with information about the component
service instances targeted by this callback invocation.

Description

The Availability Management Framework invokes this callback to request the compo-
nent, identified by compName, to assume a particular HA state, specified by haState,
for one or all component service instances.

The component service instances targeted by this call along with additional informa-
tion about them are provided by the csiDescriptor parameter.

If the haState parameter indicates the new HA state for the CSI(s) is quiescing, the
process must notify the Availability Management Framework when the CSI(s) have
been quiesced by using the saAmfQuiescingComplete() function. When invoking the
saAmfQuiescingComplete() function, the process returns invocation as an in parame-
ter.
208 SAI-AIS-AMF-B.02.01 Section 6.8.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
This callback is invoked in the context of a thread of a registered process issuing an
saAmfDispatch() call on the handle amfHandle, which was specified when registering
the component, identified by compName, via the saAmfComponentRegister() call.
The Availability Management Framework sets invocation, and the process returns
invocation as an in parameter when it responds to the Availability Management
Framework using the saAmfResponse() function.
The saAmfResponse() function also has error as an in parameter, which, in this case,
has one of the following possible values:

• SA_AIS_OK - The component executed the saAmfCSISetCallback() function
successfully.

• SA_AIS_ERR_FAILED_OPERATION - The component failed to assume the
HA state, specified by haState, for the given component service instance.

If the invoked process does not respond with saAmfResponse() within a configured
time interval or returns an SA_AIS_ERR_FAILED_OPERATION error value, the
Availability Management Framework must engage the configured recovery policy
(recoveryOnError) for the component to which the process belongs.

See Also

saAmfResponse(), saAmfCSIQuiescingComplete(), saAmfComponentRegister(),
saAmfDispatch()

6.8.3 SaAmfCSIRemoveCallbackT

Prototype

typedef void (*SaAmfCSIRemoveCallbackT)(

SaInvocationT invocation,

const SaNameT *compName,

const SaNameT *csiName,

SaAmfCSIFlagsT csiFlags

);

Parameters
invocation - [in] This parameter designates a particular invocation of the callback
function. The invoked process returns invocation when it responds to the Availability
Management Framework using the saAmfResponse() function.

compName - [in] A pointer to the name of the component from which all component
service instances or the component service instance, identified by csiName, will be
removed.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.8.3 209

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
csiName - [in] A pointer to the name of the component service instance that must be
removed from the component identified by compName.

csiFlags - [in] This flag specifies whether one or more component service instances
are affected. It can contain one of the values SA_AMF_TARGET_ONE or
SA_AMF_TARGET_ALL.

Description

The Availability Management Framework requests the component, identified by
compName, to remove the component service instances identified by csiName, from
the set of component service instances being supported.

If the value of csiFlags is SA_AMF_TARGET_ONE is set, csiName contains the com-
ponent service instance that must be removed. If the value of csiFlags is
SA_AMF_TARGET_ALL, csiName is NULL and the function must remove all compo-
nent service instances. SA_AMF_TARGET_ALL is always set for components that
only provide the “x active or x standby” capability model.

This callback is invoked in the context of a thread of a registered process issuing an
saAmfDispatch() call on the handle amfHandle, which was specified when registering
the component, identified by compName, via the saAmfComponentRegister() call.
The Availability Management Framework sets invocation, and the component returns
invocation as an in parameter when it responds to the Availability Management
Framework using the saAmfResponse() function. The saAmfResponse() function
also has error as an in parameter, which, in this case, has one of the following possi-
ble values:

• SA_AIS_OK - The component executed the saAmfCSIRemoveCallback()
function successfully.

• SA_AIS_ERR_FAILED_OPERATION -The component failed to remove the
given component service instance.

If the invoked process does not respond with saAmfResponse() within a configured
time interval or returns an error then the Availability Management Framework must
engage the configured recovery policy (recoveryOnError) for the component to which
the process belongs.

See Also

saAmfResponse(), saAmfComponentRegister(), saAmfDispatch()
210 SAI-AIS-AMF-B.02.01 Section 6.8.3 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
6.8.4 saAmfCSIQuiescingComplete()

Prototype

SaAisErrorT saAmfCSIQuiescingComplete(

SaAmfHandleT amfHandle,

SaInvocationT invocation,

SaAisErrorT error

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating a particular initialization of the Availability Management Framework.

invocation - [in] The invocation parameter that the Availability Management Frame-
work assigned when it asked the component to enter the SA_AMF_HA_QUIESCING
HA state for a particular component service instance or for all component service
instances assigned to it by invoking the saAmfCSISetCallback() callback function.

error - [in] The component returns the status of the completion of the quiescing oper-
ation, which has one of the following values:

• SA_AIS_OK - The component stopped successfully its activity related to a par-
ticular component service instance or to all component service instances
assigned to it.

• SA_AIS_ERR_FAILED_OPERATION - The component failed to stop its activ-
ity related to a particular component service instance or to all component ser-
vice instances assigned to it. Some of the actions required during quiescing
might not have been performed.

Description

Using this call, a component can notify the Availability Management Framework that it
has successfully stopped its activity related to a particular component service
instance or to all component service instances assigned to it, following a previous
request by the Availability Management Framework, via the component's
SaAmfCSISetCallbackT callback, to enter the SA_AMF_HA_QUIESCING state for
that particular component service instance or to all component service instances.

The invocation of this API indicates that the component has now completed quiescing
the particular component service instance or all component service instances and
has transitioned to the quiesced HA state for that particular component service
instance or to all component service instances.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.8.4 211

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
It is possible that the component is unable to successfully complete the ongoing work
due to, for example, a failure in the component. If possible, the component should
notify the Availability Management Framework of this fact also using this function.
The error parameter specifies whether or not the component has stopped cleanly as
requested.

This function may only be called by the registered process of a component, and the
amfHandle must be the same that was used when the registered process registered
this component via the saAmfComponentRegister() call.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is set incorrectly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory, and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

See Also

SaAmfCSISetCallbackT, saAmfResponse(), saAmfComponentRegister(),
saAmfInitialize()

6.9 Component Life Cycle
In this section, the callback function to request a component to terminate is
described. It contains also additional callback functions that proxy components export
to enable the Availability Management Framework to manage proxied components.
212 SAI-AIS-AMF-B.02.01 Section 6.9 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
6.9.1 SaAmfComponentTerminateCallbackT

Prototype

typedef void (*SaAmfComponentTerminateCallbackT)(

SaInvocationT invocation,

const SaNameT *compName

);

Parameters
invocation - [in] This parameter designates a particular invocation of this callback.
The invoked process returns invocation when it responds to the Availability Manage-
ment Framework using the saAmfResponse() function.

compName - [in] A pointer to the name of the component to be terminated.

Description

The Availability Management Framework requests the component, identified by
compName, to terminate. To terminate a proxied component, the Availability Manage-
ment Framework invokes this function on the proxy component that is proxying the
component identified by compName.

The component, identified by compName, is expected to release all acquired
resources and to terminate itself. The invoked process responds by invoking the
saAmfResponse() function. On return from the saAmfResponse() function, the Avail-
ability Management Framework removes all service instances associated with the
component and the component terminates.

This callback is invoked in the context of a thread of a registered process issuing an
saAmfDispatch() call on the handle amfHandle, which was specified when registering
the component, identified by compName, via the saAmfComponentRegister() call.
The component supplies invocation and an error code as in parameters to the
saAmfResponse() function. The error code, in this case, is one of the following val-
ues:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_FAILED_OPERATION - The component identified in

compName failed to terminate.

If the invoked process does not respond with saAmfResponse() within a configured
time interval or returns an error then the Availability Management Framework must
engage the configured recovery policy (recoveryOnError) for the component to which
the process belongs.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.9.1 213

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
See Also

saAmfResponse(), saAmfComponentRegister(), saAmfDispatch()

6.9.2 SaAmfProxiedComponentInstantiateCallbackT

Prototype

typedef void (*SaAmfProxiedComponentInstantiateCallbackT)(

SaInvocationT invocation,

const SaNameT *proxiedCompName

);

Parameters
invocation - [in] This parameter designates a particular invocation of this callback
function. The invoked process returns invocation when it responds to the Availability
Management Framework using the saAmfResponse() function.

proxiedCompName - [in] A pointer to the name of the proxied component to be
instantiated.

Description

The Availability Management Framework requests a proxy component to instantiate a
proxied component, identified by proxiedCompName. The proxy component to which
this request is addressed must have registered the proxied component with the Avail-
ability Management Framework before the Availability Management Framework
invokes this function.

This callback is invoked in the context of a thread of a registered process for a proxy
component issuing an saAmfDispatch() call on the handle amfHandle, which was
specified when registering the component, identified by proxiedCompName, via the
saAmfComponentRegister() call. The invoked process responds by invoking the
saAmfResponse() function, supplying invocation and error as in parameters; in this
case, error has one of the following values:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_FAILED_OPERATION -The proxy component failed to instanti-

ate the proxied component. It is useless for the Availability Management
Framework to attempt to instantiate the proxied component again.

• SA_AIS_ERR_TRY_AGAIN - The proxy component failed to instantiate the
proxied component. The Availability Management Framework might issue a
further attempt to instantiate the proxied component.
214 SAI-AIS-AMF-B.02.01 Section 6.9.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
If the invoked process does not respond with saAmfResponse() within a configured
time interval or returns an SA_AIS_ERR_FAILED_OPERATION error value, the
Availability Management Framework must engage the configured recovery policy
(recoveryOnError) for the component to which the process belongs.

See Also

saAmfResponse(), saAmfComponentRegister(), saAmfDispatch(),
SaAmfProxiedComponentCleanupCallbackT

6.9.3 SaAmfProxiedComponentCleanupCallbackT

Prototype

typedef void (*SaAmfProxiedComponentCleanupCallbackT)(

SaInvocationT invocation,

const SaNameT *proxiedCompName

);

Parameters
invocation - [in] This parameter designates a particular invocation of this callback
function. The invoked process returns invocation when it responds to the Availability
Management Framework using the saAmfResponse() function.

proxiedCompName - [in] A pointer to the name of the proxied component to be
abruptly terminated.

Description

The Availability Management Framework requests a proxy component to abruptly ter-
minate a proxied component, identified by proxiedCompName. The proxy component
to which this request is addressed must have registered with the Availability Manage-
ment Framework before the Availability Management Framework invokes this func-
tion.

This callback is invoked in the context of a thread of a registered process for a proxy
component issuing an saAmfDispatch() call on the handle amfHandle, which was
specified when registering the component, identified by proxiedCompName, via the
saAmfComponentRegister() call. The invoked process responds by invoking the
saAmfResponse() function, supplying invocation and error as in parameters; in this
case, error has one of the following values:

• SA_AIS_OK - The function completed successfully.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.9.3 215

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
• SA_AIS_ERR_FAILED_OPERATION -The proxy component failed to abruptly
terminate the proxied component. The Availability Management Framework
might issue a further attempt to abruptly terminate the proxied component.

If the invoked process does not respond with saAmfResponse() within a configured
time interval or returns an SA_AIS_ERR_FAILED_OPERATION error value, the
Availability Management Framework must engage the configured recovery policy
(recoveryOnError) for the component to which the process belongs.

See Also

saAmfResponse(), saAmfComponentRegister(), saAmfDispatch(),
SaAmfProxiedComponentInstantiateCallbackT

6.10 Protection Group Management

6.10.1 saAmfProtectionGroupTrack()

Prototype

SaAisErrorT saAmfProtectionGroupTrack(

SaAmfHandleT amfHandle,

const SaNameT *csiName,

SaUint8T trackFlags,

SaAmfProtectionGroupNotificationBufferT *notificationBuffer

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating this particular initialization of the Availability Management Framework.

csiName - [in] A pointer to the name of the component service instance, which is also
the name of the protection group, for which tracking is to start.

trackFlags - [in] The kind of tracking that is requested, which is the bitwise OR of one
or more of the flags SA_TRACK_CURRENT, SA_TRACK_CHANGES or
SA_TRACK_CHANGES_ONLY, defined in the SA Forum Overview document, which
have the following interpretation here:

• SA_TRACK_CURRENT - If notificationBuffer is NULL, information about all com-
ponents in the protection group is returned by a single subsequent invocation of
the saAmfProtectionGroupTrackCallback() notification callback; otherwise, this
information is returned in notificationBuffer when the
saAmfProtectionGroupTrack() call completes.
216 SAI-AIS-AMF-B.02.01 Section 6.10 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
• SA_TRACK_CHANGES -The notification callback is invoked each time at least
one change occurs in the protection group membership, or one attribute (HA
state or rank) of at least one component in the protection group changes. Infor-
mation about all of the components is passed to the callback.

• SA_TRACK_CHANGES_ONLY - The notification callback is invoked each time
at least one change occurs in the protection group membership, or one attribute
(HA state or rank) of at least one component in the protection group changes.
Only information about components in the protection group that have changed is
passed to this callback function.

It is not permitted to set both SA_TRACK_CHANGES and
SA_TRACK_CHANGES_ONLY in an invocation of this function.

notificationBuffer - [in/out] - A pointer to a buffer of type
SaAmfProtectionGroupNotificationBufferT. This parameter is ignored if
SA_TRACK_CURRENT is not set in trackFlags; otherwise, if notificationBuffer is not
NULL, the buffer will contain information about all components in the protection group
when saAmfProtectionGroupTrack() returns. The meaning of the fields of the
SaAmfProtectionGroupNotificationBufferT buffer is:

• numberOfItems - [in/out] If notification is NULL, numberOfItems is ignored as
input parameter; otherwise, it specifies that the buffer pointed to by notification
provides memory for information about numberOfItems components in the pro-
tection group.
When saAmfProtectionGroupTrack() returns with SA_AIS_OK or with
SA_AIS_ERR_NO_SPACE, numberOfItems contains the number of compo-
nents in the protection group.

• notification - [in/out] If notification is NULL, memory for the protection group infor-
mation is allocated by the Availability Management Framework. The caller is
responsible for freeing the allocated memory by calling the
saAmfProtectionGroupNotificationFree() function.

Description

The Availability Management Framework is requested to start tracking changes in the
protection group associated with the component service instance, identified by
csiName, or changes of attributes of any component in the protection group. These
changes are notified via the invocation of the saAmfProtectionGroupTrackCallback()
callback function, which must have been supplied when the process invoked the
saAmfInitialize() call.

An application may call saAmfProtectionGroupTrack() repeatedly for the same values
of amfHandle and csiName, regardless of whether the call initiates a one-time status
request or a series of callback notifications. If saAmfProtectionGroupTrack() is called
with trackFlags containing SA_TRACK_CHANGES_ONLY, while changes in the pro-
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.10.1 217

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
tection group are currently being tracked with SA_TRACK_CHANGES for the same
combination of amfHandle and csiName, the Availability Management Framework will
invoke further notification callbacks according to the new trackFlags. The same is
true vice versa.
Once saAmfProtectionGroupTrack() has been called with trackFlags containing either
SA_TRACK_CHANGES or SA_TRACK_CHANGES_ONLY, notification callbacks
can only be stopped by an invocation of saAmfProtectionGroupTrackStop().

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saAmfInitialize() was incomplete,
since the saAmfProtectionGroupTrackCallback() callback function is missing. This
value is not returned if trackFlags is set to SA_TRACK_CURRENT and the
notificationBuffer is not NULL.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NO_SPACE - The SA_TRACK_CURRENT flag is set, and the
notification field in notificationBuffer is not NULL, but the numberOfItems field in
notificationBuffer indicates that the provided buffer is too small to hold information
about all components in the protection group.

The numberOfItems field in notificationBuffer indicates that the provided buffer is too
small to hold information about all components in the protection group.

SA_AIS_ERR_NOT_EXIST - The component service instance, designated by
csiName, cannot be found.
218 SAI-AIS-AMF-B.02.01 Section 6.10.1 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BAD_FLAGS - The trackFlags parameter is invalid.

See Also

SaAmfProtectionGroupTrackCallbackT, saAmfProtectionGroupTrackStop(),
saAmfProtectionGroupNotificationFree(), saAmfInitialize()

6.10.2 SaAmfProtectionGroupTrackCallbackT

Prototype

typedef void (*SaAmfProtectionGroupTrackCallbackT)(

const SaNameT *csiName,

SaAmfProtectionGroupNotificationBufferT *notificationBuffer,

SaUint32T numberOfMembers,

SaAisErrorT error

);

Parameters
csiName - [in] A pointer to the name of the component service instance.

notificationBuffer - [in] A pointer to a notification buffer, which contains the requested
information about components in the protection group.

numberOfMembers - [in] The number of the components that belong to the protection
group associated with the component service instance, designated by csiName.

error - [in] This parameter indicates whether the Availability Management Framework
was able to perform the operation. The parameter error has one of the values:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry the saAmfProtectionGroupTrack() call later.

• SA_AIS_ERR_BAD_HANDLE - The handle amfHandle that was passed to the
corresponding saAmfProtectionGroupTrack() call is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

• SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly in the cor-
responding saAmfProtectionGroupTrack() call.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.10.2 219

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
• SA_AIS_ERR_NO_MEMORY - Either the Availability Management Frame-
work library or the provider of the service is out of memory and cannot provide
the service. The process that invoked saAmfProtectionGroupTrack() might
have missed one or more notifications.

• SA_AIS_ERR_NO_RESOURCES - Either the Availability Management
Framework library or the provider of the service is out of required resources
(other than memory), and cannot provide the service. The process that
invoked saAmfProtectionGroupTrack() might have missed one or more notifi-
cations.

• SA_AIS_ERR_NOT_EXIST - The component service instance, designated by
the parameter csiName, has been administratively deleted.

• SA_AIS_ERR_BAD_FLAGS - The trackFlags parameter is invalid in the corre-
sponding saAmfProtectionGroupTrack() call.

If the error returned is SA_AIS_ERR_NO_MEMORY or
SA_AIS_ERR_NO_RESOURCES, the process that invoked
saAmfProtectionGroupTrack() should invoke saAmfProtectionGroupTrackStop() and
then invoke saAmfProtectionGroupTrack() again to resynchronize with the current
state.

Description

This callback is invoked in the context of a thread issuing an saAmfDispatch() call on
the handle amfHandle, which was specified when the process requested tracking of
changes in the protection group associated with the component service instance,
identified by csiName, or in an attribute of any component in this protection group via
the saAmfProtectionGroupTrack() call. If successful, the
saAmfProtectionGroupTrackCallback() function returns the requested information in
the notificationBuffer parameter. The kind of information returned depends on the set-
ting of the trackFlags parameter of the saAmfProtectionGroupTrack() function.

The value of the numberOfItems attribute in the notificationBuffer parameter might be
greater than the value of the numberOfMembers parameter, because some compo-
nents may no longer be members of the protection group: If the
SA_TRACK_CHANGES flag or the SA_TRACK_CHANGES_ONLY flag is set, the
notificationBuffer might contain information about the current members of the protec-
tion group and also about components that have recently left the protection group.

If an error occurs, it is returned in the error parameter.

Return Values

None
220 SAI-AIS-AMF-B.02.01 Section 6.10.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
See Also

saAmfProtectionGroupTrack(), saAmfProtectionGroupTrackStop(), saAmfDispatch()

6.10.3 saAmfProtectionGroupTrackStop()

Prototype

SaAisErrorT saAmfProtectionGroupTrackStop(

SaAmfHandleT amfHandle,

const SaNameT *csiName

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating this particular initialization of the Availability Management Framework.

csiName - [in] A pointer to the name of the component service instance.

Description

The invoking process requests the Availability Management Framework to stop track-
ing protection group changes for the component service instance designated by
csiName.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.10.3 221

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NOT_EXIST - This value is returned if one or both cases below
occurred:

• The component service instance, designated by csiName, cannot be found,
• No track of protection group changes for csiName was previously started via the

saAmfProtectionGroupTrack() call with track flags SA_TRACK_CHANGES or
SA_TRACK_CHANGES_ONLY, and which is still in effect.

See Also

SaAmfProtectionGroupTrackCallbackT, saAmfProtectionGroupTrack(),
saAmfInitialize()

6.10.4 saAmfProtectionGroupNotificationFree()

Prototype

SaAisErrorT saAmfProtectionGroupNotificationFree(

SaAmfHandleT amfHandle,

SaAmfProtectionGroupNotificationT *notification

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating this particular initialization of the Availability Management Framework.

notification - [in] A pointer to the notification buffer that was allocated by the Availabil-
ity Management Framework library in the saAmfProtectionGroupTrack() function and
is to be released.

Description
This function frees the memory pointed to by notification and that was allocated by
the Availability Management Framework library in a previous call to the
saAmfProtectionGroupTrack() function.

For details, refer to the notificationBuffer parameter in the corresponding invocation of
the saAmfProtectionGroupTrack() function.

Return Values
SA_AIS_OK - The function completed successfully.
222 SAI-AIS-AMF-B.02.01 Section 6.10.4 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

See Also
saAmfProtectionGroupTrack()

6.11 Error Reporting

6.11.1 saAmfComponentErrorReport()

Prototype

SaAisErrorT saAmfComponentErrorReport(

SaAmfHandleT amfHandle,

const SaNameT *erroneousComponent,

SaTimeT errorDetectionTime,

SaAmfRecommendedRecoveryT recommendedRecovery,

SaNtfIdentifierT ntfIdentifier

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating a particular initialization of the Availability Management Framework.

erroneousComponent - [in] A pointer to the name of the erroneous component.

errorDetectionTime - [in] The absolute time when the reporting component detected
the error. If this value is 0, it is assumed that the time at which the library received the
error is the error detection time.

recommendedRecovery - [in] Recommended recovery action.

ntfIdentifier - [in] Identifier of the notification sent by the component to the Notification
Service (see [2]) prior to reporting the error to the Availability Management Frame-
work.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.11 223

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
Description

The saAmfComponentErrorReport() function reports an error and provides a recov-
ery recommendation to the Availability Management Framework. The Availability
Management Framework validates the recommended recovery action and reacts to it
as described in Section 3.12.2.1 on page 141.

Prior to reporting the error to the Availability Management Framework, the compo-
nent should send a notification to the Notification Service providing adequate infor-
mation for cause analysis. The notification identifier returned by the Notification
Service must be provided in the ntfIdentifier parameter for correlation purposes. In
the case where no notification is produced prior to this call, the special value
SA_NTF_IDENTIFIER_UNUSED (see [2]) is passed in ntfIdentifier.

Return Values

SA_AIS_OK - The function returned successfully, and the Availability Management
Framework has been notified of the error report.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - The component, specified by compName, is not con-
tained in the Availability Management Framework’s configuration.

SA_AIS_ERR_ACCESS - The Availability Management rejects the requested recom-
mended recovery.

See Also

saAmfComponentErrorClear(), saAmfInitialize()
224 SAI-AIS-AMF-B.02.01 Section 6.11.1 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
6.11.2 saAmfComponentErrorClear()

Prototype

SaAisErrorT saAmfComponentErrorClear(

SaAmfHandleT amfHandle,

const SaNameT *compName,

SaNtfIdentifierT ntfIdentifier

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating a particular initialization of the Availability Management Framework.

compName - [in] A pointer to the name of the component to be cleared of any error.

ntfIdentifier - [in] Identifier of the notification sent by the component to the Notification
Service (see [2]).

Description

The function cancels the previous errors reported about the component, identified by
compName. The Availability Management Framework may now change the compo-
nent's operational state to "enabled", assuming that nothing else prevents this. The
Availability Management Framework may, then, perform additional assignments of
component service instances to the component.

Before clearing all errors reported about the component, a notification should be sent
by the component to the Notification Service providing adequate information to prop-
erly clear active alarms. The notification identifier returned by the Notification Service
must be provided in the ntfIdentifier parameter for correlation purposes. In the case
where no notification is produced prior to this call, the special value
SA_NTF_IDENTIFIER_UNUSED (see [2]) is passed in ntfIdentifier.

Return Values

SA_AIS_OK - The function returned successfully, and the Availability Management
Framework has been reliably notified about clearing the error. Upon return, it is guar-
anteed that the Availability Management Framework will not lose the error clear
instruction, as long as the cluster is not reset.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.11.2 225

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

SA_AIS_ERR_NOT_EXIST - The component, specified by compName, is not con-
tained in the Availability Management Framework’s configuration.

See Also

saAmfComponentErrorReport(), saAmfInitialize()

6.12 Component Response to Framework Requests

6.12.1 saAmfResponse()

Prototype

SaAisErrorT saAmfResponse(

SaAmfHandleT amfHandle,

SaInvocationT invocation,

SaAisErrorT error

);

Parameters
amfHandle - [in] The handle, obtained through the saAmfInitialize() function, desig-
nating a particular initialization of the Availability Management Framework.

invocation - [in] This parameter associates an invocation of this response function
with a particular invocation of a callback function by the Availability Management
Framework.
226 SAI-AIS-AMF-B.02.01 Section 6.12 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
error - [in] The response of the process to the associated callback. It returns
SA_AIS_OK if the associated callback was successfully executed by the process;
otherwise, it returns an appropriate error as described in the corresponding callback.

Description

The component responds to the Availability Management Framework with the result
of its execution of a particular request of the Availability Management Framework,
designated by invocation. The request can be of one of the following types:

• Request for executing a given healthcheck. See saAmfHealthcheckCallback().
• Request for terminating a component.

See saAmfComponentTerminateCallbackT.
• Request for adding/assigning a given state to a component on behalf of a com-

ponent service instance. See saAmfCSISetCallbackT.
• Request for removing a component service instance from a component. See

saAmfCSIRemoveCallbackT.
• Request for instantiating a proxied component. See

saAmfProxiedComponentInstantiateCallbackT.
• Request for cleaning up a proxied component. See

saAmfProxiedComponentCleanupCallbackT.

The component replies to the Availability Management Framework when either (i) it
cannot carry out the request, or (ii) it has failed to successfully complete the execu-
tion of the request, or (iii) it has successfully completed the request.

With the exception of the response to an saAmfHealthcheckCallback() call, this func-
tion may be called only by a registered process, that is, the amfHandle must be the
same that was used when the registered process registered this component via the
saAmfComponentRegister() call. The response to an saAmfHealthcheckCallback()
call may only be issued by the process that started this healthcheck.

Return Values

SA_AIS_OK - The function returned successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
AIS Specification SAI-AIS-AMF-B.02.01 Section 6.12.1 227

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BAD_HANDLE - The handle amfHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Availability Management Framework
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other
than memory).

See Also

SaAmfHealthcheckCallbackT, SaAmfComponentTerminateCallbackT,
SaAmfCSISetCallbackT, SaAmfCSIRemoveCallbackT,
SaAmfProxiedComponentInstantiateCallbackT,
SaAmfProxiedComponentCleanupCallbackT, saAmfComponentRegister(),
saAmfInitialize()
228 SAI-AIS-AMF-B.02.01 Section 6.12.1 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
7 Administrative API

7.1 Availability Management Framework Administration API Model

7.1.1 Availability Management Framework Administration API Basics

This section describes the various administrative API functions that the IMM Service
exposes on behalf of the Availability Management Framework to a system adminis-
trator. These API functions are described using a ‘C’ API syntax. The main clients of
this administrative API are system management applications, SNMP agents and CIM
providers that typically convert system administration commands (invoked from a
management station) to the correct administrative API sequence to yield the desired
result that is expected upon execution of the system administration command.

The Availability Management Framework administrative API functions are applicable
to the entities that are controlled by the Availability Management Framework like ser-
vice units and service instances. Thus, restarting a node using an Availability Man-
agement Framework administration API shall restart all the components contained in
the service units housed in the node. This operation will not reboot the node. Simi-
larly, restarting a cluster in the context of Availability Management Framework shall
restart all components in the cluster, but shall not reboot the nodes in the cluster.

Most Availability Management Framework administrative API functions are applicable
to the Service Unit (SU) logical entity and entities to which it belongs like a Service
Group (SG) or a node. In certain cases, an exception has been made, where the
administration operation directly affects a component within a service unit; however,
those exceptions are rare. This choice of granularity for administrative operations
aligns with Section 3.2.4, which advocates a coarser-grained and aggregated view of
the components via the service unit to the system administrator.

Administrative operations that are applicable to the lowest granular logical entity are
called the primitive operations. As explained above and in most cases, the lowest
granular logical entity is a service unit. The semantics of certain other administrative
operations imply a repetitive execution of the same primitive administrative operation
to yield the desired result. These operations are called composite operations. For an
example, starting external active monitoring (EAM) on a service unit involves starting
external active monitoring on all the components housed in the node. Thus, in this
case, starting EAM on the service unit is a composite operation, and starting EAM on
an individual component is a primitive operation.

In the remainder of this section, we consider that concurrent and potentially conflict-
ing administrative operations are invalid, i.e., when an administrator has initiated an
administrative operation on a logical entity ‘A’, any other administrative operation that
AIS Specification SAI-AIS-AMF-B.02.01 Section 7 229

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
involves a logical entity with which this logical entity ‘A’ has a relationship (association
or aggregation) will not be allowed until the first operation on ‘A’ is done.

A general principle that has been adhered to while specifying these administrative
operations is that an operation done at a given scope can only be undone by perform-
ing the reverse operation at the same scope. This means, for example, one cannot
lock at the node-level and then unlock each service unit one by one at the service
unit-level. This is especially applicable to administrative operations that manipulate
the administrative state.

These API functions will be exposed by the IMM Service Object Management library
(see [4]).
230 SAI-AIS-AMF-B.02.01 Section 7.1.1 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
7.2 Include File and Library Name
The appropriate IMM Service header file and the Availability Management Frame-
work header file must be included in the source of an application using the Availability
Management Framework administration API; For the name of the IMM Service
header file, see [4]).

To use the Availability Management Framework administration API, an application
must be bound to the IMM Service library (see [4] for the library name).

7.3 Type Definitions
The specification of Availability Management Framework Administration API requires
the following types, in addition to the ones already described.

7.3.1 saAmfAdminOperationIdT

typedef enum {

SA_AMF_ADMIN_UNLOCK = 1,

SA_AMF_ADMIN_LOCK = 2,

SA_AMF_ADMIN_LOCK_INSTANTIATION =3,

SA_AMF_ADMIN_UNLOCK_INSTANTIATION =4,

SA_AMF_ADMIN_SHUTDOWN =5,

SA_AMF_ADMIN_RESTART = 6,

SA_AMF_ADMIN_SI_SWAP = 7,

SA_AMF_ADMIN_SG_ADJUST = 8,

SA_AMF_ADMIN_REPAIRED = 9,

SA_AMF_ADMIN_EAM_START = 10,

SA_AMF_ADMIN_EAM_STOP =11

} saAmfAdminOperationIdT;

7.4 Availability Management Framework Administration API

As explained above, the administrative API shall be exposed by the IMM Service
library. The IMM Service API saImmOmAdminOperationInvoke() or
saImmOmAdminOperationInvokeAsync() functions shall be invoked with the appro-
priate operationId (see Section 7.3.1) and objectName to execute a particular admin-
istrative operation. In the following section, the administrative APIs are described with
AIS Specification SAI-AIS-AMF-B.02.01 Section 7.2 231

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
the assumption that the Availability Management Framework is an object imple-
menter for the various administrative operations that will be initiated as a conse-
quence of invoking the saImmOmAdminOperationInvoke() or
saImmOmAdminOperationInvokeAsync() functions (see [4]) with the appropriate
operationId (described in Section 7.3.1) on the entity designated by objectName.

The API syntax for the administrative APIs shall only use the corresponding enumer-
ation value for the operationId as explained in 7.3.1 on page 231 for administrative
operations on various Availability Management Framework logical entities along with
objectName and the possible return values.

The return values explained in the sections below for various administrative opera-
tions shall be passed in the operationReturnValue parameter, which is provided by
the invoker of the saImmOmAdminOperationInvoke() or
saImmOmAdminOperationInvokeAsync() functions to obtain return codes from the
object implementer (Availability Management Framework, in this case).

The operations described below are applicable to and have the same effects on both
pre-instantiable and non-pre-instantiable service units, unless explicitly stated other-
wise.

7.4.1 Administrative State Modification Operations

A fair number of administrative operations involve the manipulation of the administra-
tive state. In order to aid in the description of such administrative operations, a figure
is provided illustrating the various administrative states and the various operations
that are applicable on an entity when it is in a particular administrative state. The fig-
ure below uses abbreviated form for the description of administrative operations and
these correspond to the following:

• UL = SA_AMF_ADMIN_UNLOCK
• L = SA_AMF_ADMIN_LOCK
• ULI = SA_AMF_ADMIN_UNLOCK_INSTANTIATION
• LI = SA_AMF_ADMIN_LOCK_INSTANTIATION
• SD = SA_AMF_ADMIN_SHUTDOWN

The dotted line in the figure represents the internal (spontaneous) transition corre-
sponding to the completion of the shutting down operation that transitions the entity
into locked state without further external intervention.
232 SAI-AIS-AMF-B.02.01 Section 7.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
FIGURE 26 Administrative States and Related Operations for Availability Management Framework Entities

UL

L

UL

SD
CompleteL

SD
ULI

UNLOCKED

SHUTTING-DOWN

LOCKED

LOCKED-INSTANTIATION

LI
AIS Specification SAI-AIS-AMF-B.02.01 Section 7.4.1 233

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
7.4.2 SA_AMF_ADMIN_UNLOCK

Parameters
operationId = SA_AMF_ADMIN_UNLOCK

objectName - [in] A pointer to the name of the logical entity to be unlocked. The name
is expressed as a LDAP DN. The type of the logical entity is inferred by parsing this
DN.

Description
This administrative operation is applicable to a service unit, a service instance, node,
a service group, an application, and the cluster, i.e., all entities that possess an
administrative state.

The invocation of this administrative operation sets the administrative state of the log-
ical entity designated by objectName to unlocked. Refer to Sections 3.3.1.2 on page
41 (service unit), 3.3.3.1 on page 56 (SI), 3.3.5 on page 58 (service group), 3.3.6.1 on
page 59 (node), 3.3.7 on page 61 (application) and 3.3.8 on page 61 (cluster) for
more details regarding the respective status of the logical entities that results as a
consequence of invoking this administrative operation on these entities.

If this operation is invoked on an entity that is already unlocked, there is no change in
the status of such an entity, i.e., it remains in unlocked state and the caller is returned
a benign SA_AIS_ERR_NO_OP error code.

If this operation is invoked on an entity that is locked for instantiation, there is no
change in the status of such an entity, i.e., it remains in the locked-instantiation state,
and the caller is returned an SA_AIS_ERR_BAD_OPERATION error value.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error should be generally returned in cases where the requested
action is valid but not currently possible, probably because another operation is act-
ing upon the logical entity on which the administrative operation is invoked. Such an
operation can be another administrative operation or an error recovery initiated by the
Availability Management Framework.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative procedure is not supported
by the type of entity denoted by objectName.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity as it is already in unlocked state.
234 SAI-AIS-AMF-B.02.01 Section 7.4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the
target entity is in locked-instantiation administrative state.

See Also

SA_AMF_ADMIN_LOCK, SA_AMF_ADMIN_SHUTDOWN

7.4.3 SA_AMF_ADMIN_LOCK

Parameters
operationId = SA_AMF_ADMIN_LOCK

objectName - [in] A pointer to the name of the logical entity to be locked. The name is
expressed as a LDAP DN. The type of the logical entity is inferred by parsing this DN.

Description
This administrative operation is applicable to a service unit, a service instance, a
node, a service group, an application, and the cluster, i.e., all Availability Manage-
ment Framework entities that support an administrative state.

The invocation of this administrative operation sets the administrative state of the log-
ical entity designated by objectName to locked. Refer to Sections 3.3.1.2 on page 41
(service unit), 3.3.3.1 on page 56 (SI), 3.3.5 on page 58 (service group), 3.3.6.1 on
page 59 (node), 3.3.7 on page 61 (application) and 3.3.8 on page 61 (cluster) for
more details regarding the respective status of the logical entities that results as a
consequence of invoking this administrative operation on these entities.

If this operation is invoked by a client on an entity that is already locked, there is no
change in the status of such an entity, i.e., it remains in the locked state, but a benign
error value SA_AIS_ERR_NO_OP is returned to the client conveying that the entity in
question, designated by objectName, is already in locked state.

If this operation is invoked on an entity that is locked for instantiation, there is no
change in the status of such an entity, i.e., it remains in the locked-instantiation state,
and the caller is returned an SA_AIS_ERR_BAD_OPERATION error value.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error should be generally returned in cases where the requested
action is valid but not currently possible, probably because another operation is act-
ing upon the logical entity on which the administrative operation is invoked. Such an
operation can be another administrative operation or an error recovery initiated by the
Availability Management Framework.
AIS Specification SAI-AIS-AMF-B.02.01 Section 7.4.3 235

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_SUPPORTED -This administrative procedure is not supported
by the type of entity denoted by objectName.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity as it is already in locked state.

SA_AIS_ERR_REPAIR_PENDING - If during the execution of this operation, certain
erroneous components do not co-operate with the Availability Management Frame-
work in carrying out the administrative operation, the Availability Management Frame-
work tries to terminate them as part of the recovery operation before returning from
the operation. If the Availability Management Framework cannot terminate these
erroneous components, it will put them in the termination-failed presence state. How-
ever, the Availability Management Framework will continue the administrative opera-
tion but will return from the call with this error value, before initiating the required
repair operations for such components. The caller of the administrative operation is
responsible for discovering such erroneous components and tracking the completion
of the subsequent repair operations.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the
target entity is in locked-instantiation administrative state.

See Also
SA_AMF_ADMIN_UNLOCK

7.4.4 SA_AMF_ADMIN_LOCK_INSTANTIATION

Parameters
operationId = SA_AMF_ADMIN_LOCK_INSTANTIATION

objectName - [in] A pointer to the name of the logical entity to be locked for instantia-
tion. The name is expressed as a LDAP DN. The type of the logical entity is inferred
by parsing this DN.

Description
This administrative operation is applicable to a service unit, a node, a service group,
an application, and the cluster.

The invocation of this administrative operation sets the administrative state of the log-
ical entity designated by objectName to locked-instantiation subject to constraints
described below, causing all relevant service units to become non-instantiable after
their termination. Refer to Sections 3.3.1.2 on page 41 (service unit), 3.3.5 on page
58 (service group), 3.3.6.1 on page 59 (node), 3.3.7 on page 61 (application) and
236 SAI-AIS-AMF-B.02.01 Section 7.4.4 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
3.3.8 on page 61 (cluster) for more details regarding the respective status of the logi-
cal entities that results as a consequence of invoking this administrative operation on
these entities.

After successful invocation of this procedure, all components in all pertinent service
units are terminated; in particular, all processes in those components must cease to
exist.

Once this operation is invoked on a logical entity, as explained above, all pertinent
service units within its scope become non-instantiable (after being terminated) and
the effect of this operation can only be reversed by applying another administrative
operation designated by the operationId
SA_AMF_ADMIN_UNLOCK_INSTANTIATION, which causes the relevant service
units to be instantiated in a locked state provided that the entity is not locked for
instantiation at any other level, the concerned service units are pre-instantiable, and
the redundancy mode of the pertinent service groups allows the instantiation. Note
that for non-pre-instantiable service units, the application of
SA_AMF_ADMIN_LOCK_INSTANTIATION is semantically equivalent to the applica-
tion of SA_AMF_ADMIN_LOCK with regards to the presence state of the service
units.

If the entity is unavailable (for example if a node is configured but not a member) dur-
ing the invocation of this administrative operation, all service units within the scope of
the entity are set to non-instantiable and they can only be ever again instantiated in a
locked state after another administrative operation designated by the operationId
SA_AMF_ADMIN_UNLOCK_INSTANTIATION (refer to Section 7.4.5 on page 238) is
invoked on the entity provided that the entity is not locked for instantiation at any
other level.

If this operation is invoked by a client on an entity that is already in locked-instantia-
tion state, there is no change in the status of such an entity, i.e., it remains in that
state but a benign error value SA_AIS_ERR_NO_OP is returned to the client convey-
ing that the state of the concerned entity in question did not change.

If this operation is invoked by a client on an entity that is either in the shutting-down or
unlocked administrative state, there is no change in the status of such an entity, i.e., it
remains in the respective state, and the caller is returned an
SA_AIS_ERR_BAD_OPERATION error value.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error should be generally returned in cases where the requested
action is valid but not currently possible, probably because another operation is act-
ing upon the logical entity on which the administrative operation is invoked. Such an
AIS Specification SAI-AIS-AMF-B.02.01 Section 7.4.4 237

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
operation can be another administrative operation or an error recovery initiated by the
Availability Management Framework.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_SUPPORTED -This administrative procedure is not supported
by the type of entity denoted by objectName.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity and it remains in the current state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the
target entity is either in the shutting-down or unlocked administrative state.

SA_AIS_ERR_REPAIR_PENDING - If during the execution of this operation, certain
erroneous components do not co-operate with the Availability Management Frame-
work in carrying out the administrative operation, the Availability Management Frame-
work tries to terminate them as part of the recovery operation before returning from
the operation. If the Availability Management Framework cannot terminate these
erroneous components, it will put them in the termination-failed presence state. How-
ever, the Availability Management Framework will continue the administrative opera-
tion but will return from the call with this error value, before initiating the required
repair operations for such components. The caller of the administrative operation is
responsible for discovering such erroneous components and tracking the completion
of the subsequent repair operations

See Also
SA_AMF_UNLOCK_INSTANTIATION

7.4.5 SA_AMF_ADMIN_UNLOCK_INSTANTIATION

Parameters
operationId = SA_AMF_ADMIN_UNLOCK_INSTANTIATION

objectName - [in] A pointer to the name of the logical entity to be unlocked for instan-
tiation. The name is expressed as a LDAP DN. The type of the logical entity is
inferred by parsing this DN.

Description
This administrative operation is applicable to a service unit, a node, a service group,
an application, and the cluster, i.e., all Availability Management Framework entities
that support an administrative state with a locked-instantiation value.

The invocation of this administrative operation sets the administrative state of the log-
ical entity designated by objectName to locked. Refer to Sections 3.3.1.2 on page 41
(service unit), 3.3.3.1 on page 56 (SI), 3.3.5 on page 58 (service group), 3.3.6.1 on
238 SAI-AIS-AMF-B.02.01 Section 7.4.5 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
page 59 (node), 3.3.7 on page 61 (application) and 3.3.8 on page 61 (cluster) for
more details regarding the respective status of the logical entities that results as a
consequence of invoking this administrative operation on these entities.

If the current administrative state of the target entity is locked-instantiation, the invo-
cation of this operation on such an entity causes all of the relevant service units to
become instantiable (though they remain in locked state), provided that the con-
cerned service units are not locked for instantiation at some other level. A subsequent
invocation of the SA_AMF_ADMIN_UNLOCK administrative operation would make
the relevant service units available for SI assignment by the Availability Management
Framework.

If this operation is invoked by a client on an entity that is already locked, there is no
change in the status of such an entity, i.e., it remains in the locked state, but a benign
error value SA_AIS_ERR_NO_OP is returned to the client conveying that the entity in
question, designated by objectName, is already in locked state.

If this operation is invoked by a client on an entity that is either in the shutting-down or
unlocked administrative state, there is no change in the status of such an entity, i.e., it
remains in the respective state, and the caller is returned an
SA_AIS_ERR_BAD_OPERATION error value.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error should be generally returned in cases where the requested
action is valid but not currently possible, probably because another operation is act-
ing upon the logical entity on which the administrative operation is invoked. Such an
operation can be another administrative operation or an error recovery initiated by the
Availability Management Framework.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_SUPPORTED -This administrative procedure is not supported
by the type of entity denoted by objectName.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity as it is already in locked state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the
target entity is either in the shutting-down or unlocked administrative state.

See Also
SA_AMF_ADMIN_LOCK_INSTANTIATION
AIS Specification SAI-AIS-AMF-B.02.01 Section 7.4.5 239

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
7.4.6 SA_AMF_ADMIN_SHUTDOWN

Parameters
operationId = SA_AMF_ADMIN_SHUT_DOWN

objectName - [in] A pointer to the name of the logical entity to be shut down. The
name is expressed as a LDAP DN. The type of the logical entity is inferred by parsing
this DN.

Description
This administrative operation is applicable to a service unit, a service instance, a
node, a service group, an application, and the cluster, i.e., all Availability Manage-
ment Framework entities that support an administrative state.

The invocation of this administrative operation sets the administrative state of the log-
ical entity designated by objectName to shutting-down. This administrative operation
is non-blocking, i.e., it does not wait for the logical entity designated by objectName to
transition to the locked state, which can possibly take a very long time. Refer to Sec-
tions 3.3.1.2 on page 41 (service unit), 3.3.3.1 on page 56 (SI), 3.3.5 on page 58 (ser-
vice group), 3.3.6.1 on page 59 (node), 3.3.7 on page 61 (application) and 3.3.8 on
page 61 (cluster) for more details regarding the respective status of the logical enti-
ties that results as a consequence of invoking this administrative operation on these
entities.

If this operation is invoked on an entity that is already in shutting-down administrative
state, there is no change in the status of such an entity, i.e., it continues shutting
down, and the caller is returned a benign SA_AIS_ERR_NO_OP error value, which
means that the entity is already shutting down.

If this operation is invoked by a client on an entity that is either in locked or locked-
instantiation administrative state, there is no change in the status of such an entity,
i.e., it remains locked or locked for instantiation, and the caller is returned an
SA_AIS_ERR_BAD_OPERATION error value.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error should be generally returned in cases where the requested
action is valid but not currently possible, probably because another operation is act-
ing upon the logical entity on which the administrative operation is invoked. Such an
operation can be another administrative operation or an error recovery initiated by the
Availability Management Framework.
240 SAI-AIS-AMF-B.02.01 Section 7.4.6 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative procedure is not supported
by the type of entity denoted by objectName.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity as it is already in shutting-down state.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the
target entity is locked or locked for instantiation.

SA_AIS_ERR_REPAIR_PENDING - If during the execution of this operation, certain
erroneous components do not co-operate with the Availability Management Frame-
work in carrying out the administrative operation, the Availability Management Frame-
work tries to terminate them as part of the recovery operation before returning from
the operation. If the Availability Management Framework cannot terminate these
erroneous components, it will put them in the termination-failed presence state. How-
ever, the Availability Management Framework will continue the administrative opera-
tion but will return from the call with this error value, before initiating the required
repair operations for such components. The caller of the administrative operation is
responsible for discovering such erroneous components and tracking the completion
of the subsequent repair operations.

See Also
SA_AMF_ADMIN_LOCK, SA_AMF_ADMIN_UNLOCK
AIS Specification SAI-AIS-AMF-B.02.01 Section 7.4.6 241

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
7.4.7 SA_AMF_ADMIN_RESTART

Parameters
operationId = SA_AMF_ADMIN_RESTART

objectName - [in] A pointer to the name of the logical entity to be restarted. The name
is expressed as a LDAP DN. The type of the logical entity is inferred by parsing this
DN.

Description
This operation is applicable to a component, a service unit, a node, an application,
and the cluster. This procedure typically involves a termination action followed by a
subsequent instantiation of either the concerned entity or logical entities that belong
to the concerned entity.

This administrative operation is applicable to only those service units whose pres-
ence state is instantiated. The invocation of this administrative operation on a service
unit causes the service unit to be restarted by restarting all the components within it
according to the procedures defined in Section 3.12.1.2 on page 135.

The decision to reassign the assigned service instances to another service unit dur-
ing this operation should be determined by the Availability Management Framework
based on the configured recovery policy of the components that make up the service
unit.

If all components within the service unit have a configured recovery policy of 'restart',
reassigning the assigned service instances is not necessary, but if at-least one com-
ponent within the service unit has the configuration option of disableRestart set to
TRUE, then a reassignment of the service instances assigned to a service unit during
its restart (before termination) must be attempted by the Availability Management
Framework in course of this administrative action to prevent potential service disrup-
tion. In this case, the Availability Management Framework does not set the presence
state of the component to 'restarting' and transitions through the individual terminat-
ing, terminated, instantiating, instantiated presence states instead.

When this operation is invoked on an individual instantiated component, only the
component implied in the operation is restarted. If the component in question has the
configuration option of disableRestart set to TRUE, then, depending upon the redun-
dancy model, a reassignment of the service instances assigned to the service unit to
which the component belongs shall be undertaken by the Availability Management
Framework. In other words, restarting such a component will potentially affect the
entire service unit to which it belongs.

When invoked upon a node, an application or the cluster, this action becomes a com-
posite operation that causes a collective restart of all service units residing within the
242 SAI-AIS-AMF-B.02.01 Section 7.4.7 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
node, application or the cluster. In-order to execute such a collective restart of all ser-
vice units in a particular scope, the Availability Management Framework first com-
pletely terminates all pertinent service units and does not start instantiating them
back until all service units have been terminated. In the cases of application restart
and cluster restart, the Availability Management Framework does not perform the
usual reassignment (in-order to maintain service) of service instances assigned to the
various service units during the execution of the termination phase of the restart pro-
cedure. Also note that the instantiation phase of such restarts is executed in accor-
dance with the redundancy model configuration for various service groups with no
requirement to preserve pre-restart service instance assignments to various service
units in the application or cluster.

The Availability Management Framework may not proceed with this operation if
another administrative operation or an error recovery initiated by the Availability Man-
agement Framework is already engaged on the logical entity. In such case, an error
value of SA_AIS_ERR_TRY_AGAIN should be returned indicating that the action is
feasible but not at this instant.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error should be generally returned in cases where the requested
action is valid but not currently possible, probably because another operation is act-
ing upon the logical entity on which the administrative operation is invoked. Such an
operation can be another administrative operation or an error recovery initiated by the
Availability Management Framework.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The target logical entity for this operation, identi-
fied by objectName could not be restarted for various reasons like the presence state
of the service unit or the component to be restarted was not instantiated.

SA_AIS_ERR_NOT_SUPPORTED - This administrative procedure is not supported
by the type of entity denoted by objectName.

SA_AIS_ERR_REPAIR_PENDING - If during the execution of this operation, certain
erroneous components do not co-operate with the Availability Management Frame-
work in carrying out the administrative operation, the Availability Management Frame-
work tries to terminate them as part of the recovery operation before returning from
the operation. If the Availability Management Framework cannot terminate or instanti-
ate these erroneous components, it will put them in the termination-failed or instantia-
tion-failed presence state. However, the Availability Management Framework will
AIS Specification SAI-AIS-AMF-B.02.01 Section 7.4.7 243

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
continue the administrative operation but will return from the call with this error value,
before initiating the required repair operations for such components. The caller of the
administrative operation is responsible for discovering such erroneous components
and tracking the completion of the subsequent repair operations

See Also

7.4.8 SA_AMF_ADMIN_SI_SWAP

Parameters
operationId = SA_AMF_ADMIN_SI_SWAP

objectName - [in] A pointer to the name of the service instance whose component
service instances need to be swapped. The name is expressed as a LDAP DN. The
type of the logical entity is inferred by parsing this DN.

Description
This administrative operation is pertinent to service instances that are currently
assigned to service units.

The invocation of this procedure results in swapping the HA states of the appropriate
CSIs contained within an SI. The typical outcome of this operation results in the HA
state of CSIs assigned to components within the service units to be interchanged;
active assignments become standby and standby assignments become active.

If the SI designated by objectName is protected by a service group whose redun-
dancy model is 2N, the invocation of this administrative operation causes a complete
swap of all active and standby CSIs belonging to not just this SI but any other SI that
is assigned to a service unit to which the SI designated by objectName is assigned.
Note that this behavior is consistent with the semantics of the respective redundancy
model.

If the SI designated by objectName is protected by a service group whose redun-
dancy model is N+M, the invocation of this administrative operation results in a com-
plete swap of all active and standby CSIs belonging to not just this SI but any other SI
that is assigned active to a service unit to which the SI designated by objectName is
assigned active. Application of this operation on a SI may potentially modify the
standby assignments of other SIs which are protected by the same service group but
are not assigned to the service unit to which the SI in question is assigned active. For
an example, refer to Figure 14 on page 85: If the swap operation is applied on SI A,
then the active assignment for SI A shall be moved to Service Unit S4 on Node X and
the standby assignments for SI A as well as that of SI C and SI B will be moved to
Service Unit S1 on Node U. The active assignments of SI C and SI B will remain on
Service Unit 3 (on Node W) and Service Unit 2 (on Node V) respectively.
244 SAI-AIS-AMF-B.02.01 Section 7.4.8 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
In case the redundancy model of the protecting service group is N-Way, the aggre-
gate effect of swapping all SIs assigned to a service unit by swapping only one SI is
not achieved. This behavior is again consistent with the semantics of the N-Way
redundancy model. It is possible that in N-Way redundancy model a SI has multiple
standby assignments in which case this administrative operation shall affect only the
highest ranked standby assignment.

This operation may not be invoked on a SI, which is protected by a service group
whose redundancy model is either N-Way Active or No Redundancy.

If no standby assignments are available for an SI (potentially because the cluster is in
a degenerated status and reduction procedures have been engaged) when this oper-
ation is invoked on a particular logical entity, an error value
SA_AIS_ERR_FAILED_OPERATION shall be returned.

In other words, this operation shall be allowed by the Availability Management
Framework to proceed under the following circumstances

• The concerned SI is assigned ACTIVE or QUIESCING to one service unit.
• The concerned SI is assigned STANDBY to at least another service unit.

The Availability Management Framework shall not proceed with this procedure when
the presence state of the constituent service units of the service group protecting the
SI is instantiating, restarting or terminating, and should return an
SA_AIS_ERR_TRY_AGAIN error value conveying that the action is valid but not cur-
rently possible.

The SI-SI dependency rules and dependencies between the component service
instances of the same SI must be honored, if applicable during the execution of this
operation.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error should be generally returned in cases where the requested
action is valid but not currently possible, probably because another operation is act-
ing upon the logical entity on which the administrative operation is invoked. Such an
operation can be another administrative operation or an error recovery initiated by the
Availability Management Framework.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_BAD_OPERATION - The operation was not successful on the target
SI, possibly because no standby assignments are available for the SI or the service
AIS Specification SAI-AIS-AMF-B.02.01 Section 7.4.8 245

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
group protecting the SI has either a No Redundancy or N-Way Active redundancy
model.

SA_AIS_ERR_NOT_SUPPORTED - This administrative procedure is not supported
for the type of entity denoted by objectName.

SA_AIS_ERR_REPAIR_PENDING - If during the execution of this operation, certain
erroneous components do not co-operate with the Availability Management Frame-
work in carrying out the administrative operation, the Availability Management Frame-
work tries to terminate them as part of the recovery operation before returning from
the operation. If the Availability Management Framework cannot terminate these
erroneous components, it will put them in the termination-failed presence state. How-
ever, the Availability Management Framework will continue the administrative opera-
tion but will return from the call with this error value, before initiating the required
repair operations for such components. The caller of the administrative operation is
responsible for discovering such erroneous components and tracking the completion
of the subsequent repair operations.

See Also
246 SAI-AIS-AMF-B.02.01 Section 7.4.8 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
7.4.9 SA_AMF_ADMIN_SG_ADJUST

Parameters
operationId = SA_AMF_ADMIN_SG_ADJUST

objectName - [in] A pointer to the name of the service group that needs to be transi-
tioned to the original ‘preferred configuration’. The name is expressed as a LDAP DN.
The type of the logical entity is inferred by parsing this DN

Description
This operation is only relevant to a service group.

This operation moves a service group to the preferred configuration, which typically
causes the service instance assignments of the service units in the service group to
be transferred back to the most preferred service instance assignments in which the
highest ranked available service units are assigned the active or standby HA states
for those service instances. If the most preferred configuration cannot be achieved,
the best possible configuration will be restored where the rankings of the service units
are respected with regards to active and standby SI assignments.

The objective of this administrative operation is to provide an administrator the capa-
bility to manually execute an adjust procedure as described in Section 3.7.1.1 on
page 71. This command is generally issued after the service group has undergone a
series of swaps, locks or shut-downs, and the invocation of this administrative opera-
tion brings the service group back to its initial preferred state or as close to the pre-
ferred state as possible.

The Availability Management Framework shall not proceed with this procedure when
the presence state of the constituent service units of the service group is instantiating,
restarting, terminating, or the administrative state is shutting-down and should return
an SA_AIS_ERR_TRY_AGAIN error value conveying that the action is valid but not
currently possible.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error should be generally returned in cases where the requested
action is valid but not currently possible, probably because another operation is act-
ing upon the logical entity on which the administrative operation is invoked. Such an
operation can be another administrative operation or an error recovery initiated by the
Availability Management Framework.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).
AIS Specification SAI-AIS-AMF-B.02.01 Section 7.4.9 247

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NOT_SUPPORTED - This administrative procedure is not supported
for the type of entity denoted by objectName.

SA_AIS_ERR_REPAIR_PENDING - If during the execution of this operation, certain
erroneous components do not co-operate with the Availability Management Frame-
work in carrying out the administrative operation, the Availability Management Frame-
work tries to terminate them as part of the recovery operation before returning from
the operation. If the Availability Management Framework cannot terminate these
erroneous components, it will put them in the termination-failed presence state. How-
ever, the Availability Management Framework will continue the administrative opera-
tion but will return from the call with this error value, before initiating the required
repair operations for such components. The caller of the administrative operation is
responsible for discovering such erroneous components and tracking the completion
of the subsequent repair operations.

See Also
248 SAI-AIS-AMF-B.02.01 Section 7.4.9 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
7.4.10 SA_AMF_ADMIN_REPAIRED

Parameters
operationId = SA_AMF_ADMIN_REPAIRED

objectName - [in] A pointer to the name of the logical entity to be repaired. The name
is expressed as a LDAP DN. The type of the logical entity is inferred by parsing this
DN

Description
This administrative operation is applicable to a service unit and a node.

This administrative operation is used to clear the disabled operational state of a node
or a service unit after they have been successfully mended to declare them as
repaired. The administrator uses this command to indicate the availability of a service
unit or a node for providing service after an externally executed repair action. When
invoked on a node, this operation results enabling the operational state of the constit-
uent service units and components. When invoked on a service unit, it has similar
effect on all the components that make up the service unit. A node or a service unit
enters the disabled operational state due to reasons stated in Section 3.3.6.2 on
page 59 (node) and 3.3.1.3 on page 42 (service unit).

The Availability Management Framework might optionally engage in repairing a node
or a service unit after a successful recovery procedure execution in which case the
Availability Management Framework itself will clear the disabled state of the involved
node or service unit, but if the repair action is undertaken by an external entity outside
the scope of the Availability Management Framework, or the Availability Management
Framework failed to successfully repair (and the repair requires intervention by an
external entity), one should use this administrative operation to clear the disabled
state of the node or the service unit to indicate that these entities are repaired and
their operational state is enabled.

It is expected that repair done by an external entity should bring the repaired service
units and components in a consistent state, i.e., to either instantiated or uninstanti-
ated presence state and this procedure should ensure that this is indeed the case
before an SA_AIS_OK status is returned by this operation.

If this administrative operation is invoked on a cluster or a service unit whose opera-
tional state is already enabled, the entity remains in that state, and a benign error
value of SA_AIS_ERR_NO_OP is returned to the caller.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error should be generally returned in cases where the requested
AIS Specification SAI-AIS-AMF-B.02.01 Section 7.4.10 249

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
action is valid but not currently possible, probably because another operation is act-
ing upon the logical entity on which the administrative operation is invoked. Such an
operation can be another administrative operation or an error recovery initiated by the
Availability Management Framework.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_SUPPORTED - This administrative procedure is not supported
by the type of entity denoted by objectName.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of the logical entity as it is already enabled.

SA_AIS_ERR_BAD_OPERATION - The operation could not ensure that the pres-
ence states of the relevant service units and components are either instantiated or
uninstantiated.

See Also

7.4.11 SA_AMF_ADMIN_EAM_START

Parameters
operationId = SA_AMF_ADMIN_EAM_START

objectName - [in] A pointer to the name of the logical entity on which external active
monitoring needs to be started. The name is expressed as a LDAP DN. The type of
the logical entity is inferred by parsing this DN.

Description
This administrative operation applies to a component and a service unit.

This API function is invoked to resume external active monitoring of components after
it has been stopped by invoking the administrative operation designated by
operationId = SA_AMF_ADMIN_EAM_STOP on the same component.

If a component on which this administrative operation is invoked is already being
actively monitored, there is no change in its status as a consequence of invoking this
procedure on such a component. A status of SA_AIS_ERR_NO_OP is returned in
such a case.

When this procedure is applied to a service unit, it results in an aggregate action of
starting the external active monitors for all components within the service unit that
support external active monitoring without affecting the ones that are already being
actively monitored. If the external monitors for all components within the enclosing
service unit that support external active monitoring have been already started, an
250 SAI-AIS-AMF-B.02.01 Section 7.4.11 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_OP error code is returned to indicate that there has been no
change in the status of active monitoring of the components within the service unit.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error should be generally returned in cases where the requested
action is valid but not currently possible, probably because another operation is act-
ing upon the logical entity on which the administrative operation is invoked. Such an
operation can be another administrative operation or an error recovery initiated by the
Availability Management Framework.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_FAILED_OPERATION - The AM_START operation returns an error or
fails to complete within the configured timeout.

SA_AIS_ERR_NOT_SUPPORTED - This administrative procedure is not supported
for the type of entity denoted by objectName.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of active monitoring of the logical entity.

See Also
SA_AMF_ADMIN_EAM_STOP
AIS Specification SAI-AIS-AMF-B.02.01 Section 7.4.11 251

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
7.4.12 SA_AMF_ADMIN_EAM_STOP

Parameters
operationId = SA_AMF_ADMIN_EAM_STOP

objectName - [in] A pointer to the name of the logical entity on which external active
monitoring needs to be stopped. The name is expressed as a LDAP DN. The type of
the logical entity is inferred by parsing this DN.

Description
This administrative operation applies to a component and a service unit.

This API function is typically invoked to stop external active monitoring of compo-
nents before terminating them.

If a component on which this administrative operation is invoked is not being actively
monitored, there is no change in its status as a consequence of invoking this proce-
dure on such a component. A status of SA_AIS_ERR_NO_OP is returned in such a
case.

When this procedure is applied to a service unit, it results in an aggregate action of
stopping the external active monitors for all components within the service unit that
support external active monitoring without affecting the ones that are not being
actively monitored. If the external monitors for all components within the enclosing
service unit that support external active monitoring have been already stopped, an
SA_AIS_ERR_NO_OP error code is returned to indicate that there has been no
change in the status of active monitoring of the components within the service unit.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT -An implementation-dependent timeout occurred. It is
unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later. This error should be generally returned in cases where the requested
action is valid but not currently possible, probably because another operation is act-
ing upon the logical entity on which the administrative operation is invoked. Such an
operation can be another administrative operation or an error recovery initiated by the
Availability Management Framework.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).
252 SAI-AIS-AMF-B.02.01 Section 7.4.12 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_FAILED_OPERATION - The AM_STOP operation returns an error or
fails to complete within the configured timeout.

SA_AIS_ERR_NOT_SUPPORTED - This administrative procedure is not supported
for the type of entity denoted by objectName.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has no effect
on the current state of active monitoring of the logical entity.

See Also
SA_AMF_ADMIN_EAM_START
AIS Specification SAI-AIS-AMF-B.02.01 Section 7.4.12 253

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
7.5 Summary of Administrative Operation support
The following table summarizes the various administrative operations supported by
the various logical entities within the Availability Management Framework system
model.

Table 17 Summary: Applicability of Administrative Operations

Administrative Operation Applicability

UNLOCK cluster, application, SG, node, SU, SI

LOCK cluster, application, SG, node, SU, SI

UNLOCK_INSTANTIATION cluster, application, SG, node, SU

LOCK_INSTANTIATION cluster, application, SG, node, SU

SHUT_DOWN cluster, application, SG, node, SU, SI

RESTART cluster, application, node, SU, component

SWAP_SI SI

ADJUST_SG SG

REPAIRED node, SU

EAM_START SU, component

EAM_STOP SU, component
254 SAI-AIS-AMF-B.02.01 Section 7.5 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
8 Basic Operational Scenarios
The following sequence diagrams describe basic operational scenarios.

8.1 Administrative Shutdown of a Service Instance
The context of this scenario is a service group with 2N redundancy model having two
service units with a single SA-aware component each. Two SIs are assigned to the
service unit such that component 1 (Comp1) and component 2 (Comp2) have each
two component service instance assignments: Comp1 is assigned active for CSI1
and CSI2, and Comp2 is assigned standby for CSI1 and CSI2. The following diagram
shows the sequence when one of the two SIs is administratively shut down.

The dotted lines indicate optional transactions.

Comp1AMF

1)saAmfCSISetCallbackT(CSI1,quiescing)

2)saAmfResponse(CSI1,SA_OK)

3)saAmfCSIQuiescingComplete(CSI1)

4)saAmfHAStateGet(CSI1)

5)return HA state = quiesced

6)saAmfCSIRemoveCallbackT(CSI1,Comp1)

7)saAmfResponse(CSI1,SA_OK)

gracefully
quiescing
CSI work
assignment

Comp2

8)saAmfCSIRemoveCallbackT(CSI1,Comp2)

9)saAmfResponse(CSI1,SA_OK)
AIS Specification SAI-AIS-AMF-B.02.01 Section 8 255

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
The result of a “complete” transition from the quiescing HA state is to arrive at the qui-
esced HA state.

Notice that since only one of the SIs has been shut down, the component service
instance corresponding to that SI (CSI1) is manipulated and the other (CSI2) is left
alone.

Further notice that the Availability Management Framework does not remove the
standby state for CSI1 from Comp2 until the active HA state of Comp1 for CSI1 has
transitioned successfully to quiesced. At this time, the Availability Management
Framework can remove the CSI1 assignment from Comp1 and Comp2 in any order.

8.2 Administrative Shutdown of a Service Unit in a 2N case
The context of this scenario is a service group with 2N redundancy model having two
service units with a single SA-aware component each. Two SIs are assigned to the
service unit such that component 1 (Comp1) and component 2 (Comp2) have each
two component service instance assignments: Comp1 is assigned active for CSI1
and CSI2, and Comp2 is assigned standby for CSI1 and CSI2. The following diagram
shows the sequence when one of the service units (the one having components
assigned active for CSI1 and CSI2) is administratively shut down.
256 SAI-AIS-AMF-B.02.01 Section 8.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
The Availability Management Framework should use csiFlags value
SA_AMF_TARGET_ALL in (callback) steps 1, 4 and 6 in order to guarantee that 2N
semantics are honored. Those semantics are “...at most one service unit will have the
active HA state for all service instances, and at most one service unit will have the
standby HA state for all service instances”.

Notice that saAmfCSIQuiescingComplete() can only be invoked when all component
service instance assignments have successfully quiesced within the component.

8.3 Administrative Shutdown of a Service Unit for the N-Way Model
This scenario is the same as in the previous section, except that the redundancy
model is another one.

The context of this scenario is a service group with N-Way redundancy model having
two service units with a single SA-aware component each. Two SIs are assigned to
the service units such that component 1 (Comp1) and component 2 (Comp2) have

AMF Comp1

1)saAmfCSISetCallbackT(CSI1&2,quiescing)

2)saAmfResponse(CSI1&2,SA_OK)

3)saAmfCSIQuiescingComplete(CSI1&2)

6)saAmfCSIRemoveCallbackT(CSI1&2,Comp1)

7)saAmfResponse(CSI1&2,SA_OK)

Comp2

4)saAmfCSISetCallbackT(CSI1&2,active)

5)saAmfResponse(CSI1&2,SA_OK)

CSI 1 and CSI 2 must
both ‘quiesce’ before
QuiescingComplete
can be issued.

AIS Specification SAI-AIS-AMF-B.02.01 Section 8.3 257

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
each two CSI assignments: Comp1 is assigned active for CSI1 and CSI2, and
Comp2 is assigned standby for CSI1 and CSI2. The following diagram shows the
sequence when one of the service units (the one having components assigned active
for CSI1 and CSI2) is administratively shut down.

AMF Comp1

1)saAmfCSISetCallbackT(CSI1,quiescing)

2)saAmfCSISetCallbackT(CSI2,quiescing)

3)saAmfResponse (CSI1, SA_OK)

4)saAmfResponse(CSI2, SA_OK)

5)saAmfCSIQuiescingComplete(CSI1)

10)saAmfCSIQuiescingComplete(CSI2)

8)saAmfCSIRemoveCallbackT(CSI1,Comp1)

13)saAmfCSIRemoveCallbackT(CSI2,Comp1)

9)saAmfResponse (CSI1, SA_OK)

14)saAmfResponse (CSI2, SA_OK)

Comp2

6)saAmfCSISetCallbackT(CSI1,active)

7)saAmfResponse (CSI1, SA_OK)

11)saAmfCSISetCallbackT(CSI2,active)

12)saAmfResponse (CSI2, SA_OK)
258 SAI-AIS-AMF-B.02.01 Section 8.3 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
Note that Comp2 will have both active and standby assignments for a certain period
of time, which implies that Comp2 must have the X_active_and_Y_standby capability.

Also notice that CSI2 at Comp1 has taken much longer to quiesce (from step 2 to
step 10) while CSI1 at Comp1 quiesced much faster (from step 1 to step 5) allowing
the Availability Management Framework to proceed with the active HA assignment
for CSI1 to Comp2.

8.4 Administrative Locking of a Service Instance
The context of this scenario is a service group with 2N redundancy model having two
service units with a single SA-aware component. Two SIs are assigned to the service
units such that component 1 (Comp1) and component 2 (Comp2) have each two CSI
assignments: Comp1 is assigned active for CSI1 and CSI2, and Comp2 is assigned
standby for CSI1 and CSI2. The following diagram shows the sequence when one of
the two SIs are locked.

Notice that since only one of the SIs have been locked, the component service
instance corresponding to that SI is manipulated.

Further notice that the Availability Management Framework does not remove the
standby state for CSI1 from Comp2 until the active HA state of Comp1 for CSI1 has
transitioned successfully to quiesced. At this time, the Availability Management
Framework can remove the CSI1 assignment from Comp1 and Comp2 in any order.

Comp1AMF

1) saAmfCSISetCallbackT(CSI1,quiesced)

2) saAmfResponse(CSI1,SA_OK)

3) saAmfCSIRemoveCallbackT(CSI1,Comp2)

4) saAmfResponse(CSI1,SA_OK)

Comp2

5) saAmfCSIRemoveCallbackT(CSI1,Comp1)

6) saAmfResponse(CSI1,SA_OK)
AIS Specification SAI-AIS-AMF-B.02.01 Section 8.4 259

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
8.5 Administrative Locking of a Service Unit
The context of this scenario is a service group with 2N redundancy model having two
service units with a single SA-aware component each. Two SIs are assigned to the
two service units such that component 1 (Comp1) and component 2 (Comp2) have
each two CSI assignments: Comp1 is assigned active for CSI1 and CSI2, and
Comp2 is assigned standby for CSI1 and CSI2. The following diagram shows the
sequence when one of the service units (the one having components assigned active
for CSI1 and CSI2) is administratively locked.

AMF Comp1

1)saAmfCSISetCallbackT(CSI1,quiesced)

2)saAmfCSISetCallbackT(CSI2,quiesced)

3)saAmfResponse(CSI1,SA_OK)

4)saAmfResponse(CSI2,SA_OK)

9)saAmfCSIRemoveCallbackT(CSI1,Comp1)

10)saAmfCSIRemoveCallbackT(CSI2,Comp1)

11)saAmfResponse(CSI1,SA_OK)

12)saAmfResponse(CSI2,SA_OK)

Comp2

5)saAmfCSISetCallback(CSI1,active)

6)saAmfResponse(CSI1,SA_OK)

7)saAmfCSISetCallback(CSI2,active)

8)saAmfResponse(CSI2,SA_OK)
260 SAI-AIS-AMF-B.02.01 Section 8.5 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
Note that the same sequence applies when a service unit is locked as a consequence
of a node lock administrative action. In the example, it is assumed that the other ser-
vice unit in the service group resides on another node.

8.6 A Simple Fail-Over
The context of this scenario is a service group with a 2N redundancy model having
two service units, each with a single SA-aware component. A single SI is assigned
such that component 1 (Comp1) and component 2 (Comp2) have each a single CSI
assignment (CSI1): Comp1 is assigned active for CSI1, and Comp2 is assigned
standby for CSI1. The following diagram shows Comp1 disabled by a fault, and the
Availability Management Framework responding by assigning the active HA state to
Comp2 for CSI1.

The dotted line indicates an optional transaction. Note that the protection group call-
back informs the registered component that Comp1 exited from the protection group.

Comp2AMF

1) saAmfComponentErrorReport(COMPONENT FAILOVER)

3) saAmfCSISetCallbackT(CSI1,active)

4) saAmfResponse(CSI1,SA_OK)

Comp1

2) saAmfProtectionGroupTrackCallbackT()
terminate
AIS Specification SAI-AIS-AMF-B.02.01 Section 8.6 261

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
262 SAI-AIS-AMF-B.02.01 Section 8.6 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
9 Alarms and Notifications
The Availability Management Framework produces certain alarms and notifications in
order to convey important information regarding its operational and functional state to
an administrator or a management system.

These reports vary in perceived severity and include alarms, which potentially require
an operator intervention and notifications that signify important state or object
changes. A management entity should regard notifications, but they do not necessar-
ily require an operator intervention.

The recommended vehicle to be used for producing alarms and notifications is the
Notification Service of the Service AvailabilityTM Forum (abbreviated as NTF, see [2]),
and hence the various notifications are partitioned into categories as described in this
service.

In some cases, this specification uses the word “Unspecified” for values of attributes,
which the vendor is at a liberty to set to whatever makes sense in the vendor’s con-
text, and the SA Forum has no specific recommendation regarding such values. Such
values are generally optional from the CCITT Recommendation X.733 perspective
(see [6]).

9.1 Setting Common Attributes

The tables presented in Section 9.2 refer to the attributes in the following list, but do
not describe them, as these attributes are described in the list in a generic manner.
For each attribute in this list, the specification provides recommendations regarding
how to populate the attribute.

• Correlation Ids - They are supplied to correlate two notifications that have been
generated because of a related cause. This attribute is optional. But in case of
alarms that are generated to clear certain conditions, i.e., produced with a per-
ceived severity of SA_NTF_SEVERITY_CLEARED, the correlation id shall be
populated by the application with the notification Id that was generated by the
Notification Service while invoking the saNtfNotificationSend() API during the
production of the actual alarm.

• Event Time - The application might pass a timestamp or optionally pass an
SA_TIME_UNKNOWN value in which case the timestamp is provided by the
Notification Service.

• NCI Id - The vendorId portion of the SaNtfClassIdT data structure must be set to
SA_NTF_VENDOR_ID_SAF always. The majorId and minorId will vary based
on the specific SA Forum service and the particular notification. Every SA Forum
AIS Specification SAI-AIS-AMF-B.02.01 Section 9 263

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
service shall have a majorId as described in the enumeration SaNtfSafServicesT
of the Notification Service specification. The minorIds will be described and
reused on a per-service basis.

• Notification Id - This attribute is obtained from the Notification Service when a
notification is generated, and hence need not be populated by an application.

• Notifying Object - DN of the entity generating the notification. This name must
conform to the SA Forum AIS naming convention and contain at least the safApp
RDN value portion of the DN set to the specified standard RDN value of the SA
Forum AIS service generating the notification. For details on the AIS naming
convention, refer to the Overview document.

9.2 Availability Management Framework Notifications
The following sections describe a set of notifications that an Availability Management
Framework implementation shall produce.

The value of the majorId field within the notification Class identifier (SaNtfClassIdT)
should be set to as follows in all notifications generated by the Availability Manage-
ment Framework.

• majorId = SA_SVC_AMF

The minorId field within the notification class identifier (SaNtfClassIdT) is set distinctly
for each individual notification as described below. This field is range-bound, and the
used ranges are:

• Alarms: (0x01 - 0x64)
• State change notifications: (0x65 - 0xC8)
• Object change notifications: (0xC9 - 0x12C)
• Attribute change notifications: (0x12D - 0x190)

9.2.1 Availability Management Framework Alarms

9.2.1.1 Availability Management Framework Service Impaired

Description
The Availability Management Framework is currently unable to provide service or is in
a degraded state because of certain issues with memory, resources, communication,
or other constraints.

Clearing Method
1) Manual, after taking the appropriate administrative action or
264 SAI-AIS-AMF-B.02.01 Section 9.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
2) Issue an implementation specific optional alarm with perceived severity
SA_NTF_SEVERITY_CLEARED to convey that the Availability Management Frame-
work self-healed or recovered and is again providing service.

9.2.1.2 Component Instantiation Failed

Description

The Availability Management Framework was unable to successfully instantiate a
particular component. This means that the INSTANTIATION command invoked on
the component either returned an error exit status or failed to successfully complete
within the time period specified by the INSTANTIATE timeout, and all subsequent
attempts by the Availability Management Framework to revive the component, includ-

NTF Attribute Name

Attribute Type
(X.73Y

Recommend
ation or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_ALARM_COMMUNICATION

Notification Object Mandatory AMF Service, same as Notifying object
as specified above.

Notification Class Identi-
fier

NTF internal minorId = 0x01

Additional Text Optional “AMF service impaired.”

Additional Information ID Optional Unspecified

Probable Cause Mandatory Applicable value from enum SaNtfProb-
ableCauseT in [2]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum SaNtfSe-
verityT in [2]

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified
AIS Specification SAI-AIS-AMF-B.02.01 Section 9.2.1 265

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
ing a possible node reboot did not resolve the issue causing the component to enter
the instantiation-failed presence state. For more details, refer to Section 4.4.

Clearing Method
Manual, after taking the appropriate administrative action

NTF Attribute Name

Attribute Type
(X.73Y

Recommend
ation or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_ALARM_PROCESSING

Notification Object Mandatory LDAP DN of the component whose
instantiation failed

Notification Class Identi-
fier

NTF internal minorId = 0x02

Additional Text Optional “Instantiation of Component
<LDAP DN of component> failed”

Additional Information ID SA Forum
Mandatory

infoId = SA_AMF_NODE_NAME,
infoType =
SA_NTF_VALUE_LDAP_NAME,
infoValue = LDAP DN of node on
which the component is hosted.

Probable Cause Mandatory Applicable value from enum SaNtf-
ProbableCauseT in [2]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum SaNtf-
SeverityT in [2]

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified
266 SAI-AIS-AMF-B.02.01 Section 9.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
9.2.1.3 Component Cleanup Failed

Description
The Availability Management Framework was unable to successfully cleanup a par-
ticular component after failing to successfully terminate the component. Under such
circumstances, the component enters the termination-failed presence state. This con-
dition could potentially cause a service disruption as the workload (assigned to the
failed component) would not be reassigned to some other healthy component
because of redundancy model constraints, requiring an administrator to take a cor-
rective action in order to recover. For more details, refer to Section 4.6.

Clearing Method
Manual, after taking the appropriate administrative action

NTF Attribute Name

Attribute Type
(X.73Y

Recommend
ation or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_ALARM_PROCESSING

Notification Object Mandatory LDAP DN of the component
whose cleanup failed

Notification Class Identifier NTF internal minorId = 0x03

Additional Text Optional “Cleanup of Component <LDAP
DN of component> failed”

Additional Information ID SA Forum
Mandatory

infoId = SA_AMF_NODE_NAME,
infoType =
SA_NTF_VALUE_LDAP_NAME,
infoValue = LDAP DN of node on
which the component is hosted.

Probable Cause Mandatory Applicable value from enum SaNt-
fProbableCauseT in [2]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum
SaNtfSeverityT in [2]

Trend Indication Optional Unspecified
AIS Specification SAI-AIS-AMF-B.02.01 Section 9.2.1 267

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
9.2.1.4 Cluster Reset Triggered by a Component Failure

Description
A component failed and recommended to the Availability Management Framework a
cluster reset recovery action, i.e., SA_AMF_CLUSTER_RESET.

Clearing Method
1) Manual, after taking the appropriate administrative action or

2) Issue an implementation specific optional alarm with perceived severity
SA_NTF_SEVERITY_CLEARED to convey that the cluster reset was successful.

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified

NTF Attribute Name

Attribute Type
(X.73Y

Recommend
ation or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_ALARM_PROCESSING

Notification Object Mandatory LDAP DN of the component, which
recommended an
SA_AMF_CLUSTER_RESET
recovery

Notification Class Identifier NTF internal minorId = 0x04

Additional Text Optional “Failure of Component <LDAP DN
of component> triggered cluster
reset.”

Additional Information ID Optional Unspecified

NTF Attribute Name

Attribute Type
(X.73Y

Recommend
ation or NTF)

SA Forum Recommended Value
268 SAI-AIS-AMF-B.02.01 Section 9.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
9.2.1.5 Service Instance Unassigned

Description
A particular unit of work indicated by a service instance has no active assignments to
any service unit, which is potentially causing a service disruption. In other words, the
service instance transitioned to the unassigned assignment state as explained in sec-
tion 3.3.3.2.

This alarm is typically generated when the Availability Management Framework is
unable to successfully execute a recovery in case of a failure (node/service unit, etc.)
in order to prevent the service disruption and maintain service availability. This alarm
should be also generated when an administrative action renders a service instance
unassigned.

Clearing Method
Manual, after taking the appropriate administrative action

Probable Cause Mandatory Applicable value from enum SaNt-
fProbableCauseT in [2]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum
SaNtfSeverityT in [2]

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified

NTF Attribute Name

Attribute Type
(X.73Y

Recommend
ation or NTF)

SA Forum Recommended Value
AIS Specification SAI-AIS-AMF-B.02.01 Section 9.2.1 269

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
9.2.1.6 Proxied component becomes unproxied

Description

This alarm is generated by the Availability Management Framework when it reliably
confirms the fact that a component that was being proxied previously is no longer
proxied, i.e., the Availability Management Framework has not been able to engage
another component to assume the mediation responsibility for a component whose
designated proxy component has failed.

NTF Attribute Name

Attribute Type
(X.73Y

Recommend
ation or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_ALARM_PROCESSING

Notification Object Mandatory LDAP DN of the service instance,
which has no current active
assignments.

Notification Class Identi-
fier

NTF internal minorId = 0x05

Additional Text Optional “SI designated by <LDAP DN of
the SI> has no current active
assignments to any SU.”

Additional Information ID Optional Unspecified

Probable Cause Mandatory Applicable value from enum SaNt-
fProbableCauseT in [2]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum
SaNtfSeverityT in [2]

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified
270 SAI-AIS-AMF-B.02.01 Section 9.2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
Clearing Method

Manual, after taking the appropriate administrative action.

9.2.2 Availability Management Framework State Change Notifications

9.2.2.1 Administrative State Change Notify

Description
The administrative state of a node, a service unit, a service group, a service instance,
an application, or the cluster changed.

NTF Attribute Name

Attribute Type
(X.73Y

Recommend
ation or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_ALARM_PROCESSING

Notification Object Mandatory LDAP DN of component, which is
no longer proxied.

Notification Class Identi-
fier

NTF internal minorId = 0x06

Additional Text Optional Unspecified

Additional Information ID Optional Unspecified

Probable Cause Mandatory Applicable value from enum SaNt-
fProbableCauseT in [2]

Specific Problems Optional Unspecified

Perceived Severity Mandatory Applicable value from enum
SaNtfSeverityT in [2]

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified
AIS Specification SAI-AIS-AMF-B.02.01 Section 9.2.2 271

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
9.2.2.2 Operational State Change Notify

Description
The operational state of a node or a service unit changed.

NTF Attribute Name

Attribute Type
(X.73Y

Recommendati
on or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the logical entity whose
administrative state changed

Notification Class Identifier NTF internal minorId = 0x65 for Node
minorid = 0x66 for SU
minorid = 0x67 for SG
minorid = 0x68 for SI
minorid = 0x69 for Application
minorid = 0x6A for Cluster.

Additional Text Optional Unspecified

Additional Information ID Optional Unspecified

Source Indicator Mandatory SA_NTF_MANAGEMENT_OPERATION

Changed State Attribute ID Optional SA_AMF_ADMIN_STATE

Old Attribute Value Optional Applicable value from enum
SaAMFAdminStateT

New Attribute Value Mandatory Applicable value from enum
SaAMFAdminStateT
272 SAI-AIS-AMF-B.02.01 Section 9.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
9.2.2.3 Presence State Change Notify

Description
The presence state change of a service unit is reported only if it becomes instanti-
ated, uninstantiated, or restarting.

NTF Attribute Name

Attribute Type
(X.73Y

Recommendati
on or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the logical entity whose
operational state changed

Notification Class Identifier NTF internal minorId = 0x6B for Node
minorid = 0x6C for SU

Additional Text Optional Unspecified

Additional Information ID Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute ID Optional SA_AMF_OP_STATE

Old Attribute Value Optional Applicable value from enum
SaAmfOperationalStateT

New Attribute Value Mandatory Applicable value from enum
SaAmfOperationalStateT
AIS Specification SAI-AIS-AMF-B.02.01 Section 9.2.2 273

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
9.2.2.4 HA State Change Notify

Description
The HA state of a service unit changes for an assigned service instance.

NTF Attribute Name

Attribute Type
(X.73Y

Recommendati
on or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the service unit whose
presence state changed

Notification Class Identifier NTF internal minorId = 0x6D

Additional Text Optional Unspecified

Additional Information ID Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute ID Optional SA_AMF_PRESENCE_STATE

Old Attribute Value Optional Unspecified

New Attribute Value Mandatory Applicable value from enum
SaAmfPresenceStateT
274 SAI-AIS-AMF-B.02.01 Section 9.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
9.2.2.5 SI Assignment State Change Notify

Description

The assignment state of a service instance changed. This notification is generated for
all assignment state transitions for a service instance except when the assignment
state changes to SA_AMF_ASSIGNMENT_UNASSIGNED in which case an alarm is
generated as explained in section 8.2.1.5.

NTF Attribute Name

Attribute Type
(X.73Y

Recommendati
on or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the service unit whose HA
state changed on behalf of a particular
SI.

Notification Class Identifier NTF internal minorId = 0x6E

Additional Text Optional “The HA state of SI <LDAP DN>
assigned to SU <LDAP DN> changed.”

Additional Information ID SA Forum
Mandatory

infoId = SA_AMF_SI_NAME, infoType
= SA_NTF_VALUE_LDAP_NAME,
infoValue = LDAP DN of the SI which
was assigned to the SU whose HA
state changed.

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute ID Optional SA_AMF_HA_STATE

Old Attribute Value Optional Unspecified

New Attribute Value Mandatory Applicable value from enum
SaAmfPresenceStateT
AIS Specification SAI-AIS-AMF-B.02.01 Section 9.2.2 275

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
9.2.2.6 Status of a component change to Proxied

Description
The status of a previously unproxied component became proxied, potentially because
a proxy component assumed the task of proxying an unproxied component.

NTF Attribute Name

Attribute Type
(X.73Y

Recommendati
on or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the service instance
whose assignment state changed.

Notification Class Identifier NTF internal minorId = 0x6F

Additional Text Optional “The Assignment state of SI <LDAP
DN of SI> changed.”

Additional Information ID Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute ID Optional SA_AMF_ASSIGNMENT_STATE

Old Attribute Value Optional Applicable value from enum
SaAmfAssignmentStateT

New Attribute Value Mandatory Applicable value from enum
SaAmfAssignmentStateT
276 SAI-AIS-AMF-B.02.01 Section 9.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
NTF Attribute Name

Attribute Type
(X.73Y

Recommendati
on or NTF)

SA Forum Recommended Value

Event Type Mandatory SA_NTF_OBJECT_STATE_CHANGE

Notification Object Mandatory LDAP DN of the proxied component
whose proxy failed and is currently not
being proxied.

Notification Class Identifier NTF internal minorId = 0x70

Additional Text Optional Unspecified

Additional Information ID Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION or
SA_NTF_UNKNOWN_OPERATION

Changed State Attribute ID Optional SA_AMF_PROXY_STATUS

Old Attribute Value Optional SA_AMF_PROXY_STATUS_UNPRO
XIED

New Attribute Value Mandatory SA_AMF_PROXY_STATUS_PROXIE
D

AIS Specification SAI-AIS-AMF-B.02.01 Section 9.2.2 277

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
278 SAI-AIS-AMF-B.02.01 Section 9.2.2 AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
 Appendix A Implementation of CLC Interfaces
The commands or callbacks used to control the life cycle of the various component
types differ considerably. To talk conveniently about these life cycle operations, the
specification uses the names instantiate, terminate and cleanup. The following table
shows how the operations with that names are implemented:

If both an saAmfProxiedComponentCleanupCallback() callback and a CLEANUP
command are defined for local components, the former is executed. Only if errors
occur during that operation, is the CLEANUP command run.

Table 18 Implementation of CLC Interfaces per Component Type

Component Type Operation Implementation

SA-aware

instantiate CLC-CLI INSTANTIATE

terminate saAmfComponentTerminateCallback()

cleanup CLC-CLI CLEANUP

proxied, pre-
instantiable

instantiate saAmfProxiedComponentInstantiateCallback()

terminate saAmfComponentTerminateCallback()

cleanup CLC-CLI CLEANUP (if local)
saAmfProxiedComponentCleanupCallback()

proxied, non-pre-
instantiable

instantiate saAmfCSISetCallback()

terminate saAmfCSIRemoveCallback()

cleanup CLC-CLI CLEANUP (if local)
saAmfProxiedComponentCleanupCallback()

non-proxied, non-
SA-aware

instantiate CLC-CLI INSTANTIATE

terminate CLC-CLI TERMINATE

cleanup CLC-CLI CLEANUP
AIS Specification SAI-AIS-AMF-B.02.01 Section Appendix A 279

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
280 SAI-AIS-AMF-B.02.01 Section Appendix A AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
 Appendix B API functions in Unregistered Processes
A registered process of a component may invoke all SA API functions, and all SA API
callback functions may be invoked for such processes. An unregistered process
within a component may only invoke a subset of the Availability Management Frame-
work API functions, and only a subset of the Availability Management Framework
callback functions may be invoked for them. For each API function of the Availability
Management Framework (sorted alphabetically) and for all the remaining SA API
functions in the last line as a whole, the table below indicates by a YES in the second
column, whether the function can be invoked in the context of an unregistered pro-
cess. A NO in the second column indicates that the function can only be invoked in
the context of a registered process.

Table 19 API Functions Invoked by or on Unregistered Processes

API Interfaces
API Can be Invoked in
the Context of an
Unregistered Process

saAmfComponentErrorClear() YES

saAmfComponentErrorReport() YES

saAmfComponentNameGet() YES

saAmfComponentRegister() NO

SaAmfComponentTerminateCallbackT NO

saAmfComponentUnregister() NO

saAmfCSIQuiescingComplete(() NO

SaAmfCSIRemoveCallbackT NO

SaAmfCSISetCallbackT NO

saAmfDispatch() YES

saAmfFinalize() YES

saAmfHAStateGet() YES

SaAmfHealthcheckCallbackT YES

saAmfHealthcheckConfirm() YES
AIS Specification SAI-AIS-AMF-B.02.01 Section Appendix B 281

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
saAmfHealthcheckStart() YES

saAmfHealthcheckStop() YES

saAmfInitialize() YES

saAmfPmStart() YES

saAmfPmStop() YES

SaAmfProtectionGroupTrackCallbackT YES

saAmfProtectionGroupTrack() YES

saAmfProtectionGroupTrackStop() YES

SaAmfProxiedComponentCleanupCallbackT NO

SaAmfProxiedComponentInstantiateCallbackT NO

saAmfResponse() YES

saAmfSelectionObjectGet() YES

All SA services YES

Table 19 API Functions Invoked by or on Unregistered Processes

API Interfaces
API Can be Invoked in
the Context of an
Unregistered Process
282 SAI-AIS-AMF-B.02.01 Section Appendix B AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
 Appendix C Example for Proxy/Proxied Association
The following example outlines the procedure by which a proxied component gets
associated with a proxy component and their subsequent interactions with the Avail-
ability Management Framework during the instantiation and registration phase. The
example uses two SGs with different redundancy models. One containing the proxied
components and the other containing the proxy components.

Proxied SGx1:

• has a 2+1 (N+M) redundancy model,
• and contains the service units SUx1, SUx2 and SUx2.
• SUx1 contains component cx1, SUx2 contains component cx2, SUx3 contains

component Cx3.
• CSIs corresponding to the components cx1, cx2, and cx3 are CSIx1, CSIx2 and

CSIx3 respectively.

Proxy SGp1:

• has a 2N redundancy model,
• contains the service units SUp1 and SUp2.
• SUp1 contains component cp1, SUp2 contains component cp2.
• CSIs corresponding to the components is CSIp1 (“Proxy CSI”)
• There is only a single SI, SIx1 protected by this service group.

The AMF configuration will have the following CSI associations for the proxied com-
ponents in SGx1:

• cx1 should be proxied by CSIp1
• cx2 should be proxied by CSIp1
• cx3 should be proxied by CSIp1

When the Availability Management Framework instantiates SGp1, it may decide by
some logic that CSIp1 should be assigned active to cp1, and standby to cp2. The
decision is based on the configuration data and HA requirements, and the fact that
CSIp1 is a proxy CSI is not taken into account during its decision. However, when
CSIp1 is assigned to cp1 as active, then at that time, the AMF has the following infor-
mation:

• CSIp1 is associated with the proxied components cx1, cx2, and cx3. This is from
the configuration.
AIS Specification SAI-AIS-AMF-B.02.01 Section Appendix C 283

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
• CSIp1 is currently being assigned active to cp1.

So, the Availability Management Framework concludes that cp1 is currently sup-
posed to proxy proxied components cx1, cx2, and cx3 and it starts instantiating them.

The following illustrates a instantiation sequence for the above sample configuration
when cx1 and cx2 are instantiated and registered but cx3 does not register (poten-
tially because of a failure).

• 1. cp1 is instantiated by AMF using INSTANTIATE command.
• 2. cp1 registers with AMF using saAmfComponentRegister() API.
• 3. CSIp1 is assigned active to cp1 using SaAmfCSISetCallbackT.
• 4. AMF invokes SaAmfProxiedComponentInstantiateCallbackT for cx1 on cp1.
• 5. cx1 is registered by cp1 with AMF using saAmfComponentRegister() API.
• 6. SA_AIS_OK is returned for step 4. to AMF by cp1 using saAmfResponse()

API.
• 7. AMF invokes SaAmfProxiedComponentInstantiateCallbackT for cx2 on cp1.
• 8. cx2 is registered by cp1 with AMF using saAmfComponentRegister() API.
• 9. SA_AIS_OK is returned for step 7. to AMF by cp1 using saAmfResponse()

API.
• 10. AMF invokes SaAmfProxiedComponentInstantiateCallbackT for cx3 on cp1.
• 11. cx3 is not registered by cp1 with AMF for some reason.(eg. failure)
• 12. Failure is returned for step 10. by cp1. (see step 15 for subsequent AMF

actions)
• 13. AMF assigns CSIx1 to cx1 via cp1 using SaAmfCSISetCallbackT.
• 14. AMF assigns CSIx2 to cx2 via cp1 using SaAmfCSISetCallbackT.
• 15. AMF invokes SaAmfProxiedComponentCleanupCallbackT for cx3 on cp1

and carries out the regular procedure to try to revive cx3 which if fails transitions
cx3 to INSTANTIATION-FAILED presence state raises the alarm etc.

Note: in the scenario described above, CSIx3 was never assigned, which would
have been the case for an SA-aware component also.
284 SAI-AIS-AMF-B.02.01 Section Appendix C AIS Specification

Service AvailabilityTM Application Interface Specification
 Application Management Framework

1

5

10

15

20

25

30

35

40
AIS Specification SAI-AIS-AMF-B.02.01 Section Appendix C 285

Service AvailabilityTM Application Interface Specification

Application Management Framework

1

5

10

15

20

25

30

35

40
286 SAI-AIS-AMF-B.02.01 Section Appendix C AIS Specification

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.3.1 New Topics
	1.3.2 Clarifications
	1.3.3 Changes in Return Values of API Functions
	1.3.4 Other Changes

	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Overview of the Availability Management Framework

	3 System Description and System Model
	3.1 Physical Entities
	3.2 Logical Entities
	3.2.1 Cluster and Nodes
	3.2.2 Components
	3.2.2.1 SA-Aware Components
	3.2.2.2 Non-SA-Aware Components
	3.2.2.3 Proxy and Proxied Components
	3.2.2.4 Component Life Cycle

	3.2.3 Component Service Instance
	3.2.4 Service Unit
	3.2.5 Service Instances
	3.2.6 Service Groups
	3.2.7 Application
	3.2.8 Protection Groups
	3.2.9 Service Unit Instantiation
	3.2.10 Illustration of Logical Entities

	3.3 State Models
	3.3.1 Service Unit States
	3.3.1.1 Presence State
	3.3.1.2 Administrative State
	3.3.1.3 Operational State
	3.3.1.4 Readiness State
	3.3.1.5 Service Unit’s HA State per Service Instance

	3.3.2 Component States
	3.3.2.1 Presence State
	3.3.2.2 Operational State
	3.3.2.3 Readiness State
	3.3.2.4 Component’s HA State per Component Service Instance

	3.3.3 Service Instance States
	3.3.3.1 Administrative State
	3.3.3.2 Assignment State

	3.3.4 Component Service Instance States
	3.3.5 Service Group States
	3.3.6 Node States
	3.3.6.1 Administrative State
	3.3.6.2 Operational State

	3.3.7 Application States
	3.3.8 Cluster States
	3.3.9 Summary of States Supported for the Logical Entities

	3.4 Fail-Over and Switch-Over
	3.5 Possible Combinations of States for Service Units
	3.5.1 Combined States for Pre-Instantiable Service Units
	3.5.2 Combined States for Non-Pre-Instantiable Service Units

	3.6 Component Capability Model
	3.7 Service Group Redundancy Model
	3.7.1 Common Characteristics
	3.7.1.1 Common Definitions
	3.7.1.2 Initiation of the Auto-Adjust Procedure for a Service Group

	3.7.2 2N Redundancy Model
	3.7.2.1 Basics
	3.7.2.2 Configuration
	3.7.2.3 SI Assignments and Failure Handling
	3.7.2.3.1 Failure of the Active Service Unit
	3.7.2.3.2 Failure of the Standby Service Unit
	3.7.2.3.3 Auto-adjust Procedure
	3.7.2.3.4 Cluster Startup
	3.7.2.3.5 Role of the Ordered Service Units List in Assignments and Instantiations

	3.7.2.4 Examples
	3.7.2.5 UML Diagram of the 2N Redundancy Model

	3.7.3 N+M Redundancy Model
	3.7.3.1 Basics
	3.7.3.2 Examples
	3.7.3.3 Configuration
	3.7.3.4 SI Assignments
	3.7.3.4.1 Reduction Procedure

	3.7.3.5 Examples for Service Unit Fail-Over
	3.7.3.5.1 Handling of a Node Failure when Spare Service Units Exist
	3.7.3.5.2 Handling of a Node Failure when no Spare Service Units Exist

	3.7.3.6 An Example of Auto-adjust
	3.7.3.7 UML Diagram of the N+M Redundancy Model

	3.7.4 N-Way Redundancy Model
	3.7.4.1 Basics
	3.7.4.2 Example
	3.7.4.3 Configuration
	3.7.4.4 SI Assignments
	3.7.4.4.1 Reduction Procedure

	3.7.4.5 Failure Handling
	3.7.4.6 Auto-adjust Example
	3.7.4.7 UML Diagram of the N-Way Redundancy Model

	3.7.5 N-Way Active Redundancy Model
	3.7.5.1 Basics
	3.7.5.2 Example
	3.7.5.3 Configuration
	3.7.5.4 SI Assignments
	3.7.5.4.1 Reduction Procedure

	3.7.5.5 Failure Handling
	3.7.5.5.1 Example for Failure Recovery

	3.7.5.6 Auto-adjust Example
	3.7.5.7 UML Diagram of the N-Way Active Redundancy Model

	3.7.6 No Redundancy Model
	3.7.6.1 Basics
	3.7.6.2 Example
	3.7.6.3 Configuration
	3.7.6.4 SI Assignments
	3.7.6.4.1 Reduction Procedure

	3.7.6.5 Failure Handling
	3.7.6.6 Auto-adjust Example
	3.7.6.7 UML Diagram of the No Redundancy Model

	3.7.7 The Effect of Administrative Operations on Service Instance Assignments
	3.7.7.1 Locking a Service Unit or a Node
	3.7.7.2 Unlocking a Service Unit, a Service Group, or a Node

	3.8 Component Capability Model and Service Group Redundancy Model
	3.9 Dependencies Among SIs, Component Service Instances, and Components
	3.9.1 Dependencies Among Service Instances and Component Service Instances
	3.9.1.1 Dependencies Between SIs when Assigning a Service Unit Active for a Service Instance
	3.9.1.2 Impact of Disabling a Service Instance on the Dependent Service Instances
	3.9.1.3 Dependencies Between Component Service Instances of the Same Service Instance

	3.9.2 Dependencies Between Components

	3.10 Approaches for Integrating Legacy Software or Hardware Entities
	3.11 Component Monitoring
	3.12 Error Detection, Recovery, Repair, and Escalation Policy
	3.12.1 Basic Notions
	3.12.1.1 Error Detection
	3.12.1.2 Restart
	3.12.1.3 Recovery
	3.12.1.4 Repair
	3.12.1.5 Recovery Escalation

	3.12.2 Recovery Escalation Policy of the Availability Management Framework
	3.12.2.1 Recommended Recovery Action
	3.12.2.2 Escalations of Levels 1 and 2
	3.12.2.3 Escalation of Level 3

	4 Local Component Life Cycle Management Interfaces
	4.1 Common Characteristics
	4.2 CLC-CLI's Environment Variables
	4.3 Exit Status
	4.4 INSTANTIATE Command
	4.5 TERMINATE Command
	4.6 CLEANUP Command
	4.7 AM_START Command
	4.8 AM_STOP Command
	4.9 Summary of Usage of CLC-CLI Commands Based on the Component Category

	5 Proxied Component Management
	5.1 Assumptions About Proxied/Proxy Components
	5.2 Life-Cycle Management of Proxied Components
	5.3 Proxy Component Failure Handling

	6 Availability Management Framework API
	6.1 Availability Management Framework Model for the APIs
	6.1.1 Callback Semantics and Component Registration and Unregistration
	6.1.2 Component Healthcheck Monitoring
	6.1.2.1 Overview
	6.1.2.2 Healthcheck Types
	6.1.2.3 Starting and Stopping Healthchecks
	6.1.2.4 Healthcheck Configuration Issues

	6.1.3 Availability Management (Component Service Instance Management)
	6.1.4 Component Life Cycle Management
	6.1.5 Protection Group Management
	6.1.6 Error Reporting
	6.1.7 Component Response to Framework Requests
	6.1.8 API Usage Illustrations

	6.2 Include File and Library Names
	6.3 Type Definitions
	6.3.1 SaAmfHandleT
	6.3.2 Component Process Monitoring
	6.3.2.1 SaAmfPmErrorsT Type
	6.3.2.2 SaAmfPmStopT type

	6.3.3 Component Healthcheck Monitoring
	6.3.3.1 SaAmfHealthcheckInvocationT
	6.3.3.2 SaAmfHealthcheckKeyT

	6.3.4 Types for State Management
	6.3.4.1 HA State
	6.3.4.2 Readiness State
	6.3.4.3 Presence State
	6.3.4.4 Operational State
	6.3.4.5 Administrative State
	6.3.4.6 Assignment State
	6.3.4.7 Proxy Status
	6.3.4.8 All Defined States

	6.3.5 Component Service Instance Types
	6.3.5.1 SaAmfCSIFlagsT
	6.3.5.2 SaAmfCSITransitionDescriptorT
	6.3.5.3 SaAmfCSIStateDescriptorT
	6.3.5.4 SaAmfCSIAttributeListT
	6.3.5.5 SaAmfCSIDescriptorT

	6.3.6 Types for Protection Group Management
	6.3.6.1 SaAmfProtectionGroupMemberT
	6.3.6.2 SaAmfProtectionGroupChangesT
	6.3.6.3 SaAmfProtectionGroupNotificationT
	6.3.6.4 SaAmfProtectionGroupNotificationBufferT

	6.3.7 SaAmfRecommendedRecoveryT
	6.3.8 saAmfCompCategoryT
	6.3.9 saAmfRedandancyModelT
	6.3.10 saAmfCompCapabilityModelT
	6.3.11 Notification Related Types
	6.3.12 SaAmfCallbacksT

	6.4 Library Life Cycle
	6.4.1 saAmfInitialize()
	6.4.2 saAmfSelectionObjectGet()
	6.4.3 saAmfDispatch()
	6.4.4 saAmfFinalize()

	6.5 Component Registration and Unregistration
	6.5.1 saAmfComponentRegister()
	6.5.2 saAmfComponentUnregister()
	6.5.3 saAmfComponentNameGet()

	6.6 Passive Monitoring of Processes of a Component
	6.6.1 saAmfPmStart()
	6.6.2 saAmfPmStop()

	6.7 Component Health Monitoring
	6.7.1 saAmfHealthcheckStart()
	6.7.2 SaAmfHealthcheckCallbackT
	6.7.3 saAmfHealthcheckConfirm()
	6.7.4 saAmfHealthcheckStop()

	6.8 Component Service Instance Management
	6.8.1 saAmfHAStateGet()
	6.8.2 SaAmfCSISetCallbackT
	6.8.3 SaAmfCSIRemoveCallbackT
	6.8.4 saAmfCSIQuiescingComplete()

	6.9 Component Life Cycle
	6.9.1 SaAmfComponentTerminateCallbackT
	6.9.2 SaAmfProxiedComponentInstantiateCallbackT
	6.9.3 SaAmfProxiedComponentCleanupCallbackT

	6.10 Protection Group Management
	6.10.1 saAmfProtectionGroupTrack()
	6.10.2 SaAmfProtectionGroupTrackCallbackT
	6.10.3 saAmfProtectionGroupTrackStop()
	6.10.4 saAmfProtectionGroupNotificationFree()

	6.11 Error Reporting
	6.11.1 saAmfComponentErrorReport()
	6.11.2 saAmfComponentErrorClear()

	6.12 Component Response to Framework Requests
	6.12.1 saAmfResponse()

	7 Administrative API
	7.1 Availability Management Framework Administration API Model
	7.1.1 Availability Management Framework Administration API Basics

	7.2 Include File and Library Name
	7.3 Type Definitions
	7.3.1 saAmfAdminOperationIdT

	7.4 Availability Management Framework Administration API
	7.4.1 Administrative State Modification Operations
	7.4.2 SA_AMF_ADMIN_UNLOCK
	7.4.3 SA_AMF_ADMIN_LOCK
	7.4.4 SA_AMF_ADMIN_LOCK_INSTANTIATION
	7.4.5 SA_AMF_ADMIN_UNLOCK_INSTANTIATION
	7.4.6 SA_AMF_ADMIN_SHUTDOWN
	7.4.7 SA_AMF_ADMIN_RESTART
	7.4.8 SA_AMF_ADMIN_SI_SWAP
	7.4.9 SA_AMF_ADMIN_SG_ADJUST
	7.4.10 SA_AMF_ADMIN_REPAIRED
	7.4.11 SA_AMF_ADMIN_EAM_START
	7.4.12 SA_AMF_ADMIN_EAM_STOP

	7.5 Summary of Administrative Operation support

	8 Basic Operational Scenarios
	8.1 Administrative Shutdown of a Service Instance
	8.2 Administrative Shutdown of a Service Unit in a 2N case
	8.3 Administrative Shutdown of a Service Unit for the N-Way Model
	8.4 Administrative Locking of a Service Instance
	8.5 Administrative Locking of a Service Unit
	8.6 A Simple Fail-Over

	9 Alarms and Notifications
	9.1 Setting Common Attributes
	9.2 Availability Management Framework Notifications
	9.2.1 Availability Management Framework Alarms
	9.2.2 Availability Management Framework State Change Notifications

	Appendix A Implementation of CLC Interfaces
	Appendix B API functions in Unregistered Processes
	Appendix C Example for Proxy/Proxied Association

