
Service AvailabilityTM Forum
Application Interface Specification

Volume 4: Checkpoint Service SAI-AIS-CKPT-B.01.01

The Service AvailabilityTM solution is high availability and more; it is the delivery of ultra-dependable
communication services on demand and without interruption.

This Service AvailabilityTM Forum Application Interface Specification document might contain
design defects or errors known as errata, which might cause the product to deviate from
published specifications. Current characterized errata are available on request.

.

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40
 SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT

The Service Availability™ Specification(s) (the "Specification") found at the URL http://www.saforum.org (the
"Site") is generally made available by the Service Availability Forum (the "Licensor") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions, which govern the
use of the Specification are set forth in this agreement (this "Agreement").

IMPORTANT – PLEASE READ THE TERMS AND CONDITIONS PROVIDED IN THIS AGREEMENT BEFORE DOWN-
LOADING OR COPYING THE SPECIFICATION. IF YOU AGREE TO THE TERMS AND CONDITIONS OF THIS AGREE-
MENT, CLICK ON THE "ACCEPT" BUTTON. BY DOING SO, YOU AGREE TO BE BOUND BY THE TERMS AND
CONDITIONS STATED IN THIS AGREEMENT. IF YOU DO NOT WISH TO AGREE TO THESE TERMS AND CONDITIONS,
YOU SHOULD PRESS THE "CANCEL"BUTTON AND THE DOWNLOAD PROCESS WILL NOT PROCEED.

1. LICENSE GRANT. Subject to the terms and conditions of this Agreement, Licensor hereby grants you a non-
exclusive, worldwide, non-transferable, revocable, but only for breach of a material term of the license granted in
this section 1, fully paid-up, and royalty free license to:

a. reproduce copies of the Specification to the extent necessary to study and understand the
Specification and to use the Specification to create products that are intended to be compatible
with the Specification;
b. distribute copies of the Specification to your fellow employees who are working on a project or
product development for which this Specification is useful; and
c. distribute portions of the Specification as part of your own documentation for a product you have
built, which is intended to comply with the Specification.

2. DISTRIBUTION. If you are distributing any portion of the Specification in accordance with Section 1(c), your
documentation must clearly and conspicuously include the following statements:

a. Title to and ownership of the Specification (and any portion thereof) remain with Service Avail-
ability Forum ("SA Forum").
b. The Specification is provided "As Is." SAF makes no warranties, including any implied warran-
ties, regarding the Specification (and any portion thereof) by Licensor.
c. SAF shall not be liable for any direct, consequential, special, or indirect damages (including,
without limitation, lost profits) arising from or relating to the Specification (or any portion thereof).
d. The terms and conditions for use of the Specification are provided on the SA Forum website.

3. RESTRICTION. Except as expressly permitted under Section 1, you may not (a) modify, adapt, alter, translate,
or create derivative works of the Specification, (b) combine the Specification (or any portion thereof) with another
document, (c) sublicense, lease, rent, loan, distribute, or otherwise transfer the Specification to any third party, or
(d) copy the Specification for any purpose.

4. NO OTHER LICENSE. Except as expressly set forth in this Agreement, no license or right is granted to you, by
implication, estoppel, or otherwise, under any patents, copyrights, trade secrets, or other intellectual property by
virtue of your entering into this Agreement, downloading the Specification, using the Specification, or building prod-
ucts complying with the Specification.

5. OWNERSHIP OF SPECIFICATION AND COPYRIGHTS. The Specification and all worldwide copyrights therein
are the exclusive property of Licensor. You may not remove, obscure, or alter any copyright or other proprietary
rights notices that are in or on the copy of the Specification you download. You must reproduce all such notices on
all copies of the Specification you make. Licensor may make changes to the Specification, or to items referenced
therein, at any time without notice. Licensor is not obligated to support or update the Specification.
AIS Specification SAI-AIS-CKPT-B.01.01 3

Service AvailabilityTM Application Interface Specification

Legal Notice

1

5

10

15

20

25

30

35

40
6. WARRANTY DISCLAIMER. THE SPECIFICATION IS PROVIDED "AS IS." LICENSOR DISCLAIMS ALL
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY, NONINFRINGEMENT OF THIRD-PARTY RIGHTS, FITNESS FOR ANY PARTICULAR PUR-
POSE, OR TITLE. Without limiting the generality of the foregoing, nothing in this Agreement will be construed as
giving rise to a warranty or representation by Licensor that implementation of the Specification will not infringe the
intellectual property rights of others.

7. PATENTS. Members of the Service Availability Forum and other third parties [may] have patents relating to the
Specification or a particular implementation of the Specification. You may need to obtain a license to some or all of
these patents in order to implement the Specification. You are responsible for determining whether any such
license is necessary for your implementation of the Specification and for obtaining such license, if necessary.
[Licensor does not have the authority to grant any such license.] No such license is granted under this Agreement.

8. LIMITATION OF LIABILITY. To the maximum extent allowed under applicable law, LICENSOR DISCLAIMS
ALL LIABILITY AND DAMAGES, INCLUDING DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, AND INCI-
DENTAL DAMAGES, ARISING FROM OR RELATING TO THIS AGREEMENT, THE USE OF THE SPECIFICA-
TION OR ANY PRODUCT MANUFACTURED IN ACCORDANCE WITH THE SPECIFICATION, WHETHER
BASED ON CONTRACT, ESTOPPEL, TORT, NEGLIGENCE, STRICT LIABILITY, OR OTHER THEORY. NOT-
WITHSTANDING ANYTHING TO THE CONTRARY, LICENSOR’S TOTAL LIABILITY TO YOU ARISING FROM
OR RELATING TO THIS AGREEMENT OR THE USE OF THE SPECIFICATION OR ANY PRODUCT MANU-
FACTURED IN ACCORDANCE WITH THE SPECIFICATION WILL NOT EXCEED ONE HUNDRED DOLLARS
($100). YOU UNDERSTAND AND AGREE THAT LICENSOR IS PROVIDING THE SPECIFICATION TO YOU AT
NO CHARGE AND, ACCORDINGLY, THIS LIMITATION OF LICENSOR’S LIABILITY IS FAIR, REASONABLE,
AND AN ESSENTIAL TERM OF THIS AGREEMENT.

9. TERMINATION OF THIS AGREEMENT. Licensor may terminate this Agreement, effective immediately upon
written notice to you, if you commit a material breach of this Agreement and do not cure the breach within ten (30)
days after receiving written notice thereof from Licensor. Upon termination, you will immediately cease all use of
the Specification and, at Licensor’s option, destroy or return to Licensor all copies of the Specification and certify in
writing that all copies of the Specification have been returned or destroyed. Parts of the Specification that are
included in your product documentation pursuant to Section 1 prior to the termination date will be exempt from this
return or destruction requirement.

10. ASSIGNMENT. You may not assign, delegate, or otherwise transfer any right or obligation under this Agree-
ment to any third party without the prior written consent of Licensor. Any purported assignment, delegation, or
transfer without such consent will be null and void.

11. GENERAL. This Agreement will be construed in accordance with, and governed in all respects by, the laws of
the State of Delaware (without giving effect to principles of conflicts of law that would require the application of the
laws of any other state). You acknowledge that the Specification comprises proprietary information of Licensor and
that any actual or threatened breach of Section 1 or 3 will constitute immediate, irreparable harm to Licensor for
which monetary damages would be an inadequate remedy, and that injunctive relief is an appropriate remedy for
such breach. All waivers must be in writing and signed by an authorized representative of the party to be charged.
Any waiver or failure to enforce any provision of this Agreement on one occasion will not be deemed a waiver of
any other provision or of such provision on any other occasion. This Agreement may be amended only by binding
written instrument signed by both parties. This Agreement sets forth the entire understanding of the parties relating
to the subject matter hereof and thereof and supersede all prior and contemporaneous agreements, communica-
tions, and understandings between the parties relating to such subject matter
4 SAI-AIS-CKPT-B.01.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
Table of Contents Volume 4, Checkpoint Service

1 Document Introduction . 7
 1.1 Document Purpose . 7
 1.2 AIS Documents Organization . 7
 1.3 How to Provide Feedback on the Specification . 8
 1.4 How to Join the Service Availability™ Forum . 8
 1.5 Additional Information . 8
 1.5.1 Member Companies . 8
 1.5.2 Press Materials . 8

2 Overview . 11

 2.1 Checkpoint Service . 11

3 SA Checkpoint Service API . 13
 3.1 Checkpoint Service Model . 13
 3.1.1 Checkpoints . 13
 3.1.2 Sections . 13
 3.1.3 Checkpoint Replica . 14
 3.1.4 Checkpoint Data Access . 14
 3.1.5 Synchronous Update . 15
 3.1.6 Asynchronous Update . 15
 3.1.7 Management of Replicas for Collocated and Non-Collocated Checkpoints 16
 3.1.7.1 Collocated Checkpoints . 16
 3.1.7.2 Non-Collocated Checkpoints . 17
 3.1.8 Persistence of Checkpoints . 17
 3.2 Include File and Library Names . 17
 3.3 Type Definitions . 17
 3.3.1 Handles . 18
 3.3.1.1 SaCkptHandleT . 18
 3.3.1.2 SaCkptCheckpointHandleT . 18
 3.3.1.3 SaCkptSectionIterationHandleT . 18
 3.3.2 Checkpoint Types . 18
 3.3.2.1 SaCkptCheckpointCreationFlagsT . 18
 3.3.2.2 SaCkptCheckpointCreationAttributesT . 19
 3.3.2.3 SaCkptCheckpointOpenFlagsT . 20
 3.3.3 Section Types . 20
 3.3.3.1 SaCkptSectionIdT . 20
 3.3.3.2 SaCkptSectionCreationAttributesT . 21
 3.3.3.3 SaCkptSectionStateT . 22
 3.3.3.4 SaCkptSectionDescriptorT . 22
 3.3.3.5 SaCkptSectionsChosenT . 23
 3.3.4 IoVector Types . 23
 3.3.4.1 SaCkptIOVectorElementT . 23
AIS Specification SAI-AIS-CKPT-B.01.01 5

Service AvailabilityTM Application Interface Specification

Table of Contents

1

5

10

15

20

25

30

35

40
 3.3.5 SaCkptCheckpointDescriptorT . 24
 3.3.6 SaCkptCallbacksT . 24
 3.4 Library Life Cycle . 25
 3.4.1 saCkptInitialize() . 25
 3.4.2 saCkptSelectionObjectGet() . 27
 3.4.3 saCkptDispatch() . 28
 3.4.4 saCkptFinalize() . 29
 3.5 Checkpoint Management . 31
 3.5.1 saCkptCheckpointOpen() and saCkptCheckpointOpenAsync() . 31
 3.5.2 SaCkptCheckpointOpenCallbackT . 34
 3.5.3 saCkptCheckpointClose() . 36
 3.5.4 saCkptCheckpointUnlink() . 37
 3.5.5 saCkptCheckpointRetentionDurationSet() . 39
 3.5.6 saCkptActiveReplicaSet() . 40
 3.5.7 saCkptCheckpointStatusGet() . 42
 3.6 Section Management . 43
 3.6.1 saCkptSectionCreate() . 43
 3.6.2 saCkptSectionDelete() . 45
 3.6.3 saCkptSectionExpirationTimeSet() . 47
 3.6.4 saCkptSectionIterationInitialize() . 49
 3.6.5 saCkptSectionIterationNext() . 51
 3.6.6 saCkptSectionIterationFinalize() . 53
 3.7 Data Access . 54
 3.7.1 saCkptCheckpointWrite() . 54
 3.7.2 saCkptSectionOverwrite() . 56
 3.7.3 saCkptCheckpointRead() . 58
 3.7.4 saCkptCheckpointSynchronize(), saCkptCheckpointSynchronizeAsync() 60
 3.7.5 SaCkptCheckpointSynchronizeCallbackT . 62
6 SAI-AIS-CKPT-B.01.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document defines the Checkpoint Service of the Application Interface
Specification (AIS) of the Service AvailabilityTM Forum. It is intended for use by
implementors of the Application Interface Specification and by application developers
who would use the Application Interface Specification to develop applications that
must be highly available. The AIS is defined in the C programming language, and
requires substantial knowledge of the C programming language.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be
used in conjunction with the Service AvailabilityTM Forum Hardware Interface
Specification (HPI) and with the Service AvailabilityTM Forum System Management
Specification, which is still under development.

1.2 AIS Documents Organization
The Application Interface Specification is organized into the following volumes:

Volume 1, the Overview document, provides a brief guide to the remainder of the
Application Interface Specification. It describes the objectives of the AIS specification
as well as programming models and definitions that are common to all specifications.
Additionally, it contains an overview of the Availability Management Framework and
of the other services as well as the system description and conceptual models,
including the physical and logical entities that make up the system. Volume 1 also
contains a chapter that describes the main abbreviations, concepts and terms used in
the AIS documents.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisOverview.B0101.pdf

Volume 2 describes the Availability Management Framework API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisAmf.B0101.pdf

Volume 3 describes the Cluster Membership Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisClm.B0101.pdf

Volume 4 (this volume) describes the Checkpoint Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisCkpt.B0101.pdf
AIS Specification SAI-AIS-CKPT-B.01.01 Section 1 7

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
Volume 5 describes the Event Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisEvt.B0101.pdf

Volume 6 describes the Message Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisMsg.B0101.pdf

Volume 7 describes the Lock Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisLck.B0101.pdf

1.3 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum website (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.4 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to
participate in the Forum complete a membership application. Once completed, a
representative of the Service Availability™ Forum will contact you to discuss your
membership in the Forum. The Service Availability™ Forum Membership Application
can be completed online by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.5 Additional Information

1.5.1 Member Companies

A list of the Service Availability™ Forum member companies can also be viewed
online by using the links provided on the Forum’s website
(http://www.saforum.org).

1.5.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
8 SAI-AIS-CKTP-B.01.01 Section 1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).
AIS Specification SAI-AIS-CKPT-B.01.01 Section 1.5.2 9

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
10 SAI-AIS-CKTP-B.01.01 Section 1.5.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
 2 Overview
This specification defines the Checkpoint Service within the Application Interface
Specification (AIS).

2.1 Checkpoint Service
The Checkpoint Service provides a facility for processes to record checkpoint data
incrementally, which can be used to protect an application against failures. When
recovering from fail-over or switch-over situations, the checkpoint data can be
retrieved, and execution can be resumed from the state recorded before the failure.

Checkpoints are cluster-wide entities that are designated by unique names. A copy of
the data stored in a checkpoint is called a checkpoint replica, which is typically stored
in main memory rather than on disk for performance reasons. A given checkpoint
may have several checkpoint replicas stored on different nodes in the cluster to pro-
tect it against node failures.

To avoid accumulation of unused checkpoints in the system, checkpoint replicas
have a retention time. When a checkpoint has not been opened by any process for
the duration of the retention time, the Checkpoint Service automatically deletes the
checkpoint.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 2 11

Service AvailabilityTM Application Interface Specification

Overview

1

5

10

15

20

25

30

35

40
12 SAI-AIS-CKPT-B.01.01 Section 2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
3 SA Checkpoint Service API

3.1 Checkpoint Service Model

3.1.1 Checkpoints

The Checkpoint Service manages a set of entities, called checkpoints, that pro-
cesses use to save their state. A given process can use one or several checkpoints to
save its state. Checkpoints are cluster-wide entities, designated by unique names.

A process can dynamically create checkpoints using the saCkptCheckpointOpen() or
the saCkptCheckpointOpenAsync() API functions.

A process can delete checkpoints using the saCkptCheckpointUnlink() function.
After a checkpoint has been deleted, it cannot be accessed using its global name, but
processes that have the checkpoint opened can continue to access it until they close
it (saCkptCheckpointClose()). This means that, after the checkpoint is deleted,
resources associated with the checkpoint are freed only when the last process that
has opened the checkpoint closes it.

To avoid the accumulation of unused checkpoints in the system, checkpoints have a
retention duration. When a checkpoint has not been opened by any process for the
retention duration, the Checkpoint Service automatically deletes the checkpoint.

If a process terminates abnormally, the Checkpoint Service automatically closes all of
its open checkpoints.

3.1.2 Sections

Each checkpoint is structured to hold up to a maximum number of sections. The
maximum number of sections is specified when the checkpoint is created. For details,
refer to the saCkptCheckpointOpen() and saCkptCheckpointOpenAsync() API func-
tions. Sections belonging to a checkpoint can be dynamically created or deleted as
long as the total number of sections does not exceed this maximum number.

Within a checkpoint, each section is identified by a unique section identifier. Section
identifiers are unique only within a checkpoint; sections in different checkpoints may
have the same identifier. Section identifiers can be specified by the creating process
or can be allocated dynamically by the Checkpoint Service.

Within a checkpoint, sections of different sizes may coexist but a maximum section
size is specified for a checkpoint when it is created. The size of a section can be
changed dynamically as the result of the invocation of the saCkptCheckpointWrite()
or saCkptSectionOverwrite() functions. Sections contain raw data that is not encoded
by the Checkpoint Service. It is the responsibility of the process to encode the section
contents if heterogeneity is a concern.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3 13

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
Sections have an expiration time that is an absolute time. The Checkpoint Service
automatically deletes a section when its expiration time is reached, regardless of
whether the checkpoint is open by a process or not.

Note that the expiration time of a section is a time, in contrast to the retention duration
of a checkpoint, which is a duration. Both expiration time and retention duration are
defined as SaTimeT.

3.1.3 Checkpoint Replica

A copy of the data that is stored in a checkpoint is called a checkpoint replica or
simply a replica. At most one checkpoint replica for a particular checkpoint may
reside on a given cluster node. A given checkpoint may have several checkpoint rep-
licas (or copies) that reside on different cluster nodes.

A local replica is a replica located on the node where the checkpoint is opened.

The management of checkpoint replicas is for the most part transparent to the appli-
cation programmer.

3.1.4 Checkpoint Data Access

A process can use the handle that the Checkpoint Service returned at open time to
perform read and write operations on the checkpoint. A single read or write operation
can access various portions of different sections within a checkpoint simultaneously.

Requirements regarding the consistency of the various replicas associated to a given
checkpoint can have negative effects on the performance of checkpoint write opera-
tions. To give flexibility to implementors of the Checkpoint Service, strong atomicity
and strong ordering semantics are not required. In particular, if two processes per-
form a concurrent write to the same portion of a checkpoint, no global ordering of rep-
lica updates is ensured. After both write operations complete, some replicas may
contain data written by one process while other replicas contain data written by the
other process. It is the responsibility of the processes to use proper synchronization
mechanisms (such as the Lock Service) if such global update ordering is required.

However, ordering of updates issued by a single writer is required, even in the pres-
ence of faults. For example, assume that a thread within a process writes first D1 in a
section of a given checkpoint and then writes D2 in another section of the same
checkpoint. Later on, if the same process or another process running on another
cluster node reads both sections entirely, and it sees D2, then it must also see D1.

To accommodate different trade-offs between checkpoint update performance and
replica consistency, different options are provided when a checkpoint is created.
These options are described below.
14 SAI-AIS-CKPT-B.01.01 Section 3.1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
3.1.5 Synchronous Update

When a checkpoint has been created with the synchronous update option, write
and overwrite calls as well as calls for the creation and deletion of a section return
only when all checkpoint replicas have been updated. In addition, the Checkpoint
Service guarantees that there are no partial updates in a replica: a replica is either
updated with all data specified in the write call or is not updated at all.
Hence, the Checkpoint Service guarantees that all replicas of a checkpoint created
with the synchronous update option are identical.

It is not specified from which replica checkpoint data is read from.

A checkpoint with the synchronous update option can be created by specifying the
SA_CKPT_WR_ALL_REPLICAS flag at creation time. For details, refer to Section
3.3.2.1 on page 18.

3.1.6 Asynchronous Update

For this update mode, the notion of an active replica is defined. It is a distinguished
checkpoint replica whose properties are described below. At any time, there is at
most one active replica.

When a checkpoint has been created with the asynchronous update option, write
and overwrite calls as well as calls for the creation and deletion of a section return
immediately when the active checkpoint replica has been updated. Other replicas are
updated asynchronously. To guarantee that a process does not read stale data, the
Checkpoint Service always reads from the active checkpoint replica.

The Checkpoint Service does not guarantee that all replicas of a checkpoint created
with the asynchronous update option are always identical. However, a process can
ensure that the Checkpoint Service synchronizes all checkpoint replicas by using an
invocation of the saCkptCheckpointSynchronize() function to propagate checkpoint
data to all of the checkpoint replicas.

There are two variants of checkpoints with the asynchronous update option. For the
first one, the Checkpoint Service guarantees atomicity when replicas are updated,
that is, a replica is either updated with all data specified in the write call or is not
updated at all. Such a checkpoint can be created by specifying the
SA_CKPT_WR_ACTIVE_REPLICA flag at creation time. For details, refer to Section
3.3.2.1 on page 18.

The second variant does not provide the atomicity guarantee of the first one, but the
Checkpoint Service marks sections that are modified by the write or overwrite calls as
corrupt when a fault occurs while a checkpoint replica is being updated. Corrupted
sections cannot be accessed by invoking saCkptCheckpointRead() or
saCkptCheckpointWrite(); they can only be overwritten by invoking
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.1.5 15

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
saCkptSectionOverwrite() or deleted by invoking saCkptCheckpointDelete(). Check-
points with this partial update option are created by specifying the
SA_CKPT_WR_ACTIVE_REPLICA_WEAK flag at creation time. For details, refer to
Section 3.3.2.1 on page 18.

The partial update option is intended to be used by applications that may not want to
pay the performance price associated with protection against partial updates.

3.1.7 Management of Replicas for Collocated and Non-Collocated Checkpoints

3.1.7.1 Collocated Checkpoints

When using a checkpoint with the asynchronous update option, optimal performance
for updating the checkpoint is achieved when the active replica is located on the
same node as the process accessing the checkpoint. However, because the process
accessing the checkpoint can change depending on the role assigned by the Avail-
ability Management Framework, optimal performance can be achieved only if the
application informs the Checkpoint Service about which replica should be active at a
particular time. This can be done for checkpoints having the collocated attribute.
Such a checkpoint is named a collocated checkpoint. When a collocated check-
point is created, there is no active replica until a local replica is set as the active rep-
lica by the saCkptActiveReplicaSet() call. An active replica stays active until the user
explicitly sets another replica to active by calling the saCkptActiveReplicaSet() func-
tion, or if the replica is destroyed (for example if the node where this active replica
resides crashes). In the latter case, there is no active replica until the user sets a new
one.
When saCkptActiveReplicaSet() returns, the Checkpoint Service guarantees that the
new active replica is completely synchronized with the previous active replica. Data
consistency for replica reads and writes and write ordering are preserved as though
the change of active replica never took place. Replica reads or writes might be
blocked until the synchronization completes.

The saCkptActiveReplicaSet() function can be used only for collocated checkpoints
created with the asynchronous update option.

If there is no active replica, each of the operations write, overwrite, creation or dele-
tion of a section, and read will return an error.

The management of replicas of collocated checkpoints and whether they are active or
not is mainly the duty of applications. The replicas of a collocated checkpoint are only
created by the applications via open calls, provided that no local replica already
exists. The Checkpoint Service does not create replicas other than the ones explicitly
created by the applications via the open call.
16 SAI-AIS-CKPT-B.01.01 Section 3.1.7 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
It is up to the applications to create enough number of replicas to have at any time the
desired level of redundancy (for instance, by creating a replica on another node when
a node becomes non-operational due to administrative operations).

3.1.7.2 Non-Collocated Checkpoints

Checkpoints created without the collocated attribute are called non-collocated
checkpoints. The management of replicas of non-collocated checkpoints and
whether they are active or not (note that the notion “active” applies only to check-
points created with the asynchronous update option) is mainly the duty of the Check-
point Service; The processes using the Checkpoint Service are not aware of the
location of the active replicas. The Checkpoint Service may create replicas other than
the ones that may be created when opening a checkpoint. This can be useful to
enhance the availability of checkpoints. For example, if there are at a certain point in
time two replicas, and the node hosting one of these replicas is administratively taken
out of service, the Checkpoint Service may allocate another replica on another node
while this node is not available.

If there is no active replica for a checkpoint with the asynchronous update option,
each of the operations write, overwrite, creation or deletion of a section, and read will
return an error.

3.1.8 Persistence of Checkpoints

As has been stated in Section 2.1 on page 11, the Checkpoint Service stores check-
point data in the main memory of the cluster nodes. Regardless of the retention time,
a checkpoint and all its sections do not survive if the Checkpoint Service stops run-
ning on all nodes hosting replicas for this checkpoint. This can be caused by adminis-
trative actions or node failures.

3.2 Include File and Library Names
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the Checkpoint Service API:

#include <saCkpt.h>

To use the Checkpoint Service API, an application must be bound with the following
library:

libSaCkpt.so

3.3 Type Definitions
The Checkpoint Service uses the types described in the following sections.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.1.7.2 17

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
3.3.1 Handles

3.3.1.1 SaCkptHandleT

typedef SaUint64T SaCkptHandleT;

The type of the handle supplied by the Checkpoint Service to a process during initial-
ization of the Checkpoint Service and used by a process when it invokes functions of
the Checkpoint Service API so that the Checkpoint Service can recognize the pro-
cess.

3.3.1.2 SaCkptCheckpointHandleT

typedef SaUint64T SaCkptCheckpointHandleT;

The type of the handle of a checkpoint.

3.3.1.3 SaCkptSectionIterationHandleT

typedef SaUint64T SaCkptSectionIterationHandleT;

The type of a handle for stepping through the sections in a checkpoint.

3.3.2 Checkpoint Types

3.3.2.1 SaCkptCheckpointCreationFlagsT

#define SA_CKPT_WR_ALL_REPLICAS 0X1

#define SA_CKPT_WR_ACTIVE_REPLICA 0X2

#define SA_CKPT_WR_ACTIVE_REPLICA_WEAK 0X4

#define SA_CKPT_CHECKPOINT_COLLOCATED 0X8

typedef SaUint32T SaCkptCheckpointCreationFlagsT;

The flags of the SaCkptCheckpointCreationFlagsT type have the following interpreta-
tion:

• SA_CKPT_WR_ALL_REPLICAS - The specification of this flag at creation
time creates a checkpoint with the synchronous update option. Any of the
operations that modify the checkpoint (saCkptSectionWrite(),
saCkptSectionOverwrite(), saCkptSectionCreate(), and
saCkptSectionDelete()) will be performed on all of the checkpoint replicas
before the operation returns. It also guarantees atomicity for each checkpoint
replica, that is, either the invocation succeeds, or it fails and nothing has been
written to the replica.
18 SAI-AIS-CKPT-B.01.01 Section 3.3.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
• SA_CKPT_WR_ACTIVE_REPLICA - The specification of this flag at creation
time creates a checkpoint with the asynchronous update option and providing
atomicity when updating replicas: Any of the operations that modify the check-
point will be performed on the active checkpoint replica before the operation
returns. The atomicity when updating replicas means, for each of the check-
point replicas, that either the operation on the replica succeeds, or it fails and
nothing has been written to the replica.

• SA_CKPT_WR_ACTIVE_REPLICA_WEAK - The specification of this flag at
creation time creates a checkpoint with the asynchronous and the partial
update option. Any of the operations that modify the checkpoint will be per-
formed on the active checkpoint replica before it returns. However, there is no
guarantee of atomicity per checkpoint replica, that is, if the operation of writing
does not complete, some sections might get corrupted.

• SA_CKPT_CHECKPOINT_COLLOCATED - A checkpoint created with such
attribute is called a collocated checkpoint; otherwise, it is called a non-collo-
cated checkpoint. For details, refer to Section 3.1.7 on page 16.

The flags SA_CKPT_WR_ALL_REPLICAS, SA_CKPT_WR_ACTIVE_REPLICA, and
SA_CKPT_WR_ACTIVE_REPLICA_WEAK are mutual exclusive. A value or param-
eter of the type SaCkptCheckpointCreationFlagsT is either one of the mutual exclu-
sive flags or the bitwise OR of one of these mutual exclusive flags and the
SA_CKPT_CHECKPOINT_COLLOCATED flag.

3.3.2.2 SaCkptCheckpointCreationAttributesT

typedef struct {

SaCkptCheckpointCreationFlagsT creationFlags;

SaSizeT checkpointSize;

SaTimeT retentionDuration;

SaUint32T maxSections;

SaSizeT maxSectionSize;

SaSizeT maxSectionIdSize;

} SaCkptCheckpointCreationAttributesT;

The attributes defined in the SaCkptCheckpointCreationAttributesT structure are as
follow:

• creationFlags - These flags specify the collocation attribute of checkpoint repli-
cas and the manner of both synchronizing write operations on the checkpoint
replicas using the saCkptCheckpointWrite() and saCkptSectionOverwrite()
functions and creating and deleting sections using the saCkptSectionCreate()
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.3.2.2 19

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
and saCkptSectionDelete() functions. For details, refer to Section 3.3.2.1 on
page 18.

• retentionDuration - The duration for which the checkpoint will be retained while
it is not opened by any process. The retentionDuration starts after the last
checkpoint user has closed the checkpoint.

• checkpointSize - The net size in bytes of each checkpoint replica that can be
used for application data.

• maxSections - Maximum number of sections in the checkpoint. Every check-
point has at least one section. If and only if maxSections is 1, then a default
section is automatically created and is identified by the special identifier
SA_CKPT_DEFAULT_SECTION_ID.

• maxSectionSize - The upper bound on the possible size of the sections in this
checkpoint.

• maxSectionIdSize - The maximum length of the section identifier in the check-
point.

Note that checkpointSize =< maxSections * maxSectionSize.

3.3.2.3 SaCkptCheckpointOpenFlagsT

#define SA_CKPT_CHECKPOINT_READ 0X1

#define SA_CKPT_CHECKPOINT_WRITE 0X2

#define SA_CKPT_CHECKPOINT_CREATE 0X4

typedef SaUint32T SaCkptCheckpointOpenFlagsT;

The SaCkptCheckpointOpenFlagsT type has the following interpretation:

• SA_CKPT_CHECKPOINT_READ - The checkpoint is opened in read mode.
• SA_CKPT_CHECKPOINT_WRITE - The checkpoint is opened in write mode.
• SA_CKPT_CHECKPOINT_CREATE - The checkpoint is created if it does not

already exist.

3.3.3 Section Types

3.3.3.1 SaCkptSectionIdT

#define SA_CKPT_DEFAULT_SECTION_ID {0, NULL}

#define SA_CKPT_GENERATED_SECTION_ID {0, NULL}

These special constants define the identifier of the default section and the identifier of
a generated section, as defined by the SaCkptSectionIdT structure below and
20 SAI-AIS-CKPT-B.01.01 Section 3.3.2.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
returned by an invocation of the saCkptSectionCreate() function. The actual identifier
of the generated section is present in the sectionId field of the
SaCkptSectionCreationAttributesT, when the invocation of the
saCkptSectionCreate() function returns.

typedef struct {

SaUint16T idLen;

SaUint8T *id;

} SaCkptSectionIdT;

The fields of the SaCkptSectionIdT structure are the length of the section identifier
and a pointer to the section identifier.

3.3.3.2 SaCkptSectionCreationAttributesT

typedef struct {

SaCkptSectionIdT *sectionId;

SaTimeT expirationTime;

} SaCkptSectionCreationAttributesT;

The fields of the SaCkptSectionCreationAttributesT structure have the following inter-
pretation:

• sectionId - [in/out] A structure of the type saCkptSectionIdT that identifies the
section that is to be created. If it contains the special value
SA_CKPT_GENERATED_SECTION_ID, the Checkpoint Service automati-
cally generates a new identifier and changes the values of the fields in the
structure sectionId.

• expirationTime - [in] The absolute time after which the Checkpoint Service
deletes the section automatically. The expirationTime can be specified when a
section is created as well as set or modified later via the
saCkptSectionExpirationTimeSet() call. If expirationTime has the special value
SA_TIME_END, the Checkpoint Service never deletes the section automati-
cally.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.3.3.2 21

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
3.3.3.3 SaCkptSectionStateT

typedef enum {

SA_CKPT_SECTION_VALID = 1,

SA_CKPT_SECTION_CORRUPTED = 2

} SaCkptSectionStateT;

The values of the SaCkptSectionStateT enumeration type indicate either that the sec-
tion is valid or that the section is corrupted.

3.3.3.4 SaCkptSectionDescriptorT

typedef struct {

SaCkptSectionIdT sectionId;

SaTimeT expirationTime;

SaSizeT sectionSize;

SaCkptSectionStateT sectionState;

SaTimeT lastUpdate;

} SaCkptSectionDescriptorT;

The fields of the SaCkptSectionDescriptorT structure have the following interpreta-
tion:

• sectionId - The identifier of the section.
• expirationTime - The absolute time at which the section will be deleted.
• sectionSize - The size of the section.
• sectionState - The state of the section. A section is either in the

SA_CKPT_SECTION_VALID state or SA_CKPT_SECTION_CORRUPTED
state. A section can be in the SA_CKPT_SECTION_CORRUPTED state when
the checkpoint has been created with the
SA_CKPT_WR_ACTIVE_REPLICA_WEAK property and an invocation of
saCkptCheckpointWrite() or saCkptSectionOverwrite() did not complete suc-
cessfully.

• lastUpdate - The absolute time of the last update.
22 SAI-AIS-CKPT-B.01.01 Section 3.3.3.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
3.3.3.5 SaCkptSectionsChosenT

typedef enum {

SA_CKPT_SECTIONS_FOREVER = 1,

SA_CKPT_SECTIONS_LEQ_EXPIRATION_TIME = 2,

SA_CKPT_SECTIONS_GEQ_EXPIRATION_TIME = 3,

SA_CKPT_SECTIONS_CORRUPTED = 4,

SA_CKPT_SECTIONS_ANY = 5

} SaCkptSectionsChosenT;

The values of the SaCkptSectionChosenT enumeration type have the following inter-
pretation:

• SA_CKPT_SECTIONS_FOREVER - All sections with expiration time set to
SA_TIME_END.

• SA_CKPT_SECTIONS_LEQ_EXPIRATION_TIME - All sections with expira-
tion time less than or equal to the value of expirationTime.

• SA_CKPT_SECTIONS_GEQ_EXPIRATION_TIME - All sections with expira-
tion time greater than or equal to the value of expirationTime.

• SA_CKPT_SECTIONS_CORRUPTED - All corrupted sections.
• SA_CKPT_SECTIONS_ANY - All sections.

3.3.4 IoVector Types

3.3.4.1 SaCkptIOVectorElementT

typedef struct {

SaCkptSectionIdT sectionId;

void *dataBuffer;

SaSizeT dataSize;

SaOffsetT dataOffset;

SaSizeT readSize;

} SaCkptIOVectorElementT;

The fields of the SaCkptIOVectorElementT structure have the following interpretation:

• sectionId - The identifier of the section to be written to or read from.
• dataBuffer - A pointer to a buffer containing the data to be written or read.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.3.3.5 23

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
• dataSize - Size of the data in bytes to be written to, or read from, the buffer
dataBuffer. The size is at most maxSectionSize as specified in the creation
attributes of the checkpoint.

• dataOffset - Offset in the section that marks the start of the data that is to be
written or read.

• readSize - Used by saCkptCheckpointRead() to record the number of bytes of
data that have been read; otherwise, this field is not used.

3.3.5 SaCkptCheckpointDescriptorT

typedef struct {

SaCkptCheckpointCreationAttributesT checkpointCreationAttributes;

SaUint32T numberOfSections;

SaSizeT memoryUsed;

} SaCkptCheckpointDescriptorT;

The fields of the SaCkptCheckpointDescriptorT structure have the following interpre-
tation:

• checkpointCreationAttributes - Structure containing the checkpoint attributes
that were set when the checkpoint was created by an invocation of the
saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() functions.

• numberOfSections - The number of sections in the checkpoint.
• memoryUsed - The number of bytes used in the checkpoint to store check-

point data.

3.3.6 SaCkptCallbacksT

The SaCkptCallbacksT structure is defined as follows:

typedef struct {

SaCkptCheckpointOpenCallbackT saCkptCheckpointOpenCallback;

SaCkptCheckpointSynchronizeCallbackT saCkptCheckpointSynchronizeCallback;

} SaCkptCallbacksT;

The callbacks structure supplied by the process to the Checkpoint Service that con-
tains the callback functions that the Checkpoint Service can invoke.
24 SAI-AIS-CKPT-B.01.01 Section 3.3.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
3.4 Library Life Cycle

3.4.1 saCkptInitialize()

Prototype

SaAisErrorT saCkptInitialize(

SaCkptHandleT *ckptHandle,

const SaCkptCallbacksT *ckptCallbacks,

SaVersionT *version

);

Parameters

ckptHandle - [out] A pointer to the handle designating this particular initialization of
the Checkpoint Service that is to be returned by the Checkpoint Service.

ckptCallbacks - [in] If ckptCallbacks is set to NULL, no callback is registered; other-
wise, it is a pointer to a SaCkptCallbacksT structure, containing the callback functions
of the process that the Checkpoint Service may invoke. Only non-NULL callback
functions in this structure will be registered.

version - [in/out] As an input parameter, version is a pointer to the required Check-
point Service version. In this case, minorVersion is ignored and should be set to
0x00.
As an output parameter, the version actually supported by the Checkpoint Service is
delivered.

Description

This function initializes the Checkpoint Service for the invoking process and registers
the various callback functions. This function must be invoked prior to the invocation of
any other Checkpoint Service functionality. The handle ckptHandle is returned as the
reference to this association between the process and the Checkpoint Service. The
process uses this handle in subsequent communication with the Checkpoint Service.

If the implementation supports the required releaseCode, and a major version >= the
required majorVersion, SA_AIS_OK is returned. In this case, the version parameter is
set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation can

support for the required releaseCode
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.4 25

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
• minorVersion = highest value of the minor version that this implementation can
support for the required value of releaseCode and the returned value of
majorVersion

If the above mentioned condition cannot be met, SA_AIS_ERR_VERSION is
returned, and the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the least value of the supported release codes that is
higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that is
less than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Checkpoint Service library or the Check-
point Service provider is out of memory and cannot provide the service.
26 SAI-AIS-CKPT-B.01.01 Section 3.4.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_VERSION - The version parameter is not compatible with the version
of the Checkpoint Service implementation.

See Also

saCkptSelectionObjectGet(), saCkptDispatch(), saCkptFinalize()

3.4.2 saCkptSelectionObjectGet()

Prototype

SaAisErrorT saCkptSelectionObjectGet(

SaCkptHandleT ckptHandle,

SaSelectionObjectT *selectionObject

);

Parameters

ckptHandle - [in] The handle, obtained through the saCkptInitialize() function, desig-
nating this particular initialization of the Checkpoint Service.

selectionObject - [out] A pointer to the operating system handle that the process can
use to detect pending callbacks.

Description

This function returns the operating system handle, selectionObject, associated with
the handle ckptHandle. The invoking process can use this handle to detect pending
callbacks, instead of repeatedly invoking saCkptDispatch() for this purpose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.

The selectionObject returned by saCkptSelectionObjectGet() is valid until
saCkptFinalize() is invoked on the same handle ckptHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.4.2 27

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ckptHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Checkpoint Service library or the Check-
point Service provider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

See Also

saCkptInitialize(), saCkptDispatch(), saCkptFinalize()

3.4.3 saCkptDispatch()

Prototype

SaAisErrorT saCkptDispatch(

SaCkptHandleT ckptHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

ckptHandle - [in] The handle, obtained through the saCkptInitialize() function, desig-
nating this particular initialization of the Checkpoint Service.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saCkptDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING, as defined in volume 1 of the
AIS specification.

Description

This function invokes, in the context of the calling thread, pending callbacks for the
handle ckptHandle in a way that is specified by the dispatchFlags parameter.
28 SAI-AIS-CKPT-B.01.01 Section 3.4.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ckptHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.

See Also

saCkptInitialize(), saCkptSelectionObjectGet()

3.4.4 saCkptFinalize()

Prototype

SaAisErrorT saCkptFinalize(

SaCkptHandleT ckptHandle

);

Parameters

ckptHandle - [in] The handle, obtained through the saCkptInitialize() function, desig-
nating this particular initialization of the Checkpoint Service.

Description

The saCkptFinalize() function closes the association, represented by the ckptHandle
parameter, between the invoking process and the Checkpoint Service. The process
must have invoked saCkptInitialize() before it invokes this function. A process must
invoke this function once for each handle acquired by invoking saCkptInitialize().

If the saCkptFinalize() function returns successfully, the saCkptFinalize() function
releases all resources acquired when saCkptInitialize() was called. Moreover, it
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.4.4 29

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
closes all checkpoints that are open for the particular handle. Furthermore, it cancels
all pending callbacks related to the particular handle.

After saCkptFinalize() is called, the selection object is no longer valid. Note that
because the callback invocation is asynchronous, it is still possible that some call-
back calls are processed after this call returns successfully.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ckptHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saCkptInitialize()
30 SAI-AIS-CKPT-B.01.01 Section 3.4.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
3.5 Checkpoint Management

3.5.1 saCkptCheckpointOpen() and saCkptCheckpointOpenAsync()

Prototype

SaAisErrorT saCkptCheckpointOpen(

SaCkptHandleT ckptHandle,

const SaNameT *checkpointName,

const SaCkptCheckpointCreationAttributesT *checkpointCreationAttributes,

SaCkptCheckpointOpenFlagsT checkpointOpenFlags,

SaTimeT timeout,

SaCkptCheckpointHandleT *checkpointHandle

);

SaAisErrorT saCkptCheckpointOpenAsync(

SaCkptHandleT ckptHandle,

SaInvocationT invocation,

const SaNameT *checkpointName,

const SaCkptCheckpointCreationAttributesT *checkpointCreationAttributes,

SaCkptCheckpointOpenFlagsT checkpointOpenFlags

);

Parameters

ckptHandle - [in] The handle, obtained through the saCkptInitialize() function, desig-
nating this particular initialization of the Checkpoint Service.

invocation - [in] A parameter designates a particular invocation of the response call-
back.

checkpointName - [in] A pointer to the name of the checkpoint that identifies a check-
point globally in a cluster.

checkpointCreationAttributes - [in] A pointer to the creation attributes of a checkpoint.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.5 31

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
If the intent is only to open an existing checkpoint, checkpointCreationAttributes must
be set to NULL and the SA_CKPT_CHECKPOINT_CREATE flag in
checkpointOpenFlags may not be set. If the intent is to open and create a checkpoint
if it does not exist, checkpointCreationAttributes must contain the attributes for the
checkpoint, and the SA_CKPT_CHECKPOINT_CREATE flag in
checkpointOpenFlags must be set. If the checkpoint already exists, the creation
attributes must match the ones used at creation time.

checkpointOpenFlags - [in] The value of this parameter is constructed by a bitwise
OR of the flags defined by the SaCkptCheckpointOpenFlagsT type in Section 3.3.2.3
on page 20.

timeout - [in] The saCkptCheckpointOpen() invocation is considered to have failed if it
does not complete by the time specified. A checkpoint replica may still be created.

checkpointHandle - [out] A pointer to the checkpoint handle, allocated in the address
space of the invoking process. If the checkpoint is opened successfully, the Check-
point Service stores in checkpointHandle the handle that the process uses to access
the checkpoint in subsequent invocations of the functions of the Checkpoint Service
API. In the case of saCkptCheckpointOpenAsync(), this handle is returned in the cor-
responding callback.

Description

The saCkptCheckpointOpen() and saCkptCheckpointOpenAsync() open a check-
point. If the checkpoint does not exist and the SA_CKPT_CHECKPOINT_CREATE
flag is set in the checkpointOpenFlags parameter, the checkpoint is created first.

An invocation of saCkptCheckpointOpen() is blocking. A new checkpoint handle is
returned upon completion. A checkpoint can be opened multiple times for reading
and or writing in the same or different processes.

When a checkpoint replica is created as a result of this invocation, the following is
guaranteed:

• If the checkpoint has been created with the synchronization flag
SA_CKPT_WR_ALL_REPLICAS, then the checkpoint replica must be identi-
cal to the other checkpoint replicas.

• Otherwise, the data in the checkpoint replica is synchronized using the data in
the active checkpoint replica.

When a checkpoint is opened using the saCkptCheckpointOpen() or
saCkptCheckpointOpenAsync() function, some combination of the creation flags,
defined in SaCkptCheckpointCreationFlagsT, are bitwise ORed together to provide
the value of the creationFlags field of the checkpointCreationAttributes parameter.
32 SAI-AIS-CKPT-B.01.01 Section 3.5.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
The completion of the saCkptCheckpointOpenAsync() function is signaled by the
associated saCkptCheckpointOpenCallback() callback function, which must have
been supplied when the process invoked the saCkptInitialize() call.
The process supplies the value of invocation when it invokes the
saCkptCheckpointOpenAsync() function and the Checkpoint Service gives that value
of invocation back to the application when it invokes the corresponding
saCkptCheckpointOpenCallback() function. The invocation parameter is a mecha-
nism that enables the process to determine which call triggered which callback.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout, specified by the timeout parameter, occurred before the call could complete.
It is unspecified whether the call succeeded or whether it didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ckptHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saCkptInitialize() was incom-
plete, since the saCkptCheckpointOpenCallback() callback function is missing. This
return value only applies to the saCkptCheckpointOpenAsync() function.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
error is returned for each of the following cases:

• The user specifies checkpointCreationAttributes with
checkpointSize > maxSections * maxSectionSize.

• The SA_CKPT_CHECKPOINT_CREATE flag is not set, and
checkpointCreationAttributes is not NULL.

• The SA_CKPT_CHECKPOINT_CREATE flag is set and
checkpointCreationAttributes is NULL.

SA_AIS_ERR_NO_MEMORY - Either the Checkpoint Service library or the Check-
point Service provider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.5.1 33

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NOT_EXIST - The SA_CKPT_CHECKPOINT_CREATE flag is not
set, and the checkpoint, designated by checkpointName, does not exist.

SA_AIS_ERR_EXIST - The checkpoint already exists and the
checkpointCreationAttributes creation attributes are different from the ones used at
creation time.

SA_AIS_ERR_BAD_FLAGS - The checkpointOpenFlags parameter is invalid.

See Also

SaCkptCheckpointOpenCallbackT, saCkptCheckpointClose(), saCkptInitialize()

3.5.2 SaCkptCheckpointOpenCallbackT

Prototype

typedef void (*SaCkptCheckpointOpenCallbackT)(

SaInvocationT invocation,

SaCkptCheckpointHandleT checkpointHandle,

SaAisErrorT error

);

Parameters

invocation - [in] This parameter was supplied by a process in the corresponding invo-
cation of the saCkptCheckpointOpenAsync() function and is used by the Checkpoint
Service in this callback. This invocation parameter allows the process to match the
invocation of that function with this callback.

checkpointHandle - [in] The handle that designates the checkpoint.

error - [in] This parameter indicates whether the saCkptCheckpointOpenAsync()
function was successful. The returned values are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it didn’t.
34 SAI-AIS-CKPT-B.01.01 Section 3.5.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may try again.

• SA_AIS_ERR_NO_MEMORY - Either the Checkpoint Service library or the
Checkpoint Service provider is out of memory and cannot provide the service.

• SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other
than memory).

• SA_AIS_ERR_NOT_EXIST - The SA_CKPT_CHECKPOINT_CREATE flag is
not set, and the checkpoint, designated by checkpointName, does not exist.

• SA_AIS_ERR_EXIST - The checkpoint already exists, and the
checkpointCreationAttributes creation attributes are different from the ones
used at creation time.

• SA_AIS_ERR_BAD_FLAGS - The checkpointOpenFlags parameter is invalid.

Description

The Checkpoint Service calls this callback function when the operation requested by
the invocation of saCkptCheckpointOpenAsync() completes. This callback is invoked
in the context of a thread issuing an saCkptDispatch() call on the handle ckptHandle,
which was specified in the saCkptCheckpointOpenAsync() call. If successful, the ref-
erence to the opened/created checkpoint is returned in checkpointHandle; otherwise,
an error is returned in the error parameter.

Return Values

None.

See Also

saCkptCheckpointOpenAsync(), saCkptDispatch(), saCkptCheckpointClose()
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.5.2 35

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
3.5.3 saCkptCheckpointClose()

Prototype

SaAisErrorT saCkptCheckpointClose(

SaCkptCheckpointHandleT checkpointHandle

);

Parameters

checkpointHandle - [in] The handle that designates the checkpoint to close. The han-
dle checkpointHandle must have been obtained previously by the invocation of one of
the saCkptCheckpointOpen() or saCkptCheckpointOpenCallback() functions.

Description

This API function closes the checkpoint, designated by checkpointHandle, which was
opened by an earlier invocation of the saCkptCheckpointOpen() or
saCkptCheckpointOpenAsync() function.

After this invocation, the handle checkpointHandle is no longer valid.

When the invocation of the saCkptCheckpointClose() function completes success-
fully, if no process has the checkpoint open any longer, the following will occur:

• The checkpoint is deleted immediately if its deletion was pending as a result of a
saCkptCheckpointUnlink() function, or

• the checkpoint will be deleted when the retention duration expires if no process
opens it in the meantime.

The deletion of a checkpoint frees all resources allocated by the Checkpoint Service
for it.

When a process terminates, all of its opened checkpoints are closed.

This call cancels all pending callbacks that refer directly or indirectly to the handle
checkpointHandle. Note that because the callback invocation is asynchronous, it is
still possible that some callback calls are processed after this call returns success-
fully.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
36 SAI-AIS-CKPT-B.01.01 Section 3.5.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle checkpointHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions, or the corresponding checkpoint
has already been closed.

• The handle ckptHandle that was passed to the functions
saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() has already been
finalized.

See Also

saCkptCheckpointOpen(), saCkptCheckpointOpenAsync(),
SaCkptCheckpointOpenCallbackT, saCkptCheckpointUnlink()

3.5.4 saCkptCheckpointUnlink()

Prototype

SaAisErrorT saCkptCheckpointUnlink(

SaCkptHandleT ckptHandle,

const SaNameT *checkpointName

);

Parameters

ckptHandle - [in] The handle, obtained through the saCkptInitialize() function, desig-
nating this particular initialization of the Checkpoint Service.

checkpointName - [in] A pointer to the name of the checkpoint that is to be unlinked.

Description

This function deletes an existing checkpoint, identified by checkpointName, from the
cluster.

After completion of the invocation,
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.5.4 37

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
• The name checkpointName is no longer valid, that is, any invocation of a function
of the Checkpoint Service API that uses the checkpoint name returns an error,
unless a checkpoint is re-created with this name. The checkpoint is re-created
by specifying the same name of the checkpoint to be unlinked in an open call
with the SA_CKPT_CHECKPOINT_CREATE flag set. This way, a new instance
of the checkpoint is created while the old instance of the checkpoint is possibly
not yet finally deleted.
Note that this is similar to the way POSIX treats files.

• If no process has the checkpoint open when saCkptCheckpointUnlink() is
invoked, the checkpoint is immediately deleted.

• Any process that has the checkpoint open can still continue to access it. Deletion
of the checkpoint will occur when the last saCkptCheckpointClose() operation is
performed.

The deletion of a checkpoint frees all resources allocated by the Checkpoint Service
for it.

This API can be invoked by any process, and the invoking process need not be the
creator or opener of the checkpoint.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ckptHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - The checkpoint, identified by checkpointName, does
not exist.

See Also

saCkptCheckpointClose()
38 SAI-AIS-CKPT-B.01.01 Section 3.5.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
3.5.5 saCkptCheckpointRetentionDurationSet()

Prototype

SaAisErrorT saCkptCheckpointRetentionDurationSet(

SaCkptCheckpointHandleT checkpointHandle,

SaTimeT retentionDuration

);

Parameters

checkpointHandle - [in] The checkpoint whose retention time is being set. The handle
checkpointHandle must have been obtained previously by the invocation of one of the
saCkptCheckpointOpen() or saCkptCheckpointOpenCallback() functions.

retentionDuration - [in] The value of the retention duration to be set. The checkpoint is
retained (not deleted) for the retention duration.

Description

The function saCkptCheckpointRetentionDurationSet() sets the retention duration of
the checkpoint, designated by checkpointHandle, to retentionDuration. When no
more processes have the checkpoint open, and if the checkpoint is not opened by
any process within the retention duration, the Checkpoint Service automatically
deletes the checkpoint.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle checkpointHandle is invalid, due to one
or both of the reasons below:
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.5.5 39

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
• It is corrupted, was not obtained via the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions, or the corresponding checkpoint
has already been closed.

• The handle ckptHandle that was passed to the saCkptCheckpointOpen() or
saCkptCheckpointOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_BAD_OPERATION - The retention duration of the checkpoint, desig-
nated by checkpointHandle, cannot be changed as the checkpoint has been
unlinked.

See Also

saCkptCheckpointOpen(), saCkptCheckpointOpenAsync(),
SaCkptCheckpointOpenCallbackT, saCkptCheckpointClose(),
saCkptCheckpointUnlink()

3.5.6 saCkptActiveReplicaSet()

Prototype

SaAisErrorT saCkptActiveReplicaSet(

SaCkptCheckpointHandleT checkpointHandle

);

Parameters

checkpointHandle - [in] The handle that designates a checkpoint. The handle
checkpointHandle must have been obtained previously by the invocation of one of the
saCkptCheckpointOpen() or saCkptCheckpointOpenCallback() functions.

Description

This function can only be used for checkpoints that have been created with the collo-
cated attribute and the asynchronous update option.

The local checkpoint replica will become the active replica after an invocation of this
function.

A local replica that was set active by the saCkptActiveReplicaSet() call and was not
overridden by another call to saCkptActiveReplicaSet() on another node, remains
active until the checkpoint expires or the replica is destroyed.
40 SAI-AIS-CKPT-B.01.01 Section 3.5.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle checkpointHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions, or the corresponding checkpoint
has already been closed.

• The handle ckptHandle that was passed to the saCkptCheckpointOpen() or
saCkptCheckpointOpenAsync() functions has already been finalized.

SA_AIS_ERR_ACCESS -The checkpoint, designated by checkpointHandle, was not
opened for write mode.

SA_AIS_ERR_BAD_OPERATION - The checkpoint, designated by
checkpointHandle, was not created as a collocated checkpoint with the asynchronous
update option.

See Also

saCkptCheckpointWrite(), saCkptSectionOverwrite(), saCkptCheckpointRead(),
saCkptCheckpointOpen(), saCkptCheckpointOpenAsync(),
SaCkptCheckpointOpenCalbackT
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.5.6 41

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
3.5.7 saCkptCheckpointStatusGet()

Prototype

SaAisErrorT saCkptCheckpointStatusGet(

SaCkptCheckpointHandleT checkpointHandle,

SaCkptCheckpointDescriptorT *checkpointStatus

);

Parameters

checkpointHandle - [in] The handle of the checkpoint whose status is to be returned.
The handle checkpointHandle must have been obtained previously by the invocation
of one of the saCkptCheckpointOpen() or saCkptCheckpointOpenCallback() func-
tions.

checkpointStatus -[out] A pointer to a SaCkptCheckpointDescriptorT structure,
defined in Section 3.3.5 on page 24, in the address space of the invoking process,
that contains the checkpoint status information that is to be returned.

Description

This function retrieves the checkpointStatus of the checkpoint designated by
checkpointHandle.

If the checkpoint was created using either SA_CKPT_WR_ACTIVE_REPLICA or
SA_CKPT_WR_ACTIVE_REPLICA_WEAK option, the checkpoint status is obtained
from the active replica. If the checkpoint was created using the
SA_CKPT_WR_ALL_REPLICAS option, the Checkpoint Service determines the rep-
lica from which to obtain the checkpoint status.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
42 SAI-AIS-CKPT-B.01.01 Section 3.5.7 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BAD_HANDLE - The handle checkpointHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions, or the corresponding checkpoint
has already been closed.

• The handle ckptHandle that was passed to the saCkptCheckpointOpen() or
saCkptCheckpointOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - No active replica exists.

See Also

saCkptCheckpointOpen(), saCkptCheckpointOpenAsync(),
SaCkptCheckpointOpenCallbackT

3.6 Section Management

3.6.1 saCkptSectionCreate()

Prototype

SaAisErrorT saCkptSectionCreate(

SaCkptCheckpointHandleT checkpointHandle,

SaCkptSectionCreationAttributesT *sectionCreationAttributes,

const void *initialData,

SaSizeT initialDataSize

);

Parameters

checkpointHandle - [in] The handle of the checkpoint that is to hold the section to be
created. The handle checkpointHandle must have been obtained by a previous invo-
cation of one of the saCkptCheckpointOpen() or saCkptCheckpointOpenAsync()
function with the SA_CKPT_CHECKPOINT_WRITE flag set.

sectionCreationAttributes - [in] A pointer to a SaCkptSectionCreationAttributesT
structure, as defined in Section 3.3.3.2 on page 21, that contains the in/out field
sectionId and the in field expirationTime.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.6 43

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
initialData - [in] A location in the address space of the invoking process that contains
the initial data of the section to be created.

initialDataSize - [in] The size in bytes of the initial data of the section to be created.
Initial size can be at most maxSectionSize, as specified by the checkpoint creation
attributes in saCkptCheckpointOpen().

Description

This function creates a new section in the checkpoint referred to by checkpointHandle
as long as the total number of existing sections is less than the maximum number of
sections specified by the saCkptCheckpointOpen() or
saCkptCheckpointOpenAsync() API call. Unlike a checkpoint, a section does not
need to be opened for access. The section will be deleted by the Checkpoint Service
when its expiration time is reached. If a checkpoint is created to have only one sec-
tion, it is not necessary to create that section. The default section is identified by the
special identifier SA_CKPT_DEFAULT_SECTION_ID. If the checkpoint was created
with the SA_CKPT_WR_ALL_REPLICAS property, the section is created in all of the
checkpoint replicas when the invocation returns; otherwise, the section has been cre-
ated at least in the active checkpoint replica when the invocation returns and will be
created asynchronously in the other checkpoint replicas.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle checkpointHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions, or the corresponding checkpoint
has already been closed.

• The handle ckptHandle that was passed to the functions
saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() has already been
finalized.
44 SAI-AIS-CKPT-B.01.01 Section 3.6.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Checkpoint Service library or the Check-
point Service provider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system does not have enough resources to
create this section.

SA_AIS_ERR_NO_SPACE - With the creation of this new section, the maximum
number of sections specified for this checkpoint would be exceeded. The section is
not created.

SA_AIS_ERR_NOT_EXIST - No active replica exists.

SA_AIS_ERR_ACCESS -The checkpoint, designated by checkpointHandle, was not
opened for write mode.

SA_AIS_ERR_EXIST - The section, defined in sectionCreationAttributes, already
exists, or the checkpoint was created to have only one section.

See Also

saCkptSectionDelete(), saCkptCheckpointOpen(), saCkptCheckpointOpenAsync(),
SaCkptCheckpointOpenCallbackT

3.6.2 saCkptSectionDelete()

Prototype

SaAisErrorT saCkptSectionDelete(

SaCkptCheckpointHandleT checkpointHandle,

const SaCkptSectionIdT *sectionId

);

Parameters

checkpointHandle - [in] The handle to the checkpoint holding the section to be
deleted. The handle checkpointHandle must have been obtained previously by the
invocation of one of the saCkptCheckpointOpen() or saCkptCheckpointOpenAsync()
functions with the SA_CKPT_CHECKPOINT_WRITE flag set.

sectionId - [in] A pointer to the identifier of the section that is to be deleted.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.6.2 45

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
Description

This function deletes a section in the checkpoint referred to by checkpointHandle. If
the checkpoint was created with the SA_CKPT_WR_ALL_REPLICAS property, the
section has been deleted in all of the checkpoint replicas when the invocation returns;
otherwise, the section has been deleted at least in the active checkpoint replica when
the invocation returns. The default section, identified by
SA_CKPT_DEFAULT_SECTION_ID, cannot be deleted by invoking the
saCkptSectionDelete() function.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle checkpointHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions, or the corresponding checkpoint
has already been closed.

• The handle ckptHandle that was passed to the functions
saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() has already been
finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - There is no active replica, or the section, identified by
sectionId, does not exist.

SA_AIS_ERR_ACCESS -The checkpoint, designated by checkpointHandle, was not
opened for write mode.

See Also

saCkptSectionCreate(), saCkptCheckpointOpen(), saCkptCheckpointOpenAsync(),
SaCkptCheckpointOpenCallbackT
46 SAI-AIS-CKPT-B.01.01 Section 3.6.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
3.6.3 saCkptSectionExpirationTimeSet()

Prototype

SaAisErrorT saCkptSectionExpirationTimeSet(

SaCkptCheckpointHandleT checkpointHandle,

const SaCkptSectionIdT* sectionId,

SaTimeT expirationTime

);

Parameters

checkpointHandle - [in] The handle of the checkpoint containing the section for which
the expiration time is to be set. The handle checkpointHandle must have been
obtained previously by the invocation of one of the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions.

sectionId - [in] A pointer to the identifier of the section for which the expiration time is
to be set.

expirationTime - [in] The expiration time that is to be set for the section, designated
by sectionId. The expiration time is an absolute time that defines the time at which the
Checkpoint Service will delete the section automatically, regardless of whether the
checkpoint is open by a process or not.
If expirationTime has the special value SA_TIME_END, the Checkpoint Service
never deletes the section automatically.

Description

This function sets the expiration time of the section, identified by sectionId, within the
checkpoint with handle checkpointHandle to the value expirationTime. The expiration
time of the default section, identified by SA_CKPT_DEFAULT_SECTION_ID, is
unlimited and cannot be changed.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.6.3 47

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle checkpointHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions, or the corresponding checkpoint
has already been closed.

• The handle ckptHandle that was passed to the functions
saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() has already been
finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_ACCESS -The checkpoint, designated by checkpointHandle, was not
opened for write mode.

SA_AIS_ERR_NOT_EXIST - There is no active replica, or the section, identified by
sectionId, does not exist.

See Also

saCkptSectionCreate(), saCkptCheckpointOpen(),
SaCkptCheckpointOpenCallbackT
48 SAI-AIS-CKPT-B.01.01 Section 3.6.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
3.6.4 saCkptSectionIterationInitialize()

Prototype

SaAisErrorT saCkptSectionIterationInitialize(

SaCkptCheckpointHandleT checkpointHandle,

SaCkptSectionsChosenT sectionsChosen,

SaTimeT expirationTime,

SaCkptSectionIterationHandleT *sectionIterationHandle

);

Parameters

checkpointHandle - [in] The checkpoint handle, which must have been obtained pre-
viously by an invocation of the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions.

sectionsChosen - [in] A predicate, defined by the SaCkptSectionsChosenT structure
in Section 3.3.3.5 on page 23, that describes the sections that are to be chosen dur-
ing an iteration.

expirationTime - [in] An absolute time used by sectionsChosen, as described above.
This field is not used when sectionsChosen is SA_CKPT_SECTIONS_FOREVER,
SA_CKPT_SECTIONS_CORRUPTED or SA_CKPT_SECTIONS_ANY.

sectionIterationHandle - [out] A pointer to the section iteration handle, allocated in the
address space of the invoking process. If this function returns successfully, the
Checkpoint Service stores in sectionIterationHandle the handle that the process uses
in subsequent invocations of the saCkptSectionIterationNext() and
saCkptSectionIterationFinalize() functions for stepping through the sections in the
checkpoint designated by checkpointHandle.

Description

This function returns the sectionIterationHandle for stepping through the sections in a
checkpoint designated by checkpointHandle. The iteration only steps through sec-
tions that match the criteria specified in sectionsChosen. The Checkpoint Service
keeps track of the current position while iterating through sections.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.6.4 49

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle checkpointHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions, or the corresponding checkpoint
has already been closed.

• The handle ckptHandle that was passed to the functions
saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() has already been
finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - No active replica exists.

See Also

saCkptSectionIterationNext(), saCkptSectionIterationFinalize(),
saCkptCheckpointOpen(), saCkptCheckpointOpenAsync()
50 SAI-AIS-CKPT-B.01.01 Section 3.6.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
3.6.5 saCkptSectionIterationNext()

Prototype

SaAisErrorT saCkptSectionIterationNext(

SaCkptSectionIterationHandleT sectionIterationHandle,

SaCkptSectionDescriptorT *sectionDescriptor

);

Parameters

sectionIterationHandle - [in] The section iteration handle obtained via an invocation of
the saCkptSectionIterationInitialize() function for stepping through the sections in the
checkpoint.

sectionDescriptor - [out] A pointer to a SaCkptSectionDescriptorT structure, defined
in Section 3.3.3.4 on page 22, that is allocated by the Checkpoint Service in the
address space of the invoking process and that contains information about the sec-
tion.
It is up to the Checkpoint Service to release the memory for sectionDescriptor and the
section identifier (sectionDescriptor->sectionId->id). Releasing this memory is usually
done at the next invocation of the saCkptSectionIterationNext() function. The Check-
point Service also releases this memory when the saCkptSectionIterationFinalize()
function is invoked, the corresponding checkpoint is closed, or the handle of this par-
ticular initialization of the Checkpoint Service is finalized.

Description

This function iterates over an internal table of sections using the handle
sectionIterationHandle, which was obtained via the saCkptSectionIterationInitialize()
function. When the function returns, sectionDescriptor is set to the descriptor of a
section. A subsequent invocation of saCkptSectionIterationNext() returns another
section. When there are no more sections to return, an error is returned.

Every section created before the invocation of the saCkptSectionIterationInitialize()
function, and not deleted before the invocation of saCkptSectionIterationFinalize(),
will be returned exactly once by this invocation. No other guarantees are made: Sec-
tions that are created after an iteration is initialized, or deleted before an iteration is
finalized, may or may not be returned by an invocation of this function.

Return Values

SA_AIS_OK - The function completed successfully.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.6.5 51

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle sectionIterationHandle is invalid, due to
one or more of the reasons below:

• The handle sectionIterationHandle is either corrupted, or was not obtained via
the saCkptSectionIterationInitialize() function, or
saCkptSectionIterationFinalize() has already been invoked.

• The checkpoint, identified by checkpointHandle, that was specified in the corre-
sponding saCkptSectionIterationInitialize call has already been closed.

• The handle ckptHandle that was passed to the saCkptCheckpointOpen() or
saCkptCheckpointOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - No active replica exists.

SA_AIS_ERR_NO_SECTIONS - There are no more sections matching
sectionsChosen.

See Also

saCkptSectionIterationInitialize(), saCkptSectionIterationFinalize(),
saCkptCheckpointOpen(), saCkptCheckpointOpenAsync()
52 SAI-AIS-CKPT-B.01.01 Section 3.6.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
3.6.6 saCkptSectionIterationFinalize()

Prototype

SaAisErrorT saCkptSectionIterationFinalize(

SaCkptSectionIterationHandleT sectionIterationHandle

);

Parameters

sectionIterationHandle - [in] The section iteration handle obtained via an invocation of
the saCkptSectionIterationInitialize() function and identifying the iteration to be final-
ized.

Description

This function frees resources allocated for iteration.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle sectionIterationHandle is invalid, due to
one or more of the reasons below:

• The handle sectionIterationHandle is either corrupted, or was not obtained via
the saCkptSectionIterationInitialize() function, or
saCkptSectionIterationFinalize() has already been invoked.

• The checkpoint, identified by checkpointHandle, that was specified in the corre-
sponding saCkptSectionIterationInitialize call has already been closed.

• The handle ckptHandle that was passed to the saCkptCheckpointOpen() or
saCkptCheckpointOpenAsync() functions has already been finalized.

SA_AIS_ERR_NOT_EXIST - No active replica exists.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.6.6 53

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
See Also

saCkptSectionIterationInitialize(), saCkptSectionIterationNext(),
saCkptCheckpointOpen(), saCkptCheckpointOpenAsync()

3.7 Data Access

3.7.1 saCkptCheckpointWrite()

Prototype

SaAisErrorT saCkptCheckpointWrite(

SaCkptCheckpointHandleT checkpointHandle,

const SaCkptIOVectorElementT *ioVector,

SaUint32T numberOfElements,

SaUint32T *erroneousVectorIndex

);

Parameters

checkpointHandle - [in] The handle to the checkpoint that is to be written to. The han-
dle checkpointHandle must have been obtained by a previous invocation of one of
the saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() function with the
SA_CKPT_CHECKPOINT_WRITE flag set.

ioVector - [in] A pointer to a vector with elements ioVector[0], ...,
ioVector[numberOfElements - 1]. Each element is of the type
SaCkptIOVectorElementT, defined in Section 3.3.4.1 on page 23, which contains the
following fields: sectionId, dataBuffer, dataSize, dataOffset and readSize. If sectionId
is equal to SA_CKPT_DEFAULT_SECTION_ID, then the default section is written.
The value of dataSize is at most maxSectionSize, as specified in the creation
attributes of the checkpoint. The field readSize is not used by the
saCkptCheckpointWrite() function.

numberOfElements - [in] Size of the ioVector.

erroneousVectorIndex - [out] A pointer to an index, stored in the caller’s address
space, of the first iovector element that makes the invocation fail. If the index is set to
NULL or if the invocation succeeds, the field remains unchanged.
54 SAI-AIS-CKPT-B.01.01 Section 3.7 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
Description

This function writes data from the memory regions specified by ioVector into a check-
point:

• If this checkpoint has been created with the SA_CKPT_WR_ALL_REPLICAS
property, all of the checkpoint replicas have been updated when the invocation
returns. If the invocation does not complete or returns with an error, nothing
has been written at all.

• If the checkpoint has been created with the
SA_CKPT_WR_ACTIVE_REPLICA property, the active checkpoint replica
has been updated when the invocation returns. Other checkpoint replicas are
updated asynchronously. If the invocation does not complete or returns with
an error, nothing has been written at all.

• If the checkpoint been created with the
SA_CKPT_WR_ACTIVE_REPLICA_WEAK property, the active checkpoint
replica has been updated when the invocation returns. Other checkpoint repli-
cas are updated asynchronously. If the invocation returns with an error, noth-
ing has been written at all. However, if the invocation does not complete, the
operation may be partially completed and some sections may be corrupted in
the active checkpoint replica.

In a single invocation, several sections and several portions of sections can be
updated simultaneously. The elements of the ioVectors are written in order from
ioVector[0] to ioVector[numberOfElements - 1]. As a result of this invocation, some
sections might grow.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle checkpointHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions, or the corresponding checkpoint
has already been closed.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.7.1 55

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
• The handle ckptHandle that was passed to the functions
saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() has already been
finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Checkpoint Service library or the Check-
point Service provider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - There is no active replica, or a section, identified by
sectionId in ioVector, does not exist.

SA_AIS_ERR_ACCESS -The checkpoint, designated by checkpointHandle, was not
opened for write mode.

See Also

saCkptSectionOverwrite(), saCkptCheckpointRead(), saCkptCheckpointOpen(),
saCkptCheckpointOpenAsync(), SaCkptCheckpointOpenCallbackT

3.7.2 saCkptSectionOverwrite()

Prototype

SaAisErrorT saCkptSectionOverwrite(

SaCkptCheckpointHandleT checkpointHandle,

const SaCkptSectionIdT *sectionId,

const void *dataBuffer,

SaSizeT dataSize

);

Parameters

checkpointHandle - [in] The handle that designates the checkpoint that is written to.
The handle checkpointHandle must have been obtained by a previous invocation of
one of the saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() functions with
the SA_CKPT_CHECKPOINT_WRITE flag set.

sectionId - [in] A pointer to an identifier for the section that is to be overwritten. If this
pointer points to SA_CKPT_DEFAULT_SECTION_ID, the default section is updated.
56 SAI-AIS-CKPT-B.01.01 Section 3.7.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
dataBuffer - [in] A pointer to a buffer that contains the data to be written.

dataSize - [in] The size in bytes of the data to be written, which becomes the new size
for this section.

Description

This function is similar to saCkptCheckpointWrite() except that it overwrites only a
single section. As a result of this invocation, the previous data and size of the section
will change. This function may be invoked even if there was no prior invocation of
saCkptCheckpointWrite().

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle checkpointHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions, or the corresponding checkpoint
has already been closed.

• The handle ckptHandle that was passed to the functions
saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() has already been
finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Checkpoint Service library or the Check-
point Service provider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - There is no active replica, or the section, identified by
sectionId, does not exist.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.7.2 57

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_ACCESS -The checkpoint, designated by checkpointHandle, was not
opened for write mode.

See Also

saCkptCheckpointRead(), saCkptCheckpointWrite(), saCkptCheckpointOpen(),
saCkptCheckpointOpenAsync(), SaCkptCheckpointOpenCallbackT

3.7.3 saCkptCheckpointRead()

Prototype

SaAisErrorT saCkptCheckpointRead(

SaCkptCheckpointHandleT checkpointHandle,

SaCkptIOVectorElementT *ioVector,

SaUint32T numberOfElements,

SaUint32T *erroneousVectorIndex

);

Parameters

checkpointHandle - [in] The handle to the checkpoint that is to be read. The handle
checkpointHandle must have been obtained by a previous invocation of one of the
saCkptCheckpointOpen() or saCkptCheckpointOpenCallback() function.

ioVector - [in/out] A pointer to a vector that contains elements ioVector[0], ...,
ioVector[numberOfElements - 1]. Each element is of the type
saCkptIOVectorElementT, defined in Section 3.3.4.1 on page 23, and containing the
following fields:

• sectionId - [in] The identifier of the section to be read from.
• dataBuffer - [in/out] A pointer to a buffer containing the data to be read to. If

dataBuffer is NULL, the value of datasize provided by the invoker is ignored
and the buffer is provided by the Checkpoint Service library. The buffer must
be deallocated by the invoker.

• dataSize - [in] Size of the data to be read to the buffer designated by
dataBuffer. The size is at most maxSectionSize, as specified in the creation
attributes of the checkpoint.

• dataOffset - [in] Offset in the section that marks the start of the data that is to
be read.
58 SAI-AIS-CKPT-B.01.01 Section 3.7.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
• readSize - [out] Used by saCkptCheckpointRead() to record the number of
bytes of data that have been read; otherwise, this field is not used.

numberOfElements - [in] The size of the ioVector.

erroneousVectorIndex - [out] A pointer to an index, in the caller’s address space, of
the first vector element that causes the invocation to fail. If the invocation succeeds,
then erroneousVectorIndex is NULL and should be ignored.

Description

This function copies data from a checkpoint replica into the vector specified by
ioVector. Some of the buffers provided to the invocation may have been modified if
the invocation does not succeed.

When dataBuffer is allocated by the Checkpoint Service library, care must be taken to
ensure that the invoking process deallocates that buffer space promptly.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle checkpointHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback) functions, or the corresponding checkpoint
has already been closed.

• The handle ckptHandle that was passed to the functions
saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() has already been
finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - There is no active replica, or a section, identified by
sectionId in ioVector, does not exist.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.7.3 59

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_ACCESS -The checkpoint, designated by checkpointHandle, was not
opened for read mode.

See Also

saCkptCheckpointWrite(), saCkptSectionOverwrite(), saCkptCheckpointOpen(),
saCkptCheckpointOpenAsync(), SaCkptCheckpointOpenCallbackT

3.7.4 saCkptCheckpointSynchronize(), saCkptCheckpointSynchronizeAsync()

Prototype

SaAisErrorT saCkptCheckpointSynchronize(

SaCkptCheckpointHandleT checkpointHandle,

SaTimeT timeout

);

SaAisErrorT saCkptCheckpointSynchronizeAsync(

SaCkptCheckpointHandleT checkpointHandle,

SaInvocationT invocation

);

Parameters

checkpointHandle -[in] The handle of the checkpoint that is to be synchronized. The
handle checkpointHandle must have been obtained by a previous invocation of one
of the saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() functions with the
SA_CKPT_CHECKPOINT_WRITE flag set.

invocation - [in] This parameter designates a particular invocation of the response
callback.

timeout - [in] The function will terminate if the time it takes exceeds timeout; however,
the propagation of the checkpoint data to other checkpoint replicas might continue
even if this error is returned.

Description

The saCkptCheckpointSynchronize() and saCkptCheckpointSynchronizeAsync()
functions ensure that all previous operations applied on the active checkpoint replica
are propagated to other checkpoint replicas. Such operations are
60 SAI-AIS-CKPT-B.01.01 Section 3.7.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
saCkptCheckpointWrite(), saCkptSectionOverwrite(), saCkptSectionCreate() and
saCkptSectionDelete().

There is no guarantee that new operations, applied while the synchronization is in
progress, will be propagated when the synchronization operation completes. In the
case where new operations are issued concurrently to these calls, there is no guaran-
tee that the replicas are all identical when saCkptCheckpointSynchronize() returns, or
the saCkptCheckpointSynchronizeCallback() callback is invoked.

These saCkptCheckpointSynchronize() and saCkptCheckpointSynchronizeAsync()
functions only apply to checkpoints created with the asynchronous update option.

Only those processes that have the checkpoint open in
SA_CKPT_CHECKPOINT_WRITE mode may invoke this function.

For the saCkptCheckpointSynchronize() function, when the timeout expires, there is
no guarantee that the checkpoint replicas have been synchronized.

For the saCkptCheckpointSynchronizeAsync() function, completion of the function is
signaled by the associated saCkptCheckpointSynchronizeCallback() callback func-
tion, which must have been supplied when the process invoked the saCkptInitialize()
call. The invoking process sets the invocation parameter and the Checkpoint Service
uses the value of invocation in the invocation of the callback function.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout, specified by the timeout parameter, occurred before the call could complete.
It is unspecified whether the call succeeded or whether it didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle checkpointHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saCkptCheckpointOpen() or
saCkptCheckpointOpenCallback() functions, or the corresponding checkpoint
has already been closed.

• The handle ckptHandle that was passed to the functions
saCkptCheckpointOpen() or saCkptCheckpointOpenAsync() has already been
finalized.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.7.4 61

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_INIT - The previous initialization with saCkptInitialize() was incom-
plete, since the saCkptCheckpointSynchronizeCallback() callback function is miss-
ing. This return value only applies to the saCkptCheckpointSynchronizeAsync()
function.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Checkpoint Service library or the Check-
point Service provider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - No active replica exists.

SA_AIS_ERR_ACCESS -The checkpoint, designated by checkpointHandle, was not
opened for write mode.

SA_AIS_ERR_BAD_OPERATION - The checkpoint, designated by
checkpointHandle, was not created with the asynchronous update option.

See Also

SaCkptCheckpointSynchronizeCallbackT, saCkptCheckpointOpen(),
saCkptCheckpointOpenAsync(), saCkptInitialize(), saCkptCheckpointWrite(),
saCkptSectionOverwrite(), saCkptSectionCreate(), saCkptSectionDelete(),
SaCkptCheckpointOpenCallbackT

3.7.5 SaCkptCheckpointSynchronizeCallbackT

Prototype

typedef void (*SaCkptCheckpointSynchronizeCallbackT)(

SaInvocationT invocation,

SaAisErrorT error

);

Parameters

invocation - [in] This parameter is supplied by a process in the corresponding invoca-
tion of the saCkptCheckpointSynchronize() function and is used by the Checkpoint
Service in this callback. This invocation parameter allows the process to match the
invocation of that function with this callback.
62 SAI-AIS-CKPT-B.01.01 Section 3.7.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Checkpoint Service

1

5

10

15

20

25

30

35

40
error - [in] This parameter indicates whether the saCkptCheckpointSynchronize()
function was successful. The possible return values are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it didn’t.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

• SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
• SA_AIS_ERR_NO_MEMORY - Either the Checkpoint Service library or the

Checkpoint Service provider is out of memory and cannot provide the service.
• SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other

than memory).
• SA_AIS_ERR_NOT_EXIST - No active replica exists.
• SA_AIS_ERR_ACCESS - The checkpoint, designated by checkpointHandle in

the corresponding saCkptCheckpointSynchronizeAsync() call, was not opened
for write mode.

• SA_AIS_ERR_BAD_OPERATION - The checkpoint, designated by
checkpointHandle in the corresponding saCkptCheckpointSynchronizeAsync()
call, was not created with the asynchronous update option.

Description

The Checkpoint Service invokes this callback function when the operation requested
by the invocation of saCkptCheckpointSynchronizeAsync() completes. This callback
is invoked in the context of a thread issuing an saCkptDispatch() call on the handle
ckptHandle, associated with the saCkptCheckpointSynchronizeAsync() call. Associ-
ated means here that ckptHandle was specified in the saCkptCheckpointOpen() or
saCkptCheckpointOpenAsync() call, leading to the handle checkpointHandle, which
was used as an input parameter of the saCkptCheckpointSynchronizeAsync() call.
The result of the function is returned in the error parameter.

Return Values

None.
AIS Specification SAI-AIS-CKPT-B.01.01 Section 3.7.5 63

Service AvailabilityTM Application Interface Specification

Checkpoint Service

1

5

10

15

20

25

30

35

40
See Also

saCkptCheckpointSynchronizeAsync(), saCkptCheckpointOpen(),
saCkptCheckpointOpenAsync(), saCkptDispatch()
64 SAI-AIS-CKPT-B.01.01 Section 3.7.5 AIS Specification

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 How to Provide Feedback on the Specification
	1.4 How to Join the Service Availability™ Forum
	1.5 Additional Information
	1.5.1 Member Companies
	1.5.2 Press Materials

	2 Overview
	2.1 Checkpoint Service

	3 SA Checkpoint Service API
	3.1 Checkpoint Service Model
	3.1.1 Checkpoints
	3.1.2 Sections
	3.1.3 Checkpoint Replica
	3.1.4 Checkpoint Data Access
	3.1.5 Synchronous Update
	3.1.6 Asynchronous Update
	3.1.7 Management of Replicas for Collocated and Non-Collocated Checkpoints
	3.1.7.1 Collocated Checkpoints
	3.1.7.2 Non-Collocated Checkpoints

	3.1.8 Persistence of Checkpoints

	3.2 Include File and Library Names
	3.3 Type Definitions
	3.3.1 Handles
	3.3.1.1 SaCkptHandleT
	3.3.1.2 SaCkptCheckpointHandleT
	3.3.1.3 SaCkptSectionIterationHandleT

	3.3.2 Checkpoint Types
	3.3.2.1 SaCkptCheckpointCreationFlagsT
	3.3.2.2 SaCkptCheckpointCreationAttributesT
	3.3.2.3 SaCkptCheckpointOpenFlagsT

	3.3.3 Section Types
	3.3.3.1 SaCkptSectionIdT
	3.3.3.2 SaCkptSectionCreationAttributesT
	3.3.3.3 SaCkptSectionStateT
	3.3.3.4 SaCkptSectionDescriptorT
	3.3.3.5 SaCkptSectionsChosenT

	3.3.4 IoVector Types
	3.3.4.1 SaCkptIOVectorElementT

	3.3.5 SaCkptCheckpointDescriptorT
	3.3.6 SaCkptCallbacksT

	3.4 Library Life Cycle
	3.4.1 saCkptInitialize()
	3.4.2 saCkptSelectionObjectGet()
	3.4.3 saCkptDispatch()
	3.4.4 saCkptFinalize()

	3.5 Checkpoint Management
	3.5.1 saCkptCheckpointOpen() and saCkptCheckpointOpenAsync()
	3.5.2 SaCkptCheckpointOpenCallbackT
	3.5.3 saCkptCheckpointClose()
	3.5.4 saCkptCheckpointUnlink()
	3.5.5 saCkptCheckpointRetentionDurationSet()
	3.5.6 saCkptActiveReplicaSet()
	3.5.7 saCkptCheckpointStatusGet()

	3.6 Section Management
	3.6.1 saCkptSectionCreate()
	3.6.2 saCkptSectionDelete()
	3.6.3 saCkptSectionExpirationTimeSet()
	3.6.4 saCkptSectionIterationInitialize()
	3.6.5 saCkptSectionIterationNext()
	3.6.6 saCkptSectionIterationFinalize()

	3.7 Data Access
	3.7.1 saCkptCheckpointWrite()
	3.7.2 saCkptSectionOverwrite()
	3.7.3 saCkptCheckpointRead()
	3.7.4 saCkptCheckpointSynchronize(), saCkptCheckpointSynchronizeAsync()
	3.7.5 SaCkptCheckpointSynchronizeCallbackT

