Service Availability™ Forum
Hardware Platform Interface

Specification SAI-HPI-B.01.01

SERVICE
AVAILABILITY

FORUM

The Service Availability™ solution is high-availability and more; it is the delivery of ultra-dependable
communication services on demand and without interruption.

The Service Availability™ Forum Hardware Platform Interface Specification may contain design
defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Service Availability™ Hardware Platform Interface P
Legal Notice e

Service Availability™ Forum Specification License Agreement

The Service Availability™ Forum Specification (the "Specification") found at the URL http://www.saforum.org (the "Site") is generally made
available by the Service Availability Forum (the “Licensor”) for use in developing products that are compatible with the standards provided in
the Specification. The terms and conditions which govern the use of the Specification are set forth in this agreement (this "Agreement").

IMPORTANT —the following are excerpts of the terms and conditions provided in the agreement. please see the Licensor Site for a
complete version of the agreement.

LICENSE GRANT. Subject to the terms and conditions of this Agreement, Licensor hereby grants you a non-exclusive, worldwide, non-
transferable, revocable, fully-paid and royalty free license to:

a. reproduce copies of the Specification to the extent necessary to study and understand the Specification and to create products
that are compatible with the Specification;

b. distribute copies of the Specification to your fellow employees who are working on a project or product development for which
this Specification is useful; and

c. distribute portions of the Specification as part of your own documentation for a product you have built which complies with the
Specification.

DISTRIBUTION. If you are distributing any portion of the Specification in accordance with Section 1(c), your documentation must clearly and
conspicuously include the following statements:

a. Title to and ownership of the Specification (and any portion thereof) remain with Licensor.

b. The Specification is provided “As Is.” Licensor makes no warranties, including any implied warranties, regarding the
Specification (and any portion thereof) by Licensor.

c. Licensor shall not be liable for any direct, consequential, special, or indirect damages (including, without limitation, lost profits)
arising from or relating to the Specification (or any portion thereof).

d. The terms and conditions for use of the Specification are provided on the Licensor Site.

RESTRICTION. Except as expressly permitted under License Grant, you may not (a) modify, adapt, alter, translate, or create derivative
works of the Specification, (b) combine the Specification (or any portion thereof) with another document, (c) sublicense, lease, rent, loan,
distribute, or otherwise transfer the Specification to any third party, or (d) copy the Specification for any purpose.

NO OTHER LICENSE. Except as expressly set forth in this Agreement, no license or right is granted to you, by implication, estoppel, or
otherwise, under any patents, copyrights, trade secrets, or other intellectual property by virtue of your entering into this Agreement,
downloading the Specification, using the Specification, or building products complying with the Specification.

OWNERSHIP OF SPECIFICATION AND COPYRIGHTS. The Specification and all worldwide copyrights therein are the exclusive property of
Licensor. You may not remove, obscure, or alter any copyright or other proprietary rights notices that are in or on the copy of the
Specification you download. You must reproduce all such notices on all copies of the Specification you make. Licensor may make changes
to the Specification, or to items referenced therein, at any time without notice. Licensor is not obligated to support or update the Specification.

WARRANTY DISCLAIMER. THE SPECIFICATION IS PROVIDED "AS IS." LICENSOR DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS, IMPLIED, OR
STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY, NONINFRINGEMENT OF THIRD-PARTY RIGHTS, FITNESS FOR ANY PARTICULAR PURPOSE,
OR title. Without limiting the generality of the foregoing, nothing in this Agreement will be construed as giving rise to a warranty or
representation by Licensor that implementation of the Specification will not infringe the intellectual property rights of others.

LIMITATION OF LIABILITY. To the maximum extent allowed under applicable law, LICENSOR DISCLAIMS ALL LIABILITY AND DAMAGES,
INCLUDING DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, AND INCIDENTAL DAMAGES, ARISING FROM OR RELATING TO THIS AGREEMENT, THE USE OF
THE SPECIFICATION OR ANY PRODUCT MANUFACTURED IN ACCORDANCE WITH THE SPECIFICATION, WHETHER BASED ON CONTRACT, ESTOPPEL, TORT,
negligence, STRICT LIABILITY, OR OTHER THEORY. NOTWITHSTANDING ANYTHING TO THE CONTRARY, LICENSOR’S TOTAL LIABILITY TO YOU ARISING
FROM OR RELATING TO THIS AGREEMENT OR THE USE OF THE SPECIFICATION OR ANY PRODUCT MANUFACTURED IN ACCORDANCE WITH THE
SPECIFICATION WILL NOT EXCEED ONE HUNDRED DOLLARS ($100). YOU UNDERSTAND AND AGREE THAT LICENSOR IS PROVIDING THE SPECIFICATION
TO YOU AT NO CHARGE AND, ACCORDINGLY, THIS LIMITATION OF LICENSOR’S LIABILITY IS FAIR, REASONABLE, AND AN ESSENTIAL TERM OF THIS
AGREEMENT.

TERMINATION OF THIS AGREEMENT. LICENSOR MAY TERMINATE THIS AGREEMENT, EFFECTIVE IMMEDIATELY UPON WRITTEN NOTICE TO YOU, IF
YOU COMMIT A MATERIAL BREACH OF THIS AGREEMENT AND DO NOT CURE THE BREACH WITHIN TEN (10) DAYS AFTER RECEIVING WRITTEN NOTICE
THEREOF FROM LICENSOR. UPON TERMINATION, YOU WILL IMMEDIATELY CEASE ALL USE OF THE SPECIFICATION AND, AT LICENSOR'’S OPTION,
DESTROY OR RETURN TO LICENSOR ALL COPIES OF THE SPECIFICATION AND CERTIFY IN WRITING THAT ALL COPIES OF THE SPECIFICATION HAVE BEEN
RETURNED OR DESTROYED. PARTS OF THE SPECIFICATION THAT ARE INCLUDED IN YOUR PRODUCT DOCUMENTATION PURSUANT TO SECTION 1 PRIOR
TO THE TERMINATION DATE WILL BE EXEMPT FROM THIS RETURN OR DESTRUCTION REQUIREMENT.

ASSIGNMENT. You may not assign, delegate, or otherwise transfer any right or obligation under this Agreement to any third party without
the prior written consent of Licensor. Any purported assignment, delegation, or transfer without such consent will be null and void.

Copyright© 2004, Service Availability™ Forum, Inc. All rights reserved.

2 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface

Contents
Contents
1 (D ToTo N g (=T a1 [T i (oo [UTwx 1 To] o [T 9
N R B o Tox U [T=T o | @AY= T oY T TR 9
1.2 Summary of Changes in SAI-HPI-B.OL.0Locoiiiiiiiiiiie ettt 9
1.3 References
1.4 How to Provide Feedback on this SBecification ...
1.5 How to Join the Service Availability FOrUMooiiiiiiii e
1.5.1 Membership Application
1.5.2 Member Companies...............
1.5.3 Press Materials.........ccccee........
2 Hardware Platform Interface Overview

2.1 OVEIVIEW ..ot

2.2 Market Context
2.2.1 Building Block Integration and Portability

2.3 HPI'sLegacy in IPMl.....ccccccoeiiiiiiiiiieee et

TRE HPT MOAEL ...ttt ettt e bttt e e s h bt e e ettt e e e abe e et bt e e e sbe e e e snbeeeesnneee s

T S 1] (o] LSOO PRT PRI

3.2 DOMAINS....ccuiiieiieeiiiiieee e
130720 R 0 To o 0 F= 11 I @70 1 (o]| =1 o ERP T
3.2.2 Domain Architectures
3.2.3 Domain Identifier

3.3 Resources

3.4 ENtitieS ...cccooveeeriiieenne
3.4.1 Entity Paths

3.5 Discovery.....o.coooeeeeeennn.

3.6 Synchronization

3.6.1 Synchronization Responsibilities
3.6.2 Multiple HPI implementations........................

3.7 Remote Access to the Platform Interface

3.8 RESOUICE FAIIUMESttt e e e e ettt e e e e e e et e et e e e e e e s ntbbeeeeaeeesanbeeeaeesaannssneeens
3.8.1 Failure of a Non-FRU Resource
3.8.2 Failure of a FRU Resource

3.9 Implementation REQUIFEIMENTSuiii ittt e et e e e ettt e e e e e e sabb bt e e e e e e e aanbbreeeeeeannereeeas

API CoNVeNtioNSccvvveiiiiiiiiieee e

4.1 Return Codes.................

4.2 Generic Return Codes

4.3 Interface Behavior when a Function Returns an Error ...

4.4 Pointer Conventions

General Functions....................

5.1 Implementation Version Checking
5.1.1 saHpiVersionGet()..................

DOM@IN FUNCHIONS ...ttt e e ettt e e e oo e a b b e et e e e e e e o ab b b e et e e e e e s abbbtee e e s nnntb e e e e e e e aannnnneeeas

6.1 SESSION MANAGEIMENTeiiiiiii ittt ettt e e e e ettt e e e e e s e taee e et e e e e e aasaebeeeeaaeaa s nsbeeeaeaeeeaasnnneeesaannnreneens
6.1.1 saHpiSessionOpen()
6.1.2 SAHPISESSIONCIOSE() -+vrrerunreeeiiitrie ettt ettt ettt e et e et e e s e e e st e e s st e e e s nrreeeanrrenae
6.1.3 SAHPIDISCOVET() .reeeeiitite ittt etttk ettt e ekt e e et et e e b et e e an b e e e e abne e e s s e e e e aneeenae

6.2 Domain DiSCOVErY........ccccovvvrerninrrennn
6.2.1 saHpiDomainIinfoGet()............

6.2.2 saHpiDrtEntryGet().................
6.2.3 saHpiDomainTagSet()............

6.3 Resource Presence Table....................
6.3.1 SAHPIRPIENIIYGEL() .o eeeieieeee ettt e e e e et et e e e e e s e nat e e e e e e e e e e nnbre e e e e e e aanneeeas
6.3.2 saHPIRPtENtryGEetBYRESOUICEIT() .. . eeeeiieieeeieeieee ettt e ettt e e e et e e e e e et e e e e e e e e neeeeeas
6.3.3 saHpiResourceSeveritySet()
6.3.4 SAHPIRESOUICETAGSEL() ...uvveeiurreeeiiritetiriee ettt e ettt e e e et e e easb e e sab e e e e st b e e s aabe e e e nnreeeennrreeen
6.3.5 SAHPIRESOUICEIAGEL() .. .uurriiiieeiiiiiiiii ettt e e e e e st e e e e e e st a e e e e e e s essnrareeeeeesannnneas

6.4 Event Log Management
6.4.1 SAHPIEVENTLOGINFOGEL() ...ereeiieeiiiiiiiiii e e e s e e e e
6.4.2 SAHPIEVENTLOGENTIIYGEL() ... iieei ittt et e e e e e e e e e

6.4.3 SAHPIEVENTLOGENIIYAGA() - eeeieeiiiiiiiiiiee ettt e e e e e e ettt e e e e e e e e anntbeeeeaaeesanees

HPI Specification SAI-HPI-B.01.01 3

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface P g] .

Contents e
6.4.4 SAHPIEVENTLOGCIEAI(). ..o eeeeeieeeeee ittt ettt e e e et e e e e e s et e e e e e s e e nnebe e e e e e eanns
6.4.5 saHpiEventLogTimeGet()
6.4.6 saHpiEventLogTimeSet()
6.4.7 saHpiEventLogStateGet()
6.4.8 saHpiEventLogStateSet()
6.4.9 saHPIEVENtLOGOVEITIOWRESEL()....eciiurrieeiiiiieiiieee ettt 58
6.5 EVEBINES .ot
6.5.1 saHpiSubscribe()
6.5.2 SAHPIUNSUDSCIIDE() ..eeiiiiiiiiiiee it e e e et e e e e e e s bbeeeeennes 61
6.5.3 saHpiEventGet()
6.5.4 saHpiEventAdd()....
6.6 Domain Alarm Table..........ccccccoeeiiinnene.
6.6.1 SAHPIAIAIMGEINEXL() ... veeeeitieeeeeitit ettt et nn e e e s b b e e e et e e e s e e e saeees
6.6.2 SAHPIAIAIMGEL() .. .uvveeeitieee ittt ettt et e e e et s
6.6.3 SAHPIAIAIMACKNOWIEAGE() .. rreerieeiiiiiiiiei ettt e e e e e e e s e e e e e e st a e e e e e e s esnasaeeaeeesanes
6.6.4 SAHPIAIAIMAGA(). .. eeeieee ittt e e e e e e e e e e e e s et e et e e e e e s satbreeeaaeeeanrnrraeesaann
6.6.5 SAHPIAIAIMDEIEIE() ... eeeeeei ittt e e e e e e e e e e e e e e e e s e e e e
7 RESOUICE FUNCHIONS. ... e e
7.1 Resource Data Record (RDR) Repository Managementeeeiiieiiiiiiiiieee e ee e e e e e e 74
% T R <=1 o1 o [PR UOTSPP
7.1.2 saHpiRdrGetBylnstrumentld()
7.2 SEBIISOIS ..ottt e ettt et oo ettt e e e e e e et e e e e e e e e e et e e et et e e e e e e n e et e e e e e e e ee e e e e e e e e e a s
7.2.1 Sensor Events and Sensor Event States
7.2.2 Sensor Configurationccccceeeeeiiiiiiiieneennn.
7.2.3 Aggregate Sensors..................
7.2.4 Sensor Ranges...........ccccccevenns
7.2.5 saHpiSensorReadingGet().......
7.2.6 saHpiSensorThresholdsGet()
7.2.7 saHpiSensorThresholdsSet().......
7.2.8 saHpiSensorTypeGet()
7.2.9 saHpiSensorEnableGet().........
7.2.10 SAHPISENSOrENADIESEL() ...vvviiiiieiiiiiiiiii ittt ettt e e e e s e e e e e s st a e e e e e s s stnbreeeaeeeeannns
7.2.11 saHpiSensOrEVENtENADIEGEL().........uuiieiieeiii it
7.2.12 saHpiSensorEventEnableSet()
7.2.13 saHpiSensorEventMasksGet()
7.2.14 saHpiSensorEventMasksSet()
7.3 CONrOIS .coeiie i
7.3.1 saHpiControlTypeGet()............
7.3.2 saHpiControlGet()............couv....
7.3.3 saHpiControlSet()cccuvenen
7.4 Inventory Data Repositories
7.4.1 saHpildrinfoGet()ccuuueee.
7.4.2 saHpildrAreaHeaderGet().........
7.4.3 saHpildrAreaAdd()c........
7.4.4 SAHPIArAIEADEIETE() .. oottt ettt e e ettt e e e e e e et e e e e e e e e nnneeeeaaanas
7.4.5 saHpildrFieldGet()
7.4.6 saHpildrFieldAdd()
7.4.7 saHpildrFieldSet()
7.4.8 SAHPIAIFIEIADEIETE() .. .cocceeiiieiie ettt et e e e e ettt e e e e e e st eaeaeesssntaeneeeaennes
7.5 Watchdog Timersccccvviieeeeiiniiinne. .
7.5.1 saHpiWatchdogTimerGet()
7.5.2 saHpiWatchdogTimerSet().......
7.5.3 saHpiWatchdogTimerReset()...
7.6 ANNUNCIALOrS ...ocoviviieiiiiee e .
7.6.1 SAHPIANNUNCIALOIGEINEXE() ..veeeurreeeiiiiee ettt ettt e et
7.6.2 SAHPIANNUNCIAIOIGEL() 1ooeiiiiiiiiiiie ettt e e et e e e e e e s e e e e e e s e sbb it e e e e e e e eaantraeeaaeas
7.6.3 saHpiAnnunciatorAcknowledge()
7.6.4 SAHPIANNUNCIATOTAGU() ... ueeeeeeeeee ettt e e e ettt e e e e e e st be e e e e e e e e e anebreeeaeeas
7.6.5 SaHPIANNUNCIALOrDEIETE() .. .veeeeeeieiiiiiii et e e e e e e eeeaeeeas
7.6.6 saHpiAnnunciatorModeGet()
7.6.7 SaHPIANNUNCIALOIMOOESEL() ..ceeeeiiiiiieii ettt e e e e et e e e e e e et eeeae e e an
FT A\ =T E= Vo T=To I o o - T OO PP P PP VPP PPPPON
T.7.1 HOU SWAP SEALESeeiiiieiiieie ettt e e e e e e e e e e e et e e e s s e e et e e e e e e nnrrnreneennns
4 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface

Contents
7.7.2 Hot Swap Auto Insertion and Auto Extraction Capabilitiesccccccuiiiiiiiiiininiiiiiieeeeee 137
7.7.3 USING HOt SWAP.....cciiiiiiiiiiieei e
7.7.4 Hot Swap Functions
7.7.5 saHpiHotSwapPolicyCancel()
7.7.6 saHpiResourceActiveSet()
7.7.7 SAHPIRESOUICEINACHVESEI() veeeeiiiiie ittt e et e st

7.7.8 saHpiAutolnsertTimeoutGet()
7.7.9 saHpiAutolnsertTimeoutSet()

7.7.10 SaHPIAUIOEXIrACITIMEOULGEI(). . .uvreeiieeeiiiiiiieie e e e ee ettt e ettt e e e e et e e e e e s et bee e e e e e e e aaens 144
7.7.11 SaHPIAULOEXIrACITIMEOULSEL()uvveeiiieeeiiiiiiteie ettt ettt ettt e e e e e et e e e e e e e naees 145
7.7.12 SAHPIHOtSWAPSIAIEGEL() «eeeeeiiiiiiiieiee ettt e e e e e s et e e e e e e e e snnneeeeeaaens ... 147
7.7.13 saHPIHOtSWaPACHONREQUESL()ueeiieeiiiiiiiiiee ettt e e e e eaa e ... 148
7.7.14 saHpiHOtSWapINdiCatorStatEGEL()ocvvreeiriiiieiiiie et ... 149
7.7.15 saHpiHotSWapINdiCatorStateSEt()ocvvreeiriiireiiiie e
7.8 Configuration..........coccvieiiieiiiiiiiies e
7.8.1 saHpiParmControl()
7.9 ResetManagement.........ccccooiiiiii
7.9.1 saHpiResourceResetStateGet()
7.9.2 saHpiResourceResetStateSet()
7.10 POWETN MABNAGEMENTottt eaaannaanes
7.10.1 saHpiResourcePowerStateGet()
7.10.2 saHpiResourcePowerStateSet()
8 Data TYPE DEIINITIONS .. .veiiiiiiiiiiie et e ettt e e e e e st e e e e e e e e s aasbbabeeaeeesaassateaeseassntbaeeeeeeeannnres
8.1 Basic Data Types and Values..............
8.2 ENttIeS ..ccoiiiiiiiiiieeie e
8.3 Events, Part 1
8.4 SENSOIS...ccciiiiiieiee e
8.5 Sensor Resource Data Records
8.6 Aggregate Status
8.7 CONtrolS.....cccuvvieiieeeiiiee e
8.8 Control Resource Data Records
8.9 INVENLOrY Data REPOSITOMESuiiiiieiiei ittt e et e e e e e et e e e e e e e st a e e e e e e e s sstbaaaeeeaasnsreeeas
8.10 Inventory Data Repository Resource Data RECOIASc.uuviiiiiiiiiiiiiiiee e 179
8.11 Watchdogs
8.12 Watchdog ResSoUrce Data RECOIUS.oiuuiiiiiie ettt e e et e e e e e e e e e e e e e e e aaneeeas 183
S T R o (0] B S1 =T o B TP U PN 184
LT S V1= o | (TR = o N184
ST ST AN o1 o 10 e [od T L (o] PSSP ... 187
8.16 Annunciator Resource Data RECOMS.........ccoiiiiiiiiiiiii ittt
8.17 Resource Data Records
8.18 Parameter Control..............
8.19 Resetl......ccccceviiiiiiiiiii,
8.20 POWET ..o
8.21 Resource Presence Table....................
ST 1o o 1 =Vl PP EETT S
LS I B V=T o | o I o OSSP PP ETT P PPR
A. Usage DeSCriptionSccvveeerviieeniieeennineeens
A.1 Watchdog Timer Example Usage
A.2 Managing a Fantray FRU from an AlarmCard RESOUICEc.cuueiieeiiiiiiiiiiee e e ecciieie e e e e e s siirareeae e e s 199
HPI Specification SAI-HPI-B.01.01 5

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface P g] .

Figures o
Figures

Figure 1. Many to Many Portability........

Figure 2. Example Domain Structure

Figure 3. HPI Event Management Service..................

Figure 4. Simple Domain Architecture

Figure 5. Peer Domain Architecture.......

Figure 6. Tiered Domain Architecture

Figure 7. Distributed Resource Data RECOIrd REPOSIHOIIES.cciiiiiiiiiii et e e e e et e e e e e e ee e e e saareees

Figure 8. IDR Association with Entity

Figure 9. Depicted Layout of IDR

Figure 10.
Figure 11.

FUll HOt SWap STate MOGEL.......oo ettt e e e e e e e et e e e e e e e stbeeeaaeeeaannneeeas
Simplified Hot Swap Model

Figure 12. CONfIQUIAtION SEEINGS.etiiiiiiieiiiiie ettt e et s e e e b bt e e aabe e e e s b b e e e e s beeebne e e s abneeeeanneeenan
Tables

Table 1. HPIREIUIN COUESeeiiiiiiiieiiiit ettt ettt e e et e e ettt e e s b et e e e s bt e e ek b et e e s et ek e e e e asbr e e e nnnre e e s nneees

Table 2. Generic RetUIM COUES........cocuiiiiiiiiieiiie e

Table 3. Event Severities for the Event Category SAHPI_EC_THRESHOLD

Table 4. Event Severities for the Event Category SAHPI_EC_SEVERITY................

Table 5. Aggregate RESOUICE SENSOIS........uuiiiiiiiiiiiiiiieee e e et e e e e e e e e e e anenee

Table 6. HOt SWapP CAPADIlILIESooiiiiiiiiii ettt e e e e ettt e e e e e e et ee e e e e e e e sanbeeeeeesaannnnneeaaaeaannes
6 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY
T

Service Availability™ Hardware Platform Interface
Revision History

Revision History

Revision Number Revision Date Changes
Service Availability™ Forum 4/24/02 Original RFP Release.
Submission Draft
UCMIV1.0 5/31/02 Initial Release.
SAI-HPI-A.00.80 8/2/02 Draft for Service Availability™ Forum comment.
SAI-HPI-A.00.99 8/29/02 Draft for final review and vote.
SAI-HPI-A.00.995 9/18/02 Final draft version.
SAI-HPI-A.01.01 9/25/02 Published Final Version.
SAI-HPI-B.00.86 2/2/04 Draft for Service Availability™ Forum comment.
SAI-HPI-B.00.88 2/18/04 Draft for final review and vote.
SAI-HPI-B.01.01 3/17/04 Published Final Version.
Terms and Definitions
Term Definition
AdvancedTCA™ Advanced Telecommunications Computing Architecture.
DAT Domain Alarm Table (qv).
Domain A domain is a grouping of zero or more resources plus a set of associated services and

capabilities.

Domain Alarm Table (DAT)

A table, provided by an HPI implementation, of fault conditions currently present in a
domain.

Domain Reference Table (DRT)

A table, provided by an HPI implementation, of additional domains related to the
current domain.

DRT Domain Reference Table (qv).
Entity An entity is a physical hardware component of the system.
False The term “False” refers to the value of zero, also defined as the symbol

SAHPI_FALSE.

Field Replaceable Unit (FRU)

A FRU is an entity that may be removed from or added to the system, while the system
is live. A FRU may follow either the full hot swap model or the simplified hot swap
model.

FRU

Field Replaceable Unit (qv).

Hardware Platform Interface (HPI)

The HPI is the open, industry standard interface between middleware or other
application software and the hardware platform management infrastructure, for
systems serving higher levels of Service Availability.

HPI Hardware Platform Interface (qv).

HPI User Within this specification, the term “HPI User” is used to indicate any software unit that
is making use of the HPI, such as an operating system, high-availability middleware,
application software, etc.

IDR Inventory Data Repository.

IPMI Intelligent Platform Management Interface.

Management Instrument

A “Management Instrument” is a sensor, a control, a watchdog timer, an inventory data
repository, or an annunciator.

HPI Specification SAI-HPI-B.01.01

7

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface P g] .

Terms and Definitions

[T

Term

Definition

Process

A process is created by the operating system and contains information about program
resources and program execution state. A process can have multiple threads, which
execute within the same address space.

Note: While this term is based on POSIX terminology, it is not meant to limit HPI
implementations entirely to POSIX operating systems. The intent of HPI is to remain
operating system neutral. Operating systems that support different terminology or
concepts should make the appropriate translations, as necessary.

RDR

Resource Data Record — a record that defines the management instruments (sensors,
controls, watchdog timers, inventory data repositories, or annunciators) associated with
a resource.

Resource

A Resource is the logical representation of the platform management capabilities of
one or more entities that share a common management accessibility. The HPI provides
accessibility to platform management capabilities by making "resources" accessible
through the interface.

Resource Presence Table (RPT)

A table, provided by an HPI implementation, of all resources currently present in a
domain.

RPT Resource Presence Table (qv).

SAF Service Availability™ Forum.

Session A session is the context of a series of accesses by an HPI User to a domain.

Thread A thread exists within a process and uses the process resources, but has its own
independent flow of control as long as the parent process exists and the operating
system supports it.

True The term “True” refers to any non-zero value. While the symbol SAHPI_TRUE is
defined, any non-zero value is considered “True”, even if not equal to SAHPI_TRUE.

8 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Document Introduction

1 Document Introduction

1.1

Document Overview

This document is organized into the following sections:

1.2

Chapter 1, “Document Introduction” — This chapter provides an overview of how this document is organized.

Chapter 2, “Hardware Platform Interface Overview” — This chapter provides a basic overview of the HPI
specification. The overview includes abrief discussion of market and architectural contexts.

Chapter 3, “The HPI Model” — This chapter introduces the key concepts upon which HPI is based.

Chapter 4, “API Conventions’ — This chapter provides conventions for APl use, as well as adetailed
description of HPI return code usage.

Chapter 5, “Genera Functions’ — This chapter describes general functions, such as version checking.

Chapter 6, “Domain Functions’ — This chapter describes functions that apply to entire domains. Discovery,
session management, eventing, and Domain Event Logs are also discussed.

Chapter 7, “Resource Functions” — This chapter contains information about functions that apply to individual
resources. Functions are defined that:

e provide detailed information about individual resources

e manage hot swap of individua resources

e discover, monitor, and control avariety of management instruments associated with the resources
Chapter 8, “Data Type Definitions” — This chapter provides basic HPI data type definitions.

Appendix A, “Usage Descriptions” — This appendix contains detailed usage descriptions of various functions.

Summary of Changes in SAI-HPI-B.01.01

Dramatically improved the usability of sensor representations by getting rid of RAW formats, consolidating
many of the sensor structures, and reworking the sensor enables, based on usage models from HPI Users. This
provides a significant simplification to the functions and data representations for sensors, while retaining all of
the original flexibility.

Updated the entire Inventory Data Repository concept, making it easier to use and adding the ability to support
AdvancedTCA ™-based systems.

Bounded and clarified the notion of HPI domains, making it easier for new HPI Users and HPI Implementersto
understand the intent of the authors with respect to domain modeling.

Enumerated error behaviors and return codes for each API.

Eliminated saHpi Initialize() and saHpiFinalize() functions. Implementations are expected to
automatically handle initialize/finalize operations as needed when a session is first opened, or all sessions are
closed.

Removed the concept of Entity Schemas because the functionality provided in the A.01.01 specification did not
meet any useful purposes.

Provided support for reporting event queue overflows.

Formalized the relationships between domains, identifying multiple domains as either "peers’ or having a
parent/child relationship. These relationships are defined in a new domain-based table, the Domain Reference
Table.

Added support for "automatic" or "manual" mode operations on controls.

HPI Specification SAI-HPI-B.01.01 9

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service AvaiIabiIityT.M Hardware Platform Interface ‘vﬁﬁfxll n:“EJ o
Document Introduction i

e Provided support for reporting failed resources.

e Replaced the "Significant Asserted State" processing in event subscriptions with a new domain-based table, the
Domain Alarm Table, to report current alarm conditionsin the domain.

e Added a new management instrument type, the "Annunciator" to provide an abstract interface to annunciation
hardware.

e A number of small clarifications and issues have also been resolved.

1.3 References

The following documents contain information that is relevant to this Specification:

e IPMI -- Intelligent Platform Management Interface, Version 1.5, document Revision 1.0, 2/21/2001; Intel
Corporation, Hewlett Packard, NEC, Dell; http://devel oper.intel.com/design/servers/ipmi/spec.htm

e PICMG 2.1 -- Compact PCl Hot Svap Specification, PICMG 2.1, R1.0, August 3, 1998; PCI Industrial
Computer Manufacturers Group

e PICMG 3.0 - AdvancedTCA™ Base Specification, PICMG 3.0, R 1.0, December 30, 2002; PCI Industrial
Computer Manufacturers Group

1.4 How to Provide Feedback on this Specification

If you have a question or comment about this specification, you may submit feedback online at
http://www.saf orum.org/specification/feedback.

If you would like to sign up to receive information updates on the Forum or Specification you may register at
http://www.saf orum.org/mailinglist.

1.5 How to Join the Service Availability” Forum

The Promoter Members of the Forum require that all organizations wishing to participate in the forum complete a
membership application. Once completed, arepresentative of the Service Availability™ Forum will contact you to
discuss your membership in the Group.

151 Membership Application

The Service Availability™ Forum Membership Application can be completed online at
http://www.saf orum.org/join/apply.

Information requests may be submitted online at http://www.saforum.org/about/contact _us. Information
reguests are generally responded to within three business days.

152 Member Companies

An active list of the Service Availability™ Forum member companies can be viewed online at
http://www.saf orum.org/about/companies.

1.5.3 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource materials, including the
Forum Press Kit, graphics, and press contact information. Visit this area often for the latest press releases from
the Service Availability™ Forum and its member companies.

10 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

AVAILABILITY
e Document Introduction

The Service Availability™ Forum Press Areaislocated at http://www.saf orum.org/press.

HPI Specification SAI-HPI-B.01.01 11

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface P
Hardware Platform Interface Overview .

2 Hardware Platform Interface Overview

2.1 Overview

The SAF Hardware Platform Interface (HPI) specifies a generic mechanism to monitor and control highly available
systems. The ability to monitor and control these systems s provided through a consistent, platform independent set of
programmatic interfaces. The HPI specification provides data structures and functional definitions that can be used to
interact with manageabl e subsets of a platform or system.

The HPI alows applications and middleware (“HPI User”) to access and manage hardware components viaa
standardized interface. Its primary goal isto allow for portability of HPI User code across avariety of hardware
platforms.

2.2 Market Context

Traditionally, Telecommunications Equipment Manufacturers (TEMS) provided internally-developed, vertically-
integrated solutions to achieve the goa of “five nines’, or 99.999% system availability (about 5 minutes of downtime
per year). Such systems are extremely expensive and difficult to develop, and they tend to rely on proprietary
hardware or software configurations to achieve the required stability. However, with the evolution of communications
networks toward multi-service, packet-switched data, the concept of “system availability” has broadened into an
emphasis on “service availability”. In this context, service availability is a customer-centric approach to meeting the
same “five nines’ demands of legacy telecommunications equipment, but in a platform-neutral, standards-compliant
distributed computing environment. 1n this environment “the system” providing acritical service may actually be
highly distributed and comprised of several individual, heterogeneous, cooperating platforms.

As aresult of this shift towards highly available “services’ (rather than “ systems’) TEMs must now produce
equipment that provides more functionality, exhibits higher levels of availability, and allows much greater
interoperability in heterogeneous environments than previous monolithic “ systems’. In addition, these devices must be
developed and deployed in substantially less time.

These factors combined with difficult market conditions have driven the industry to out-source solution development

and integration programs to an emerging industry for telecom building blocks. This new industry consists of hardware
and software suppliers delivering various components or subsystems (building blocks) which must be easily integrated
into a complete “platform”, “system”, “network element”, or “solution”. The resulting composite device must be

compatible with a distributed system architecture that provides “five nines’ of availability for critical services.

221 Building Block Integration and Portability

Regardless of the source, manufacturer, or integrator of these building blocks, each component of the system
must be seamlessly compatible with all other components. Additionally, each building block, must present to
the external environment aminimal collection of capabilities as well as a non-platform-specific means of
interacting with these capabilities.

In short, each building block must:

e Provide fault management capabilities, including facilities for status monitoring, fault detection and
diagnosis, fault isolation, fault recovery, and component replacement.

e Communicate configuration, availability status, fault conditions, diagnostic test results, fault recovery
actions, and related “internal state data” to HPI Users.

12 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Hardware Platform Interface Overview

In addition to “local” or atomic fault management and communication capabilities, integrated collections of
building blocks or platforms must:

e Beableto manage and recover from certain classes of faults without impact to the service being
performed by the platform.

e Provide the ability to monitor and control collective system hardware and communicate aggregate
platform “state data” to HPI Users.

e Providethe ahility to test and validate individual integrated building blocks integrated into the platform
to ensure that fault management actions and communications function properly and within the time
constraints prescribed by the service or application.

The HPI specification addresses the interfaces between building blocks, subsystems, and aggregate platformsin

order to simplify the integration of hardware and software building blocks into functional, highly available
platforms for critical services. The portability of the HPI is shown in Figure 1.

Figure 1. Many to Many Portability

| Applications | | Applications | | Applications |
| Middl .”Mi'“ .”Middlewarel
| Hardware Platform Interface | | Hardware Platform Interface |
P P P P
| | | |
a a a a
t t t t
f f f f
(o) (o) o (o)
r r r r
m m m m

B3159-01

2.3 HPI's Legacy in IPMI

The SAF HPI draws heavily on the concepts set forth by the Intelligent Platform Management Interface (IPMI)
specification to define platform-independent capabilities and data formats. Thus, an implementation of the HPI
interface on a platform that uses IPMI as a platform management infrastructure may be very straightforward. However,
since HPI is a generic interface specification, it can be implemented on any platform with sufficient underlying
platform management technology.

HPI Specification SAI-HPI-B.01.01 13

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface AL ATy
The HPI Model —

3 The HPI Model

In essence, the HPI model is comprised of four basic concepts -- Sessions, Domains, Resources and Entities — each of
which is described briefly below, and in more detail in the following sections.

Starting at the basic foundation of the HPI model, entities represent the physical components of the system. Each entity has a
unique identifier, called an entity path, which is defined by the component’s location in the physical containment hierarchy
of the system. An entity’s manageability is modeled in HPI by management instruments, which are defined in resource data
records associated with the entity. These management instruments are the mechanisms by which HPI Users can control and
receive information about the state of the system. Entity management via the HPI may include any combination of the
following functions:

e Reading values related to the operation or health of a component. This ability to read operational or health datais
modeled via*“ Sensors’ associated with the entity.

e Controlling aspects of the operation of a component. This ability to control a component is modeled via “Controls’
associated with the entity, plus special functions to control the powering and resetting of a component.

e Reporting inventory and static configuration data. This data is reported viathe “Inventory Data Repository”
associated with the entity.

e Operating watchdog timers on components. Watchdog timers may cause implementation-defined actions to occur
when the timers expire. The ability to operate watchdog timers is modeled via“Watchdog Timers’ associated with
the entity.

e Announcing status and fault condition information on acomponent. Thisisaccomplished by using “Annunciators’
associated with the entity.

Resources then provide management access to the entities within the system. Each resource is responsible for managing and
presenting to the HPI User the entities that it has management control over. Additionally, resources may provide the
following functions:

e Monitoring and controlling the insertion and removal of components in the system as it operates. Thisis reported
through the interface as “Hot Swap” events and controlled via a set of “Hot Swap” functions.

e Storing a historical log of events from that resource for later retrieval. This storage and retrieval mechanismis
modeled as a Resource Event Log contained in the resource.

e Updating management parameters, storing new parameters in non-volatile storage.
The HPI view of a system is divided into one or more domains, where adomain provides access to some set of the resources
within the system. A domain represents some part of the system that is capable of being managed by an HPI User; many

systems may have a single domain, whereas systems that have areas dedicated to separate tasks, for example, may manage
these through separate domains. Additionally, domains provide the following functions:

e Forwarding events generated by resourcesin the domain to HPI Users who have subscribed to receive domain
events.

e Storing ahistorical log of events from the resources in the domain for later retrieval. This storage and retrieval
mechanism is modeled as a Domain Event Log contained in the domain.

e Monitoring and controlling the insertion and removal of components in the system as it operates. Thisis reported
through the interface as “Hot Swap” events, and reflected in a Resource Presence Table (RPT) accessible viathe
domain.

e Maintaining atable of current fault conditions in the domain.

e Maintaining atable of peer and/or tiered domains associated with the domain.

14 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

5 E Service Availability™ Hardware Platform Interface
The HPI Model

Sessions provide all access to an HPI implementation. An HPI session is opened on a single domain; one HPI User may have
multiple sessions open at once, and there may be multiple sessions open on any given domain at once. It isintended that, in
future releases, access control to the HPI will be performed at the session level; thus different sessions may have different
access control. Sessions aso provide access to events which occur in the domain accessed by the session.

The following sections describe all of these concepts in more detail.

3.1 Sessions

An HPI User accesses the system through sessions, where each session is opened on adomain. A session provides
access only to resources that are visible in the domain upon which the session is opened.

When an HPI User initiates an HPI session, a domain identifier must be provided, and a session identifier is returned.
All subsequent API calls are passed the session identifier, and will access only resources that are visible in that domain.
Each session open on the same domain accesses the same underlying data, such as entity states, Domain Event Logs,
etc.; thus, a change made to this datain one session will affect all other sessions which are viewing the same data
through HPI.

The set of resources that “belong” to a specific domain isimplementation-specific and undefined by HPI.

Sessions also define the scope of events that are presented to an HPI User. Within a given session, an HPI User will be
supplied with al events generated by resources in the associated domain.

One domain can have multiple sessions open on it (allowing for redundant access, for example); and any HPI User
may have multiple sessions open at once. It should be noted, also, that resources may be visible in multiple domains.
Therefore, there is no guarantee that a session provides exclusive access to any given resource. Synchronization issues
are discussed in Section 3.6 on page 25.

Future versions of the HPI will incorporate security for the establishment and maintenance of sessions.

3.2 Domains

An HPI “System” is organized into one or more domains. A domain is agrouping of zero or more resources, plus a set
of associated services and capabilities; the latter are logically grouped into an abstraction called adomain controller.
While an HPI domain isalogical grouping of resources, it has no relationship with service groups defined in the
Service Availability™ Forum'’s Application Interface Specification. HPlI domains provide a mechanism for system
implementers to group resources to define a hardware management view of a“System”. While an HPI implementer
can represent a physical enclosure, like a bladed server chassis, as an HPI domain, an HPI domain does not imply a
physical grouping of resources or any physical meaning.

HPI domains can also reference other HPI domains allowing “ Systems” composed of resources spread among multiple
domains. Because of the flexible domain structure of HPI, many possible domain architectures may be constructed.

An HPI domain also defines a namespace. For example, a Resourceld must be unique within a domain, but the same
Resourceld may identify adifferent resource in a different domain.

Domains provide a powerful feature, allowing an HPI User to discover the makeup of a“System” without any prior
knowledge. By reading tables contained in the domains, HPI Users can discover al the managed entitiesin a
“system”.

Regardless of how domains are architected by a specific HPI implementation, to HPI Users, all domains have a
common structure. Figure 2 shows an example domain structure. A domain consists of adomain controller, and it may
contain zero or more resources, modeling management access points and/or field-replaceable units.

HPI Specification SAI-HPI-B.01.01 15

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface N v
The HPI Model —

There are no requirements for how resources are mapped to domains; the same resource may be accessed through more
than one domain, as described in the peer domain architecture in Section 3.2.2 on page 19. However, all resources
accessible through the HPI must be included in at least one domain.

Figure 2. Example Domain Structure

Domain X
Domain Resource 0 Resource 1 Resource N
Controller
3.2.1 Domain Controller

An HPI domain includes an abstraction called a domain controller, which provides a centralized set of services
for the domain including:

e Domain Reference Table

e Resource Presence Table

e Event Management Service
e Domain Event Log

e Alarm Management Service

These services are provided at the domain level and a single instance of each service is present in every
domain.

Domain Reference Table

The domain controller includes a Domain Reference Table (DRT) which provides information about other
domains associated with the domain.

The DRT contains an entry for each associated domain, and HPI Users may read these entries to discover the
presence of additional domains within a“ System”. The discovered domains can, in turn, be used to discover
additional resources and domains. The DRT is automatically built and maintained by the HPI implementation.
Domain entriesin the DRT may change over time if the “System” configuration changes. The domain
controller generates an event when adomain is added to the DRT (SAHP1_DOMAIN_REF_ADDED) and when a
domain is removed from the DRT (SAHP1_DOMAIN_REF_REMOVED).

Resource Presence Table

The domain controller includes a Resource Presence Table (RPT) which provides information about the
resources contained in the domain.

The RPT contains an entry for each resource currently present in the domain, and HPI Users may read these
entries. The resources can, in turn, be used to discover which manageable entities are present. The RPT is
automatically built and maintained by the HPI implementation. Resource entries will be dynamically added to
or removed from the RPT as Field Replaceable Units (FRUS) are physically added to or removed from a
platform.

Each resource currently accessible in adomain must be represented by arecord in the RPT of that domain. If a
resource is contained in multiple domains, it will be recorded in the RPT of each of the respective domains.

16 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SE
AVAILABILITY

Service Availability™ Hardware Platform Interface
The HPI Model

Event Management Service

The domain controller includes an event management service. The domain event management serviceis based
on alimited “ publish/subscribe” model consisting of a single event channel with a single publisher, the domain,
and multiple subscribers, the sessions. The domain event management service collects events and distributes
those events to the Domain Event Log and to sessions that have subscribed for events. If the HPI
implementation presents multiple domains, the domain controller in each domain maintains a separate event
management service. Similarly, each domain controller will have a separate Domain Event Log that will only
contain events collected by that domain controller. Upon event subscription, a session will receive events from
the domain controller for the domain on which that session is open. Figure 3 shows HPI event management
flow.

HPI events are used to announce state changes within the domain. Events can originate from the domain
controller, a contained resource, or a user application. Each event includes a severity, which representsiits
significance. Along with the severity, HPI eventsinclude the following information:

e Event Source
e FEvent Type
e Event Timestamp
The Event Source identifies the resource from which the event originated. A Resourceld of

SAHPI_UNSPECIFIED_RESOURCE_ID indicates that the event originated from the domain controller or an HPI
User.

The Event Type describes what kind of event occurred. Valid event types include:
e Sensor (Event state assertion or de-assertion)
e Sensor event enable change
e Resource (Changein operational state of aresource)
e Domain (Addition or removal of areference)
e Watchdog (Watchdog timer expiration)
e Hot swap (Resource hot swap state change)
e HPI Software Event (Audit discrepancies)
e OEM (Custom event data created by an HPI implementation)
e User (Custom event data created by an HPI User program)

The Event Timestamp indicates the time at which the event occurred. The originating source is not required to
provide atimestamp for the event, and when the timestamp is not provided, the receiving domain controller
will provide the event timestamp. If the timestamp is provided by the originating source, it may not be
synchronized with the domain controller’ s timestamp.

HPI Specification SAI-HPI-B.01.01 17

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface AL ATy
The HPI Model

Figure 3. HPI Event Management Service

Session 1 User

Session 2 User Session n User

y y

Session 1 Context User
with Event Subscription Event

Session 2 Context
with Event Subscription

Session n Context
with Event Subscription

|)
|)
| |
L)
8 EventPublish P
|)
v

. Event
Domain Controller Collection and Processing ==

Domain Event Log

Resource 1 Resource 2 Resource n

HPI Domain

Domain Event Log

The domain controller maintains a Domain Event Log for events collected in that domain. Events are stored in
the Domain Event Log in the order in which they were received by the domain controller. A timestamp is

added to each event before it islogged in the Domain Event Log. Exactly what events are placed in the
Domain Event Log is implementation-specific.

The Domain Event Log may be managed by an HPI User through the set of HPI functions described in Section
6.4 on page 46. Management of the Domain Event Log includes activities such as reading records from it,
writing records to it, clearing it, setting the timestamp clock, etc.

Alarm Management Service

The domain controller provides an alarm management service.

18 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

The HPI Model

An alarm indicates the presence of afault condition within adomain. Alarms are reported in atable maintained
by the domain controller called the Domain Alarm Table (DAT). Asafault condition is detected, an HPI
implementation creates an entry in the DAT. When the fault condition clears, the implementation deletes the
corresponding entry from the DAT. Alarm entriesin the DAT have an associated severity that represents the
severity of the fault condition.

HPI Users can track and manage alarms using the set of API functions described in Section 6.6 on page 65.
The DAT provides a central location for determining the presence of fault conditions within the domain.

In HPI, afault condition reflected by an entry in the DAT is defined as one of the following:
e A “Significant” Asserted Sensor State
e A “Significant” Resource Failure
e A Platform-specific OEM Defined Condition
e AnHPI User Defined Condition

More details on these conditions are included in Section 6.6 on page 65.

HPI implementations should use the contents of a Domain Alarm Table to control the annunciation of alarms
on aplatform. Alarm annunciation by a particular HPI implementation is implementation-specific. The
implementation may directly control annunciation hardware as a result of changesto the DAT, or it may utilize
HPI control or annunciator management instruments in various resources to announce the alarms. It is
implementati on-specific what annunciation actions are taken when alarms are added, removed, or
acknowledged in the Domain Alarm Table.

A second capability isalso included in HPI to provide afiner level of control over annunciation: the
Annunciator management instrument. This capability is described in Section 7.6 on page 120.

3.2.2 Domain Architectures

An HPI domain provides a grouping of resources and/or references to other domains. The domain controller
includes a table describing resources contained within the domain (the RPT) and a table describing other
domains referenced by the domain (the DRT). These tables define the domain architecture.

The“contains’ versus “references’ concept isimportant to understand. Since a domain contains aresource,
access to that resource is conducted through the domain. A session must be opened on the domain before the
resource can be accessed. Since a domain references another domain, access to the referenced domain is not
conducted through the referencing domain. An HPI User must open up another session on the referenced
domain, before the domain controller or resources within the referenced domain can be accessed.

The ability to contain resources and reference other domains allows for flexible domain architectures. Using the
RPT and DRT, three types of domain architectures can be defined for an HPI implementation. Creating
domain architectures for large complex “systems’ can be accomplished by combining the different domain
architectures described below.

Simple

A simple domain architecture consists of a single domain that contains only resources. Only the RPT is
populated in thismodel. The DRT remains empty since the simple domain does not reference any additional
domains. A conceptual view of the Simple Domain Architecture is shown in Figure 4.

HPI Specification SAI-HPI-B.01.01 19

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface AL ATy
The HPI Model e
Figure 4. Simple Domain Architecture

Peer

Domain X (Simple)

Domain Controller

DRT

| (empty)

RPT

Resource 0 (contains)

Resource 1 (contains)

EMS

AMS

Event Log

Resource 0

Resource 1

A peer domain architecture consists of two or more domains that are expected to contain the same resources
and domain references. Each domain in a peer relationship contains an RPT listing all resources present in

each domain. A flag inthe DRT entry indicates that a domain reference is a peer domain. A peer domain

reference indicates that the domain referenced by the DRT entry is expected to contain the same resourcesin its
RPT and the same domain referencesin its DRT with one exception. While a peer domain will include DRT
entries for its peers, it will not contain a DRT entry for itself; a peer domain would contain a reference to the
current domain as its peer.

A conceptual view of the Peer Domain Architecture is shown in Figure 5.

Figure 5.

Peer Domain Architecture

Domain X (Peer of Y)

Domain Y (Peer of X)

Domain Controller

DRT

Domain Y (Reference to Peer) F

RPT

Resource 0 (contains)

-><-v

1

» Resource 0 |-

Resource 1 (contains) I

EMS

Event Log

AMS

—

Domain Controller

DRT

“ Domain X (Reference to Peer) ‘

RPT

Resource 0 (contains)

=» Resource 1

Resource 1 (contains)

Event Log

20

SAI-HPI-B.01.01

HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SE E Service Availability™ Hardware Platform Interface
The HPI Model

In this architecture, the HPI implementation represents independent domains that are expected to contain the
same resources. An HPI User should treat peer domains that do not contain the same resources as a fault
condition. Ordering of resourcesin the peer RPTs may be different and should not be treated as a fault
condition. Likewise, an HPI User should treat peer domains that do not contain the same domain references,
excluding areference to itself, as afault condition. Because peer domains represent independent and active
domains, the domains will publish the same events. An HPI User should treat peer domains that do not
generate the same events as a fault condition. The order in which events are received may also differ and
should not be considered a fault condition.

The peer domain architecture is one way that redundancy may be modeled in an HPI implementation. This
architecture is used to describe a“ system” containing two access points for hardware management. This
architecture does not imply that redundancy aspects, such as synchronization, active/standby status, and fail-
over, are handled by the HPI implementation. An HPI User is responsible for keeping the domainsin sync,
thus setting a resource tag, or changing the severity of aresource in adomain does not automatically make the
same changes in peer domains.

Alternatively, an HPI implementation may provide redundant, fault-tolerant access to resources within the
implementation itself. In this case the implementation would not have peer domains. Rather, a single domain
would be presented that contained the resources for which redundant accessis provided. The redundancy
aspects, such as synchronization, active/standby status, and fail-over, would then be handled transparently by
the HPI implementation.

Tiered

A tiered domain architecture is used when all the resourcesin a“system” cannot be accessed in asingle
domain. A “parent” domain references one or more “child” domainsin its DRT. The “child” domains may be
simple domains containing only resources, or they may themselves be a“parent” to other “child” domains.
Domainsin atiered relationship are disointed and do not contain the same resources.

A conceptual view of Tiered Domain Architecturesis shown in Figure 6.

Figure 6. Tiered Domain Architecture

Domain A (Parent)

Domain Controller

DRTDomain B (references) > Docr:nhallg B
Domain C (references) (|)
RPT
(empty) |
y — |
Domain C
’ (Child)
AMS

In order to work with tiered domains, multiple sessions will need to be opened. Initialy, a session to the parent
domain is opened. Then sessions may be opened on all domains that are found within the “ parent” domain.
This continues until the corresponding DRTs do not contain any further “child” domain references. It is not
legal for a“child” domain to contain adomain reference back to its “parent” or any higher level “parent”.

HPI Specification SAI-HPI-B.01.01 21

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface AL ATy
The HPI Model —

Resources may exist in both “parent” and “child” domainsin this architecture. In other words, resources are
the leaf-nodes of a domain hierarchy tree.

Thetiered domain architecture gives the implementer great flexibility in architecting awide variety of
solutions. They may be used to manage a variety of actions with complex subsystems of hardware resources.

3.2.3 Domain ldentifier

An HPI implementation assigns domain identifiers to HPl domains. Each domain identifier is unique within
the “system” and may be used by an HPI User to open a session with a particular domain. If an HPlI User does
not know a particular domain identifier, SAHP1_UNSPECIFIED_DOMAIN_ID can be specified, and the
implementation will select adefault domain. Which domain is accessed when SAHP1_UNSPECIFIED_DOMAIN_ID
is used is implementation-specific, and may be different for different HPl Users.

When adomain is accessed with SAHP1_UNSPECIFIED_DOMAIN_ 1D, the actual domain identifier associated with
the domain may be obtained from the Domaininfo structure, in the saHpiDomainInfoGet() function.

3.3 Resources

Resour ces represent the management access to the components of the system. Each resource provides access to
information about some of the components of the system, called entities.

The set of entities that are manageabl e through aresource is implementation-dependent. However, because including
or excluding resources in domains controls accessibility to entity management, it is expected that entities that are
somehow bound together for the purposes of platform management will be collected into resources by the
implementation. An important example of thisis a set of entities that are on asingle FRU. AsaFRU isinserted into
or removed from the system, it will become manageable or unmanageable, respectively. Because of this, the HPI
models FRU insertion or removal viathe inclusion or exclusion of resourcesin domains. Thus, each FRU must be
modeled as a separate resource, and all entities contained on that FRU would generally be associated with that
resource.

Another example of shared management accessibility would be entities that are managed via a shared management
controller, such asan darm card. If asingle aarm card is responsible for managing several different system entities
(fans, power supplies, etc.), then those entities may be best associated with a single resource. If the darm card fails,
thiswill be reported as the resource becoming unavailable, which will then indicate to an HPI User which entities are
no longer accessible viathe HPI interface.

Generally, al sensors, controls, etc., associated with a single entity are associated with asingle resource. Thereisone
case, however, where this may not be appropriate. If a management controller in the system (e.g., an alarm card) is
responsible for managing entities on other FRUs (e.g., fans on a non-intelligent removable fantray), there are two
different occurrences which can impact the manageability of those entities. If a FRU containing managed entities (i.e.,
fantray) is removed from the system, those entities become unmanageable. But, also, if the managing FRU (i.e., alarm
card) fails, then all entities it manages become unmanageable. To correctly model this, each of these “remotely
managed”’ FRU entities needs to be associated with two different resources: one associated with its own local FRU
(i.e., fantray), and one associated with the managing FRU (i.e., dlarm card). An acceptable method to reflect this
situation in the HPI isto create aresource for the managed entity’s FRU (i.e., fantray) which contains ho sensors,
controls, etc., but provides only the “hot swap” capability for the FRU. Each of the sensors, controls, etc., for the FRU
would beincluded in the RDR table for the resource associated with the managing FRU (i.e., alarm card). When a
management instrument (sensor, control, etc.) located in one resource is associated with a different FRU in thisway,
the IsFru flag is set in the Resource Data Record for that management instrument to indicate that fact.

Appendix A provides a detailed example describing this case.

22 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

5 E Service Availability™ Hardware Platform Interface
The HPI Model

The RPT entry for aresource includes a flag that indicates what capabilities the resource supports. Resource
capabilities include inventory data reporting, sensors, controls, etc. for entities managed via that resource. Resources
report information on their detailed capabilities and configuration using Resource Data Records (RDRs). Each resource
which contains any management instruments (sensors, controls, watchdog timers, inventory data repositories, and
annunciators) will also contain an RDR repository, which contains all of the RDRs relating to the management
instruments hosted by that resource.

A resource that represents a FRU may additionally support managed hot swap; see Section 7.7 on page 132. This
capability provides aflexible and powerful way to manage hot insertion and extraction of FRUs. The HPI also provides
functions for power management, reset control, etc.

3.4 Entities

Each manageable component of the system isidentified as a unique entity in the system. Every entity is uniquely
named by an entity path (described below) that identifies the component in terms of its physical containment within
the system.

Thereis no single element of the HPI that represents the entity. Rather, each entity is modeled as a collection of
Resource Data Records (RDRs), which contain information about the management instruments associated with the
entity. Every RDR contains the entity path of the entity to which it relates; hence, an HPI User can determine the type
of agiven entity (from the leaf element of the entity path), and the set of RDRs that contain all information about the
entity, by reading all of the RDRsin the system, and correlating RDRs with the same entity path.

Every entity exposed by the HPI implementation must have at least one RDR associated with it. To expose an entity
that has no management instruments an HPI implementation may supply an inventory data repository RDR for that
entity (which will contain the entity path of the entity), even if the set of inventory data returned for it is empty.

34.1 Entity Paths

An entity path consists of an ordered set of { Entity Type, Entity Location} pairs. The path defines the physical
location of the entity in the system, in terms of which entity it is contained within, and the entity that its
container is contained in, etc. The path is ordered from the entity itself, to the “root” of the system hierarchy;
thus, the first { Entity Type, Entity Location} pair in the set identifies the specific physical entity identified by
the entity path. For example, if the managed entity is a power supply, the Entity Type will be set to the
enumerated value for “Power Supply” and the Entity Location will contain a number that identifies which
power supply, and its location within the containing entity. In order to determine the actual physical location
of the entity, the system provider must provide a mapping of Entity Location Numbersto physical positionsin
the system. Subsequent { Entity Type, Entity Location} pairsidentify a series of containing entities that further
specify which physical entity in the overall system is being addressed.

For example, consider a system that contains multiple racks, each of which contain multiple subracks, with
each subrack containing power supplies that serve that subrack. A full Entity Path for an individual power

supply may be:
Entity Type Enumerated Value Entity Location
Power Supply SAHPI_ENT_POWER_SUPPLY 2
Subrack SAHPI_ENT_SUBRACK 4
Rack SAHPI_ENT_RACK 3
<Root> SAHPI_ENT_ROOT -

This Entity Path would identify “Power supply at location 2, contained in Subrack at location 4, contained in
Rack at location 3" and the entity path would look like:

{{SAHPI_ENT_POWER_SUPPLY, 2}, {SAHPI_ENT_SUBRACK, 4}, {SAHPI_ENT_RACK, 3}, {SAHPI_ENT_ROOT, 0} }.

HPI Specification SAI-HPI-B.01.01 23

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface AL ATy
The HPI Model —

As described above, its entity path uniquely identifies every manageable entity in the system. Every RDR
representing a particular management instrument will contain the entity path of the specific physical device
with which that management instrument is associated. Each entity in a system must have a unique entity path.

Every resource in the system also has an entity path associated with it, stored in its RPT entry. This entity path
defines the physical management access device which the resource models. In the case of aresource that
models a FRU, the entity path stored in the resource’ s RPT entry identifies the physical FRU modeled by that
resource.

In the case where entities, and the resources that manage them, are visible in multiple domains, the HPI
implementation must always use the same entity path for each entity and resource across all domains. HPI
Users may therefore use these entity paths to correlate the views presented in different domains, and determine
which entities are shared between the domains, and which are not.

In many platforms there's anotion of ablade that residesin aslot. Such situations can be represented with an
entity path that has the blade entity contained in the slot entity, as shown:

Entity Type Enumerated Value Entity Location
Blade SAHPI_ENT_SBC_BLADE 1
Physical Slot SAHPI_ENT_PHYSICAL_SLOT 4
AdvancedTCA™ Chassis SAHPI_ENT_ADVANCEDTCA_CHASSIS 3
<Root> SAHPI_ENT_ROOT -

Thiswould indicate a Single Board Computer blade in slot 4 of an AdvancedTCA™ chassis at position 3 and
the entity path would look like:

{{SAHPI_ENT_SBC_BLADE, 1}, {SAHPI_ENT_PHYSICAL_SLOT, 4}, {SAHPI_ENT_ADVANCEDTCA_CHASSIS, 3},
{SAHPI_ENT_ROOT 0}}.

3.5 Discovery

A key characteristic of the HPI is that it permits management software to dynamically discover what manageable
components are present in a system.

Since domains are the largest aggregation of resources that can be addressed, the first task in discovering the content of
asystem is to determine the domains that are present in the system. There is no defined way to discover what domains
represent -- whole chassis, multiple chassis, parts of chassis, etc.; however, every HPI implementation will provide
access to a default domain when SAHPI_UNSPECIFIED_DOMAIN_ID isused as the domain identifier. This alowsthe HPI
User to open an initial session to the HPI, and serves as the starting point for afull discovery procedure. This domain
may contain references to additional domains, allowing them to be discovered.

The discovery process will typically proceed in anumber of steps, asfollows:

1) Open asession to adomain; initialy, the HPI User can use the domain identifier,
SAHPI_UNSPECIFIED_DOMAIN_ID, to begin the discovery process.

2) Read the RPT for the default domain.

3) For each resource in the RPT, extract the capability flags for that resource.

4) Read the RDR repository for the resource to find the RDRs for al entities managed by the resource; use their
entity paths to determine which RDRs refer to the same entities.

5) Read the DRT for the domain.

6) For each domaininthe DRT, repeat the same process for this domain starting at item 1 using the domain
identifier for the domain found in the DRT entry. Thiswill alow all domains to be discovered. If the DRT
entry references a peer domain, the resources in the peer domain must match the resources in the domain
referencing the peer. If the DRT entry references a child domain, the resources in the child domain should be
treated as new resources.

Throughout the discovery process, an HPI User should make sure that no resources or domain references were added
or removed. This can be accomplished by using RPT and DRT update counters and events.

24 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

rraw The HPI Model

While reading RPT and RDR data, an HPI User may build a physical model of the system using the Entity Paths
contained in each RPT entry or RDR. Thiswould allow an HPI User to determine the true set of entities that exist in
the system, by correlating multiple RDRs for each entity, and by correlating the same entities visible through multiple
domains.

3.6 Synchronization

An HPI implementation is defined to be a single -- whether centralized or distributed -- model of the domains and
resources in the system. An HPI implementation must allow multiple sessions to be opened to it simultaneously; this
shall include multiple sessions open to a single domain, and (if the HPI implementation presents multiple domains)
sessions open onto multiple domains. It is therefore possible that multiple HPI Users will be able to view and operate
on any given resource simultaneously; either due to:

e aresource being mapped into more than one domain; or

e multiple open sessions on the same domain.

There may be multiple HPI implementations present in a system, such as those offered by different vendors. HPI Users
should not assume any synchronization between different HPI implementations.

3.6.1 Synchronization Responsibilities

It isthe responsibility of an HPI implementation to ensure that a single, consistent view of the system and its
domains and resourcesis presented to all HPI Users. In the face of multiple concurrent changes, the HPI
implementation should attempt to make updates visible system-wide in atimely manner; however, no specific
timing is specified.

An HPI implementation shall guarantee that each HPI operation on any resource is atomic; that is, if two writes
are attempted to aresource (e.g. from different sessions), one write shall succeed entirely, and then the other
write shall succeed entirely. The order in which the writes occur may be undefined, depending on timing and
the locations of the sources of the writes.

Any one HPI implementation is required to report all events for all resourcesto all sessionswhich have
subscribed to receive events and which have visibility of those resources.

3.6.2 Multiple HPI implementations

If multiple HPI implementations exist in a system, then they should only be used to manage non-overlapping
entities. If asingle entity is managed through two or more HPI implementations, then there is no guarantee of
any consistent view of the entity state.

Any software layer using concurrent access via multiple HPI implementations should take appropriate care; for
example, by updating both RDR tables, reading most current sensor values, etc., if it is possible that anything
may have had an effect on the other HPI implementation.

3.7 Remote Access to the Platform Interface

In some scenarios, the HPI implementation(s) in a system may physically reside on the same entity (entities) which
have physical access to the platform’s controls and sensors. In many scenarios, however, thiswill not be the case. For
exampl e, there may be fixed-function “chassis management” modules, with access to the underlying controls and
sensors, which are then accessed across a bus or network. If these modules are not capable of hosting the HPI
implementation(s), then HPI will need to reside on some other entity and access the management modules across a bus
or network connection.

HPI Specification SAI-HPI-B.01.01 25

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface AL ATy
The HPI Model —

It is the responsibility of an HPI implementation to handle thisissue internally, and to present the interfaces described
herein to its HPI Users. The HPI implementation should handle faults that occur while accessing remote entities; for
example, it may be appropriate for an implementation to try multiple paths in the event of anetwork or bus failure.
Faults discovered by the HPI implementation should be reported against the appropriate HPI resources.

3.8 Resource Failures

The HPI specification supports resources as independent modules. |f aresource is not functional, this should not
impact the availability of other resourcesin the HPI implementation. When aresource is associated with a FRU, if the
FRU is not present in the system then the resource is not present, and therefore cannot be functional. Resources may
also be non-functional, though, due to faults in the management infrastructure used by the HPI implementation. An
infrastructure fault may result in the failure of any resource, whether it is associated with a FRU, or with a non-
removable part of the system.

The way the HPI interface reports the failure of aresource depends on whether the resource isaFRU or anon-
removable part of the system. And if it isaFRU, it further depends on whether the HPI implementation can detect the
presence of the FRU when the resource is non-functional.

3.8.1 Failure of a Non-FRU Resource

For resources that are not associated with FRUs, afailure of the resource, or the inability to communicate with
the resource isindicated by setting a ResourceFailed flag in the RPT entry for that resource indicating that it is
not currently functional. Further attempts by an HPI User to access resources that are so flagged will fail with
the error return SA_ERR_HP1_NO_RESPONSE. If aresource becomes functional, the ResourceFailed flag is
cleared from its RPT entry, and access to the resource can proceed normally. However, when afailed resource
becomes functional, it may be in a different state than when the resource failed. For example, sensor event
states may have changed, watchdog timers may have expired, etc. An HPI User may thus need to query the
resource to learn its current state after it has exited from afailed state.

There are three events associated with resource operational state:

e Resource Failed — A resource currently represented in the RPT hasfailed. Thisevent isissued using the
ResourceSeverity level defined in the RPT entry for the resource.

e Resource Restored — A resource marked as failed in the RPT isrestored to functionality. Thiseventis
issued using the ResourceSeverity level defined in the RPT entry for the resource.

e Resource Added — A resource not present or not functional at system startup is added to the RPT. This
event isissued at the severity level of SAHP1_INFORMAT IONAL.

If aresourceis not functional at the time an HPI implementation is started, the resource may not be detected,
and thus not populated in the RPTs of domains that should contain the resource. It is not the function of the
HPI implementation to insure that all resources that ought to be present actually are present, so thisfailure to
detect a non-functional resourceis acceptable. However, if the resource later becomes functional, it should
then be added to the RPTs of domains that should contain the resource. If this occurs, a“Resource Added”
event is generated indicating the Resourceld of the resource added to the RPT.

26

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface
The HPI Model

3.8.2 Failure of a FRU Resource

3.9

In many systems, the presence of a FRU cannot be detected if the resource associated with that FRU is not
functional. In these systems, the failure of aresource associated with a FRU is indistinguishable by the
management infrastructure from the unexpected removal of the FRU. Thus, the failure of the resource will be
reported to HPI Users as a*“ surprise extraction” of the FRU (see Section 7.7.1 on page 135) and the resource
will be removed from the RPT of any domain that contained the resource. Further attempts by an HPI User to
access this resource will fail with the error return SA_ERR_HP1_INVALID_RESOURCE — just as they would fail if
the FRU was actually removed from the system.

Similarly, in these systems, if afailed FRU resource becomes functional, it will be added to the appropriate
RPTs and reported as a hot swap insertion event. Again, because the infrastructure cannot determine whether
this was an actual hot swap event or aresource recovering from afailure condition, thiswill appear in most
respects like any other hot swap insertion event, as though a new resource is being added to the system. The
Resourceld assigned to the resource when it is added may be the same value that was previously used when the
resource failed, but implementations may also assign a new Resourceld.

While hot swap events are used to communicate resource failures there is one potential difference from the
normal hot swap sequence. When aresource recovers from afailure, it may not bein the INSERTION
PENDING hot swap state. Thus, the hot swap event will indicate atransition from the NOT PRESENT state to
whatever hot swap state is current for the resource. See Section 7.7 on page 132 for more information about
hot swap events.

On the other hand, some systems can detect the presence or absence of a FRU even if the resource associated
with the FRU is not functional. For example, presence detection for bladesin a shelf may be done by a shelf-
manager module that senses hardware signals independently from the failed blade-management module. If itis
possible to detect that a FRU is present even when the resource associated with the FRU is not functional, then
the HPI implementation should report the failure or recovery of the resource as described in Section 3.8.1 on
page 26 for non-FRU resources. That is, it should set or reset the ResourceFailed flag in the RPT entry and
issue events indicating a change of functional state for the resource.

However, the “Resource Added” event described in Section 3.8.1 on page 26 should never be used for a FRU
resource. If aFRU resource is added to an RPT after HPI initialization, this should always be reported as a hot
swap event, as described in Section 7.7 on page 132.

Implementation Requirements

All HPI implementations must be reentrant. A reentrant implementation allows multiple applications and
multi-threaded applications to make simultaneous API calls without corruption of data or context.

HPI Specification SAI-HPI-B.01.01 27

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface R
API Conventions e

4 APl Conventions

4.1 Return Codes

Table 1 describes each of the HPI return codes.

The order of detection of return codes is undefined. Thus, if more than one error occurs, any one of the possible return

codes may be returned.

Table 1. HPI Return Codes

Return Code

Definition

SA_OK

This code indicates that a command completed successfully.

SA_ERR_HPI_ERROR

An unspecified error occurred. This code should be returned only as a last resort;
e.g. if the cause of an error cannot be determined.

SA_ERR_HPI_UNSUPPORTED_API

The HPI implementation does not support this API. Because there are no optional
APIs, a compliant HPI implementation must not use this error return value. It is
provided so that implementations, which are not fully compliant may indicate that a
particular API has not been implemented.

Note that while there are no optional APIs, there are a number of APIs, which are
optionally supported on a resource-by-resource basis. Such support is indicated via
the Resource Capabilities of resource’s RPT entry. When an API is called for one of
the unsupported Resource Capabilities, the proper error return code is
SA_ERR_HPI_CAPABILITY. That remains the proper return even if the HPI
implementation contains no resources that support a particular Resource Capability.

SA_ERR_HPI_BUSY

The command cannot be performed because the targeted device is busy.

SA_ERR_HPI_INTERNAL_ERROR

The HPI implementation has encountered an error.

SA_ERR_HPI_INVALID_CMD

The specific object to which a command was directed does not support that
command (which was otherwise valid).

SA_ERR_HPI_TIMEOUT

The requested operation, which had a timeout value specified, timed out. For
example, when reading input with a timeout value, if no input arrives within the
timeout interval, this code should be returned. This should only be returned in cases
where a timeout is anticipated as a valid consequence of the operation; if the
addressed entity is not responding due to a fault, use
SA_ERR_HPI_NO_RESPONSE.

SA_ERR_HPI_OUT_OF_SPACE

The requested command failed due to resource limits.

SA_ERR_HPI_OUT_OF MEMORY

This code is returned if the HPI implementation does not have sufficient memory to
complete the requested action.

SA_ERR_HPI_INVALID_PARAMS

One or more parameters to the command were invalid. This return code is used to
indicate that an input parameter was invalid with respect to the specification (such
as setting a text language in a SaHpiTextBufferT to a value not in the enumerated
list.)

SA_ERR_HPI_INVALID_DATA

This return code is used when passing in data that is invalid for the configuration of
the implementation (such as setting an analog control to a value that is out of range
for that control.)

SA_ERR_HPI|_NOT_PRESENT

The requested object was not present. For example, this code would be returned
when attempting to access an entry in a RPT or RDR repository, which is not
present. As another example, this code would also be returned when accessing an
invalid management instrument on a valid resource.

SA_ERR_HPI_NO_RESPONSE

There was no response from the domain or object targeted by the command, due to
some fault. This code indicates an un-anticipated failure to respond; compare with
SA_ERR_HPI_TIMEOUT.

SA_ERR_HPI_DUPLICATE

Duplicate request -- such as attempting to subscribe to a session, which has already
has an active subscription.

SAI-HPI-B.01.01

HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface
API Conventions

Return Code

Definition

SA_ERR_HPI_INVALID_SESSION

An invalid session identifier was specified in the command.

SA_ERR_HPI_INVALID_DOMAIN

Invalid domain identifier specified — i.e. a domain identifier, which does not
correspond to any real domain was specified in the command.

SA_ERR_HPI_INVALID_RESOURCE

Invalid resource identifier specified — i.e. a resource identifier which does not
correspond to a resource in the addressed domain was specified in the command.

SA_ERR_HPI_INVALID_REQUEST

The request is invalid in the current context. An example would be attempting to
unsubscribe for events, when the session has not subscribed to receive events.

SA_ERR_HPI_ENTITY_NOT_PRESENT

The addressed management instrument is not active because the entity with which it
is associated is not present. This condition could occur, for instance, when an alarm
module is managing a fan tray FRU. The alarm module would contain management
instruments (sensors, etc) for the fan tray. The fan tray may be removed, even
though the management instruments are still represented in the alarm module. In
this case, SA_ERR_HPI_ENTITY_NOT_PRESENT would be returned if a
management instrument associated with a removed entity is accessed.

SA_ERR_HPI_READ_ONLY

The request cannot be completed, as the data to be operated upon is read-only.

SA_ERR_HPI_CAPABILITY

This request cannot be completed, because the specified resource does not support
the required capability. This code is returned when the appropriate RPT capability
flag is not set for the resource. (For example, this code would be returned if
saHpiEventLogInfoGet() is called, when the SAHPI_CAPABILITY_EVENT_LOG is
not set.)

SA_ERR_HPI_UNKNOWN

The HPI implementation cannot determine an appropriate response. Only used with
saHpiResourceldGet().

Note: Situations may occur where both SA_ERR_HPI_INVALID_PARAMS and SA_ERR_HPI_INVALID_DATA could apply to
the same input parameters. In such cases, where both of the return codes are applicable, the specification adopts
the convention that the more stringent SA_ERR_HP1_INVAL1D_DATA code be returned.

4.2 Generic Return Codes

Thereturn codes listed in Table 2 are global to the magjority of functionsin the HPI specification. These conditions are
to be applied in addition to those spelled out individually in each function. Anticipated uses for compliance testing are

indicated in Table 2 aswell.

Table 2. Generic Return Codes

Return Code

Condition

SA_ERR_HPI_BUSY

For situations where the underlying hardware is busy.

It is unlikely that this condition will be tested in black-box compliance testing.

SA_ERR_HPI_ERROR

For conditions not covered by the return codes listed here or the return codes listed
with the individual APIs.

It is unlikely that this condition will be tested in black-box compliance testing.

SA_ERR_HPI_INTERNAL_ERROR

For all other abnormal internally generated situations not specifically covered here.

It is unlikely that this condition will be tested in black-box compliance testing.

SA_ERR_HPI_INVALID_RESOURCE

For all functions for which Resourceld is an input parameter and the Resourceld
passed in is invalid.

Note that this condition is likely to be tested in black-box compliance testing.

SA_ERR_HPI_INVALID_SESSION

For all functions for which Sessionld is an input parameter and the Sessionld passed
in is invalid.

Note that this condition is likely to be tested in black-box compliance testing.

SA_ERR_HPI_NO_RESPONSE

For situations where the implementation fails to get a response from an HPI
implementation (which may be remote from the library.)

HPI Specification SAI-HPI-B.01.01 29

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Avail_abilityTM Hardware Platform Interface ‘vﬁﬁfxll n:“EJ o
APl Conventions i

Return Code Condition

It is unlikely that this condition will be tested in black-box compliance testing.

SA_ERR_HPI_OUT_OF_MEMORY For situations where the implementation runs out of memory.

It is unlikely that this condition will be tested in black-box compliance testing.

SA_ERR_HPI_UNSUPPORTED_API For APIs that are not implemented in the current version.

Compliance tests will fail, upon receipt of this return code.

SA_ERR_HPI_ENTITY_NOT_PRESENT For situations where the resource is present, but the management instrument cannot
be accessed. This situation occurs when the entity associated with the management
instrument has been extracted, but the resource allowing access to the management
instrument is still present.

It is unlikely that this condition will be tested in black-box compliance testing.

4.3 Interface Behavior when a Function Returns an Error

Unless an exception is explicitly listed in the specification for a particular function, when any HPI function returns an
error code other than sA_ok, no memory pointed to by any INOUT or OUT parameters will be changed. When the
error code SA_OK is returned, the memory pointed to by INOUT and OUT parameters will be updated as defined for the
function.

Also, unless an exception is explicitly listed in the specification for a particular function, when any HPI function
returns an error code other than SA_0K, SA_ERR_HP1_NO_RESPONSE, SA_ERR_HPI_INTERNAL_ERROR, Of
SA_ERR_HPI_ERROR, the function call will have no effects on the managed system. When the error code sA_oK is
returned, the function call will have the effects on the managed system that are defined for that function with the
parameters that were passed. When an error code of SA_ERR_HPI_NO_RESPONSE, SA_ERR_HPI_INTERNAL_ERROR, OF
SA_ERR_HPI_ERROR is returned, the function call may have partialy or fully completed its work prior to retuning the
error code. Therefore, it is undefined what effects the function call may have on the managed system.

4.4 Pointer Conventions

When discussing pointers in the descriptive text, no de-referencing is done. For example, when the text describes
“...NextEntryld will be set to the identifier for the next valid entry”, and NextEntryld is defined as a pointer in the
corresponding prototype, the reader should interpret this to be that the contents of the memory location pointed to by
NextEntryld will be set to the identifier for the next valid entry.

30 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
General Functions

5 General Functions

5.1

Implementation Version Checking

The HPI interface header file defines a symbol, SAHP1_INTERFACE_VERSION of type SaHpiVersionT that isequal to
the specification version represented by that header file. A library function, saHpiVersionGet() will return a
variable of type SaHpiVersionT that isequal to the specification version supported by the library. By comparing
these two values, an HPI User may determine whether a compatible version of the library is being accessed.

51.1 saHpiVersionGet()

This function returns the version identifier of the SaHpi specification version supported by the HPI
implementation.

Prototype
SaHpiVersionT SAHPI_API saHpiVersionGet (void);

Parameters

None.

Return Value

The interface version identifier, of type SaHpiVersionT isreturned.

Remarks

Thisfunction differsfrom all other interface functionsin that it returns the version identifier rather than a
standard return code. Thisis because the version itself is necessary in order for an HPI User to properly
interpret subsequent APl return codes. Thus, the saHpiVersionGet() function returns the interface
version identifier unconditionally.

This function returns the value of the header file symbol SAHPI_INTERFACE_VERSION in the SaHpi.h header file
used when the library was compiled. An HPI User may compare the returned value to the
SAHPI_INTERFACE_VERSI0N symbol in the SaHpi.h header file used by the calling program to determine if the
accessed library is compatible with the calling program.

HPI Specification SAI-HPI-B.01.01 31

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY

Domain Functions v

6 Domain Functions

6.1 Session Management

This set of functions deals with opening and closing sessions for the HPI implementation. Sessions are managed on a
domain-by-domain basis, and provide the appropriate scope for accessing resources and retrieving events.

When an HPI User initiates an HPI session, adomain identifier is provided and all subsequent function calls on that
session will access resources in that domain exclusively. Limiting access on a session to resources contained in asingle
domain provides a capability to have multiple HPl Users with each having restricted management access. For example,
atenant in amulti-tenant system could be given management capabilities over its leased resources, but not to other
tenant's resources since its domain and subseguent sessions do not provide access to resources outside of the specified
domain. Which set of resources “belong” to a specific domain is implementation-specific and undefined by HPI.

Once a session is opened, it is associated with a single domain. Thus, subsequent function calls that reference that
session (viaa Sessionld that is returned when the session is opened), implicitly address a specific domain. For example,
afunction call on a session to read an RPT entry would read an entry from the RPT for the domain associated with the
session. In addition to identifying a domain, a session also may contain an event queue. Therefore, most function calls
require the use of a Sessionld to identify the session context for an HPI User.

The expected scope of asession identifier isaprocess. A session identifier should not be shared between processes,
and such use is strongly discouraged. Session identifiers may be shared between threads contained within asingle
process. A single process may open multiple sessions on a given domain, thus obtaining multiple session identifiers.

32

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Domain Functions

6.1.1 saHpiSessionOpen()

This function opens an HPI session for a given domain and set of security characteristics (future).

Prototype

SaErrorT SAHPI_API1 saHpiSessionOpen (
SAHPI_IN SaHpiDomainldT Domainld,
SAHP1_OUT SaHpiSessionldT *Sessionld,
SAHPI_IN void *SecurityParams

)

Parameters

Domainld —[in] Domain identifier of the domain to be accessed by the HPI User. A domain identifier of
SAHPI_UNSPECIFIED_DOMAIN_ID requests that a session be opened to a default domain.

Sessionld — [out] Pointer to alocation to store an identifier for the newly opened session. Thisidentifier isused
for subsequent access to domain resources and events.

SecurityParams — [in] Pointer to security and permissions data structure. This parameter is reserved for future
use, and must be set to NULL.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_INVALID_DOMAIN isreturned if no domain matching the specified domain identifier exists.

SA_ERR_HPI_INVALID_PARAMS isreturned if:
e A non-null SecurityParams pointer is passed.
e The Sessionld pointer is passed in asNULL.

SA_ERR_HPI_OUT_OF_SPACE is returned if no more sessions can be opened.

Remarks

None.

HPI Specification SAI-HPI-B.01.01 33

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Serwc_e Avalla_bllltyT'V' Hardware Platform Interface aBERVICE
Domain Functions T

6.1.2 saHpiSessionClose()

This function closes an HPI session. After closing a session, the Sessionld will no longer be valid.

Prototype

SaErrorT SAHPI_API saHpiSessionClose (
SAHPI1_IN SaHpiSessionldT Sessionld

)

Parameters
Sessionld —[in] Session identifier previously obtained using saHpiSessionOpen() .

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

Remarks

None.

34 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

Domain Functions

6.1.3 saHpiDiscover()

This function requests the underlying management service to discover information about resources and
associated domains.

This function may be called during operation to update the DRT table and the RPT table. An HPI

implementation may exhibit latency between when hardware changes occur and when the domain DRT and
RPT are updated. To overcome this latency, the saHpiDiscover () function may be called. When this
function returns, the DRT and RPT should be updated to reflect the current system configuration and status.

Prototype

SaErrorT SAHPI_API saHpiDiscover (
SAHPI1_IN SaHpiSessionldT Sessionld

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

Remarks

None.

HPI Specification SAI-HPI-B.01.01

35

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Domain Functions

SERVICE
AVAILABILITY

6.2 Domain Discovery

The HPI implementation maintains a list of associated domainsin the “system” using the Domain Reference Table
(DRT). An HPI User may discover associated domains by accessing the DRT for each domain in the “system”. This
table should represent up-to-date information on the other domains referenced by a given domain. The DRT may be

accessed using the DRT functions described below.

The DRT contains an entry for each domain referenced by a given domain. Each entry describing another domain
includes the domain identifier for that domain. If the domain reference is a peer reference, the DRT entry will be

flagged as a peer domain, else the domain reference is atiered domain reference.

6.2.1 saHpiDomaininfoGet()

Thisfunction is used for requesting information about the domain, the Domain Reference Table (DRT), the
Resource Presence Table (RPT), and the Domain Alarm Table (DAT), such as table update counters and

timestamps, and the unique domain identifier associated with the domain.

Prototype

SaErrorT SAHPI_API saHpiDomainlnfoGet (
SAHPI_IN SaHpiSessionldT Sessionld,
SAHP1_OUT SaHpiDomaininfoT *Domaininfo

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Domainlinfo — [out] Pointer to the information describing the domain and DRT.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_INVALID_PARAMS isreturned if the Domaininfo pointer ispassed in as NULL.

Remarks

None.

36 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Domain Functions

6.2.2 saHpiDrtEntryGet()

This function retrieves domain information for the specified entry of the DRT. This function allows an HPI
User to read the DRT entry-by-entry.

Prototype

SaErrorT SAHPI_API1 saHpiDrtEntryGet (
SAHPI1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiEntryldT Entryld,
SAHP1_OUT SaHpiEntryldT *NextEntryld,
SAHP1_OUT SaHpiDrtEntryT *DrtEntry

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Entryld —[in] Identifier of the DRT entry to retrieve. Reserved Entryld values:
e SAHPI_FIRST_ENTRY Get first entry

e SAHPI_LAST_ENTRY Reserved as delimiter for end of list. Not avalid entry identifier.
NextEntryld — [out] Pointer to location to store the Entryld of next entry in DRT.
DrtEntry — [out] Pointer to the structure to hold the returned DRT entry.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HP1_NOT_PRESENT isreturned if the:
e Entry identified by Entryld is not present.

e EntryldisSAHPI_FIRST_ENTRY and the DRT is empty.

SA_ERR_HPI_INVALID_PARAMS isreturned if the:
e DrtEntry pointer ispassed in as NULL.
e NextEntryld pointer is passed in asNULL.

e Entryldisaninvalid reserved value such as SAHP1_LAST_ENTRY.

Remarks

If the Entryld parameter is set to SAHPI_FIRST_ENTRY, thefirst entry in the DRT will be returned. When an
entry is successfully retrieved, NextEntryld will be set to the identifier of the next valid entry; however, when
the last entry has been retrieved, NextEntryld will be set to SAHPI_LAST_ENTRY. To retrieve an entire list of
entries, call thisfunction first with an Entryld of SAHP1_FIRST_ENTRY and then use the returned NextEntryld in
the next call. Proceed until the NextEntryld returned is SAHP1_LAST_ENTRY.

If an HPI User has not subscribed to receive events and a DRT entry is added while the DRT is being read, that
new entry may be missed. The update counter provides a means for insuring that no domains are missed when
stepping through the DRT. In order to use this feature, an HPI User should call saHpiDomainInfoGet()
to get the update counter value before retrieving the first DRT entry. After reading the last entry, the HPI User
should again call saHpiDomainInfoGet() to get the update counter value. If the update counter has not
been incremented, no new entries have been added.

HPI Specification SAI-HPI-B.01.01 37

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Serwc_e Avalla_blllty”" Hardware Platform Interface aBERVICE
Domain Functions it

6.2.3 saHpiDomainTagSet()

Thisfunction allows an HPI User to set a descriptive tag for aparticular domain. The domain tag isan
informational value that supplies an HPI User with naming information for the domain.

Prototype

SaErrorT SAHPI_API1 saHpiDomainTagSet (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiTextBufferT *DomainTag

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
DomainTag — [in] Pointer to SaHpi TextBufferT containing the domain tag.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_INVALID_PARAMS isreturned if the SaHpi TextBufferT structure passed as DomainTag is hot
valid. Thiswould occur when:

e TheDataTypeis not one of the enumerated values for that type, or

e Thedatafield contains characters that are not legal according to the value of DataType, or

e Thelanguageis not one of the enumerated values for that type when the DataTypeis

SAHPI_TL_TYPE_UNICODE Or SAHPI_TL_TYPE_TEXT.

SA_ERR_HPI_INVALID_PARAMS isreturned if the DomainTag pointer is passed in as NULL.

Remarks

Typicaly, the HPI implementation will provide an appropriate default value for the domain tag; this functionis
provided so that an HPI User can override the default, if desired. The value of the domain tag may be retrieved
from the domain’ s information structure.

The domain tag is not necessarily persistent, and may return to its default value if the domain controller
function for the domain restarts.

38 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY . .
. Domain Functions

6.3 Resource Presence Table

The HPI implementation is required to discover the resources and entities under management control. An HPI User
may then access this information via the Resource Presence Table (RPT) for each domain in the system. Thistable
should represent up-to-date information on the resources currently present in the domain with which it is associated.
The RPT may be accessed using the RPT functions described below.

The RPT contains an entry for each resource in the domain. Each entry contains a Resourceld for that resource. Flags
in the capabilities field of each RPT entry identify the functionality supported by that resource.

HPI Specification SAI-HPI-B.01.01 39

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Serwc_e Avalla_blllty”" Hardware Platform Interface aBERVICE
Domain Functions it

6.3.1 saHpiRptENntryGet()

This function retrieves resource information for the specified entry of the resource presence table. This function
allows an HPI User to read the RPT entry-by-entry.

Prototype

SaErrorT SAHPI_API1 saHpiRptEntryGet (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiEntryldT Entryld,
SAHP1_OUT SaHpiEntryldT *NextEntryld,
SAHP1_OUT SaHpiRptEntryT *RptEntry

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Entryld —[in] Identifier of the RPT entry to retrieve. Reserved Entryld values:
e SAHPI_FIRST_ENTRY Get first entry.

e SAHPI_LAST_ENTRY Reserved as delimiter for end of list. Not avalid entry identifier.
NextEntryld — [out] Pointer to location to store the Entryld of next entry in RPT.
RptEntry — [out] Pointer to the structure to hold the returned RPT entry.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HP1_NOT_PRESENT isreturned when the:
e Entry identified by Entryld is not present.

e EntryldisSaHPI_FIRST_ENTRY and the RPT is empty.

SA_ERR_HPI_INVALID_PARAMS isreturned if the:
e RptENtry pointer ispassed in as NULL.
e NextEntryld pointer is passed in asNULL.

e Entryldisaninvalid reserved value such as SAHP1_LAST_ENTRY.

Remarks

If the Entryld parameter is set to SAHPI_FIRST_ENTRY, thefirst entry in the RPT will be returned. When an
entry is successfully retrieved, NextEntryld will be set to the identifier of the next valid entry; however, when
the last entry has been retrieved, NextEntryld will be set to SAHPI_LAST_ENTRY. To retrieve an entire list of
entries, call thisfunction first with an Entryld of SAHPI_FIRST_ENTRY and then use the returned NextEntryld in
the next call. Proceed until the NextEntryld returned is SAHP1_LAST_ENTRY.

40 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY . .
’ Domain Functions

At initialization, an HPl User may not wish to turn on eventing, since the context of the events, as provided by
the RPT, is not known. In thisinstance, if a FRU isinserted into the system while the RPT is being read entry
by entry, the resource associated with that FRU may be missed. (Keep in mind that there is no specified
ordering for the RPT entries.) The update counter provides a means for insuring that no resources are missed
when stepping through the RPT. In order to use this feature, an HPI User should invoke
saHpiDomainInfoGet(), and get the update counter value before retrieving the first RPT entry. After
reading the last entry, an HPI User should again invoke the saHpiDomainInfoGet() to get the RPT
update counter value. If the update counter has not been incremented, no new records have been added.

HPI Specification SAI-HPI-B.01.01 41

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface N v

Domain Functions

6.3.2 saHpiRptEntryGetByResourceld()

This function retrieves resource information from the resource presence table for the specified resource using
its Resourceld.

Prototype

SaErrorT SAHPI_API1 saHpiRptEntryGetByResourceld (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHP1_OUT SaHpiRptEntryT *RptEntry

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
RptEntry —[out] Pointer to structure to hold the returned RPT entry.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_INVALID_PARAMS isreturned if the RptEntry pointer ispassed in as NULL.

Remarks

Typicaly at start-up, the RPT isread entry-by-entry, using saHpiRptEntryGet(). From this, an HPI User
can establish the set of Resourcelds to use for future calls to the HPI functions.

However, there may be other ways of learning Resourcelds without first reading the RPT. For example,
resources may be added to the domain while the system is running in response to a hot swap action. When a
resource is added, the application will receive a hot swap event containing the Resourceld of the new resource.
The application may then want to search the RPT for more detailed information on the newly added resource.
In this case, the Resourceld can be used to locate the applicable RPT entry information.

Note that saHpiRptEntryGetByResourceld() isvalidin any hot swap state, except for
SAHPI_HS_STATE_NOT_PRESENT.

42

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY . .
raea Domain Functions
6.3.3 saHpiResourceSeveritySet()

Thisfunction allows an HPI User to set the severity level applied to an event issued if aresource unexpectedly
becomes unavailable to the HPI. A resource may become unavailable for several reasonsincluding:

e TheFRU associated with the resource is no longer present in the system (a surprise extraction has
occurred.)

e A catastrophic failure has occurred.

Prototype

SaErrorT SAHPI_API saHpiResourceSeveritySet (
SAHPI_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI1_IN SaHpiSeverityT Severity

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
Severity —[in] Severity level of event issued when the resource unexpectedly becomes unavailable to the HPI.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_INVALID_PARAMS is returned when the value for Severity is not one of the valid enumerated values
for this type.

Remarks
Typicaly, the HPI implementation will provide an appropriate default value for the resource severity, which
may vary by resource; an HPI User can override this default value by use of this function.

If aresourceisremoved from, then re-added to the RPT (e.g., because of a hot swap action), the HPI
implementation may reset the value of the resource severity.

HPI Specification SAI-HPI-B.01.01 43

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Serwc_e Avalla_blllty”" Hardware Platform Interface aBERVICE
Domain Functions it

6.3.4 saHpiResourceTagSet()

This function allows an HPI User to set the resource tag of an RPT entry for a particular resource.

Prototype
SaErrorT SAHPI_API1 saHpiResourceTagSet (
SAHP1_IN SaHpiSessionldT Sessionlid,

SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiTextBufferT *ResourceTag

);
Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
ResourceTag —[in] Pointer to SaHpi TextBufferT containing the resource tag.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_INVALID_PARAMS isreturned if the SaHpi TextBufferT structure passed as ResourceTag is not
valid. Thiswould occur when:

e The DataTypeis not one of the enumerated values for that type, or

e Thedatafield contains characters that are not legal according to the value of DataType, or

e Thelanguageis not one of the enumerated values for that type when the DataType is

SAHPI_TL_TYPE_UNICODE Of SAHPI_TL_TYPE_TEXT.

SA_ERR_HPI_INVALID_PARAMS isreturned if the ResourceTag pointer ispassed in as NULL.

Remarks

Theresource tag is adatafield within an RPT entry available to an HPI User for associating application
specific datawith aresource. HPI User supplied datais purely informational and is not used by the HPI
implementation, domain, or associated resource. For example, an HPI User can set the resourcetag to a
“descriptive” value, which can be used to identify the resource in messages to a human operator.

Since the resource tag is contained within an RPT entry, its scopeis limited to asingle domain. A resource that
exists in more than one domain will have independent resource tags within each domain.

Typicaly, the HPI implementation will provide an appropriate default value for the resource tag; this function
is provided so that an HPI User can override the default, if desired. The value of the resource tag may be
retrieved from the resource’ s RPT entry.

If aresourceisremoved from, then re-added to the RPT (e.g., because of a hot swap action), the HPI
implementation may reset the value of the resource tag.

44 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY . .
raea Domain Functions
6.3.5 saHpiResourceldGet()

This function returns the Resourceld of the resource associated with the entity upon which the HPI User is
running.

Prototype

SaErrorT SAHPI_API1 saHpiResourceldGet (
SAHPI1_IN SaHpiSessionldT Sessionlid,
SAHP1_OUT SaHpiResourceldT *Resourceld

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[out] Pointer to location to hold the returned Resourcel d.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_INVALID_PARAMS isreturned if the Resourceld pointer is passed in asNULL.

SA_ERR_HPI_NOT_PRESENT isreturned if the entity the HPI User is running on is not manageable in the
addressed domain.

SA_ERR_HPI_UNKNOWN isreturned if the domain controller cannot determine an appropriate response. That is,
there may be an appropriate Resourceld in the domain to return, but it cannot be determined.

Remarks

This function must be issued within a session to a domain that includes a resource associated with the entity
upon which the HPI User isrunning, or the SA_ERR_HPI1_NOT_PRESENT return will be issued.

Since entities are contained within other entities, there may be multiple possible resources that could be
returned to this call. For example, if there is a Resourceld associated with a particular compute blade upon
which the HPI User is running, and another associated with the chassis which contains the compute blade,
either could logically be returned as an indication of aresource associated with the entity upon which the HPI
User was running. The function should return the Resourceld of the “smallest” resource that is associated with
the HPI User. So, in the example above, the function should return the Resourceld of the compute blade.

Once the function has returned the Resourceld, the HPI User may issue further HPI calls using that Resourceld
to learn the type of resource that been identified.

HPI Specification SAI-HPI-B.01.01 45

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Servic_e Availa_bilityTM Hardware Platform Interface aBERVICE
Domain Functions it

6.4 Event Log Management

A domain controller maintains a Domain Event Log for events collected in that domain. Additionally, individual
resources may maintain Resource Event Logs. If aresource supports a Resource Event Log, it will indicate this by
having the Resource Event Log capability (SAHPI_CAPABILITY_EVENT_LOG) set in its RPT table entry.

The Event Log API alows each Event Log to have its own time clock, which is used for setting timestamps on Event
Log entries (the “timestamp clock™). This alows for Event Logs to be implemented on separate hardware units which
may have their own time-of-day clocks. An HPI User should therefore be aware that Event Log entries from agiven
Event Log are time-stamped using that Event Log’ s time clock, which may be different to other time clocks. The
functions saHpiEventLogTimeGet() and saHpiEventLogTimeSet() are provided to allow an individual
Event Log's clock to be read and set, respectively.

Event Log entries contain two timestamps: the Event Log timestamp and the embedded event timestamp. The Event

L og timestamp indicates the time that the event was placed in the Event Log. The embedded event timestamp indicates
the best approximation to when the event actually occurred (it is permissible to return SAHP1_TIME_UNSPECIFIED for
this timestamp). Because of this, it is possible that entries are chronologically ordered by the Event Log timestamp, but
are out of chronological order if looking at their event timestamps.

Event Logs are not re-ordered, nor are existing entries re-timestamped, asaresult of a
saHpiEventLogTimeSet(). Referencesto the events being chronologically ordered mean that they retain the
order in which they were actually added to the Event L og, regardless of what the timestamp fields in the entries may
indicate as aresult of clocks being reset.

Exactly what events are placed in the Resource and Domain Event Logs and how long they remain in the Event Log
are implementation-specific. All Event Logs, either the Domain Event Log, or a Resource Event Log may be managed
by an HPI User through these HPI functions. Management of an Event Log includes activities such as reading records
from it, writing records to it, clearing it, setting the timestamp clock, etc.

Using the value SAHP1_UNSPECIFIED_RESOURCE_ID as the Resourceld specifies a Domain Event Log. Resource Event
Logs are specified with the Resourceld of the resource that is hosting the Resource Event Log; thus, the Resourceld
must be a value other than SAHPI_UNSPECIFIED_RESOURCE_ ID.

A Domain Event Log may also be visible as a specific Resource Event Log. If o, then it is possible that the Domain
Event Log may be accessed either using SAHP1_UNSPECIFIED_RESOURCE_ID as the Resourceld, or with the Resourceld
of the resource that is hosting the Domain Event Log.

Each entry in an Event Log has an Entryld which is unique within that Event Log. Once an entry is made in an Event
Log, its Entryld will not change. Entrylds may be reused in an Event Log only after a particular Event Log entry is
permanently removed from the Event Log (e.g., by clearing the Event Log, or by an implementation-specific policy of
removing obsolete entries). There is no requirement that the implementation assign Entrylds sequentialy.

The Event Log isread chronologically by using the NextEntryld and PrevEntryld values returned by
saHpiEventLogEntryGet(), which will identify the Entryld of the next or previous entry in chronological order,
respectively.

When an overflow occurs, an Event Log will take one of two implementation-dependent actions. Either it will drop
new events for which there is no space, or it will delete existing entries to make room for new ones. Which action a
particular implementation takes when an overflow occurs is reported in the Event Log info record.

Event Log implementations may include policies to automatically remove obsolete entries periodically or to make
room for new entries when needed. This automatic removal of obsolete entriesis not an Event Log overflow. Rather,
an overflow condition exists when an Event Log is not able to hold all entries that its implemented policy indicates
should be held.

46 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Domain Functions

When an overflow occurs, and either new events are dropped, or existing, non-obsol ete events are overwritten, the
overflow flag will be set in the Event Log info record. The overflow flag will remain set until the flag is reset by
caling saHpiEventLogOverflowReset() or saHpiEventLogClear().

HPI Specification SAI-HPI-B.01.01 47

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY

Domain Functions v

6.4.1 saHpiEventLogInfoGet()

This function retrieves the current number of entriesin the Event Log, total size of the Event Log, the time of
the most recent update to the Event Log, the current value of the Event Log’ s clock (i.e., timestamp that would
be placed on an entry at this moment), the enabled/disabled status of the Event Log (see Section 6.4.8 on page
57), the overflow flag, and the action taken by the Event Log if an overflow occurs.

Prototype
SaErrorT SAHPI_API saHpiEventLoglnfoGet (
SAHPI_IN SaHpiSessionldT Sessionlid,

SAHPI_IN SaHpiResourceldT Resourceld,
SAHP1_OUT SaHpiEventLogInfoT *Info
);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Resourceld —[in] Identifier for the Resource containing the Event Log. Set to
SAHPI_UNSPECIFIED_RESOURCE_ID to address the Domain Event Log.

Info — [out] Pointer to the returned Event Log information.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_CAPABILITY isreturned if the resource does not have an Event Log capability

(SAHPI_CAPABILITY_EVENT_LOG) set. Note this condition only appliesto Resource Event Logs. Domain Event
L ogs are mandatory, and should not return this code.

SA_ERR_HPI_INVALID_PARAMS isreturned if the Info pointer is passed in as NULL.

Remarks

The sizefield in the returned Event Log information indicates the maximum number of entries that can be held
in the Event Log. This number should be constant for a particular Event Log.

48

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY . .
raea Domain Functions
6.4.2 saHpiEventLogEntryGet()

Thisfunction retrieves an Event Log entry.

Prototype

SaErrorT SAHPI_API1 saHpiEventLogEntryGet (
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,

SAHPI_IN SaHpiEventLogEntryldT Entryld,
SAHP1_OUT SaHpiEventLogEntryldT *PrevEntryld,
SAHPI_OUT SaHpiEventLogEntryldT *NextEntryld,

SAHP1_OUT SaHpiEventLogEntryT *EventLogEntry,
SAHPI_INOUT SaHpiRdrT *Rdr,
SAHPI1_INOUT SaHpiRptEntryT *RptEntry

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Resourceld —[in] Identifier for the Resource containing the Event Log. Set to
SAHP1_UNSPECIFIED_RESOURCE_ID to address the Domain Event Log.

Entryld —[in] Identifier of event log entry to retrieve. Reserved values:

e SAHPI_OLDEST_ENTRY Oldest entry in the Event Log.
e SAHPI_NEWEST_ENTRY Newest entry in the Event Log.
e SAHPI_NO_MORE_ENTRIES Not valid for this parameter. Used only when retrieving the next and

previous Entrylds.

PrevEntryld —[out] Event Log entry identifier for the previous (older adjacent) entry. Reserved values:

e SAHPI_OLDEST_ENTRY Not valid for this parameter. Used only for the Entryld parameter.
e SAHPI_NEWEST_ENTRY Not valid for this parameter. Used only for the Entryld parameter.
e SAHPI_NO_MORE_ENTRIES No more entries in the Event Log before the one referenced by the

Entryld parameter.

NextEntryld — [out] Event Log entry identifier for the next (newer adjacent) entry. Reserved values:

e SAHPI_OLDEST_ENTRY Not valid for this parameter. Used only for the Entryld parameter.
e SAHPI_NEWEST_ENTRY Not valid for this parameter. Used only for the Entryld parameter.
e SAHPI_NO_MORE_ENTRIES No more entries in the Event L og after the one referenced by the

Entryld parameter.
EventLogEntry — [out] Pointer to retrieved Event Log entry.

Rdr —[in/out] Pointer to structure to receive resource data record associated with the Event Log entry, if
available. If NULL, no RDR datawill be returned.

RptEntry — [in/out] Pointer to structure to receive RPT entry associated with the Event Log entry, if available.
If NULL, no RPT entry datawill be returned.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

HPI Specification SAI-HPI-B.01.01 49

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Servic_e Availa_bilityTM Hardware Platform Interface aBERVICE
Domain Functions it

SA_ERR_HPI_CAPABILITY isreturned if the resource does not have an Event Log capability
(SAHP1_CAPABILITY_EVENT_LOG) set. Note this condition only appliesto Resource Event Logs. Domain Event
Logs are mandatory, and should not return this code.

SA_ERR_HPI1_NOT_PRESENT is returned when:
e TheEvent Log has no entries.

e Theentry identified by Entryld is not present.

SA_ERR_HPI_INVALID_PARAMS is returned when:
e Any of PrevEntryld, NextEntryld and EventLogEntry pointers are passed in as NULL.

e SAHPI_NO_MORE_ENTRIES is passed in to Entryld.

Remarks

The special Entrylds SAHP1_OLDEST_ENTRY and SAHPI_NEWEST_ENTRY are used to select the oldest and newest
entries, respectively, in the Event Log being read. A returned NextEntryld of SAHP1_NO_MORE_ENTRIES
indicates that the newest entry has been returned; there are no more entries going forward (time-wise) in the
Event Log. A returned PrevEntryld of SAHPI_NO_MORE_ENTRIES indicates that the oldest entry has been
returned.

Toretrieve an entire list of entries going forward (oldest entry to newest entry) in the Event Log, call this
function first with an Entryld of saHP1_0OLDEST_ENTRY and then use the returned NextEntryld as the Entryld in
the next call. Proceed until the NextEntryld returned is SAHP1_NO_MORE_ENTRIES.

Toretrieve an entire list of entries going backward (newest entry to oldest entry) in the Event Log, call this
function first with an Entryld of saHP1_NEWEST_ENTRY and then use the returned PrevEntryld asthe Entryld in
the next call. Proceed until the PrevEntryld returned is SAHP1_NO_MORE_ENTRIES.

Event Logs may include RPT entries and resource data records associated with the resource and sensor issuing
an event along with the basic event data in the Event Log. Because the system may be reconfigured after the
event was entered in the Event Log, this stored information may be important to interpret the event. If the
Event Log includes logged RPT entries and/or RDRs, and if an HPI User provides a pointer to a structure to
receive thisinformation, it will be returned along with the Event Log entry.

If an HPI User provides a pointer for an RPT entry, but the Event Log does not include alogged RPT entry for
the Event Log entry being returned, RptEntry->ResourceCapabilities will be set to zero. No valid RptEntry will
have a zero Capabilities field value.

If an HPI User provides a pointer for an RDR, but the Event Log does not include alogged RDR for the Event
Log entry being returned, Rdr->Rdr Type will be set to SAHPI_NO_RECORD.

The Entrylds returned via the PrevEntryld and NextEntryld parameters may not be in sequential order, but will
reflect the previous and next entries in a chronological ordering of the Event Log, respectively.

50 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Domain Functions

6.4.3 saHpiEventLogEntryAdd()

This function enables an HPI user to add entries to the Event Log.

Prototype

SaErrorT SAHPI_API1 saHpiEventLogEntryAdd (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiEventT *EvtEntry

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Resourceld —[in] Identifier for the Resource containing the Event Log. Set to
SAHP1_UNSPECIFIED_RESOURCE_ID to address the Domain Event Log.

EvtEntry —[in] Pointer to event data to write to the Event Log. The Event field must be of type SAHP1_ET_USER,
and the Source field must be SAHPI_UNSPECIFIED_RESOURCE_ID.

Return Value

SA_OK isreturned if the event is successfully written in the Event Log; otherwise, an error code is returned.
SA_ERR_HPI_CAPABILITY isreturned if the resource does not have an Event Log capability

(SAHPI_CAPABILITY_EVENT_LOG) set. Note this condition only appliesto Resource Event Logs. Domain Event
Logs are mandatory, and should not return this code.

SA_ERR_HPI_INVALID_DATA is returned if the event Datalength is larger than that supported by the
implementation and reported in the Event Log info record.
SA_ERR_HPI_INVALID_PARAMS isreturned if the:

e EvtEntry pointer ispassed in asNULL.

e Event structure passed viathe EvtEntry parameter is not an event of type SAHPI_ET_USER with the Source
field set to SAHP1_UNSPECIFIED_RESOURCE_ID.

e The Severity is not one of the valid enumerated values for this type.

e SaHpiTextBufferT structure passed as part of the User Event structureis not valid. Thiswould
occur when:

= The DataTypeis not one of the enumerated values for that type, or

= Thedatafield contains characters that are not legal according to the value of DataType, or

= ThelLanguageis not one of the enumerated values for that type when the DataType is
SAHPI_TL_TYPE_UNICODE Of SAHPI_TL_TYPE_TEXT.

SA_ERR_HPI_OUT_OF_SPACE is returned if the event cannot be written to the Event Log because the Event Log is
full, and the Event Log OverflowAction is SAHP1_EL_OVERFLOW_DROP.

Remarks

This function writes an event in the addressed Event Log. Nothing else is done with the event.

HPI Specification SAI-HPI-B.01.01 51

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Serwc_e Avalla_blllty”" Hardware Platform Interface aBERVICE
Domain Functions it

If the Event Log isfull, overflow processing occurs as defined by the Event Log’ s OverflowAction setting,
reported in the Event Log info record. If, due to an overflow condition, the event is not written, or if existing
events are overwritten, then the OverflowFlag in the Event Log info record will be set, just as it would be if an
internally generated event caused an overflow condition. If the Event Log’s OverflowAction is
SAHPI_EL_OVERFLOW_DROP, then an error will be returned (SA_ERR_HP1_OUT_OF_SPACE) indicating that the
saHpiEventLogEntryAdd () function did not add the event to the Event Log. If the Event Log's
OverflowAction is SAHP1I_EL_OVERFLOW_OVERWRITE, then the saHpiEventLogEntryAdd () function will
return SA_OK, indicating that the event was added to the Event Log, even though an overflow occurred as a side-
effect of this operation. The overflow may be detected by checking the OverflowFlag in the Event Log info
record.

Specific implementations of HPI may have restrictions on how much data may be passed to the
saHpiEventLogEntryAdd() function. The Event Log info record reports the maximum Datalength that
is supported by the Event Log for User Events. If saHpiEventLogEntryAdd() is called with a User
Event that has alarger Datalength than is supported, the event will not be added to the Event Log, and an error
will be returned.

52

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Domain Functions

6.4.4 saHpiEventLogClear()

This function erases the contents of the specified Event Log.

Prototype

SaErrorT SAHPI_API1 saHpiEventLogClear (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiResourceldT Resourceld

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Resourceld —[in] Identifier for the Resource containing the Event Log. Set to
SAHPI_UNSPECIFIED_RESOURCE_ID to address the Domain Event Log.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_CAPABILITY isreturned if the resource does not have an Event Log capability

(SAHPI_CAPABILITY_EVENT_LOG) set. Note this condition only appliesto Resource Event Logs. Domain Event
Logs are mandatory, and should not return this code

Remarks
The OverflowFlag field in the Event Log info record will be reset when this function is called.

HPI Specification SAI-HPI-B.01.01 53

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY

Domain Functions v

6.4.5 saHpiEventLogTimeGet()

This function retrieves the current time from the Event Log's clock. This clock is used to timestamp entries
written into the Event Log.

Prototype

SaErrorT SAHPI_API1 saHpiEventLogTimeGet (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHP1_OUT SaHpiTimeT *Time

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Resourceld —[in] Identifier for the Resource containing the Event Log. Set to
SAHP1_UNSPECIFIED_RESOURCE_ID to address the Domain Event Log.

Time —[out] Pointer to the returned current Event Log time.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not have an Event Log capability
(SAHPI_CAPABILITY_EVENT_LOG) set. Note this condition only appliesto Resource Event Logs. Domain Event
Logs are mandatory, and should not return this code.

SA_ERR_HPI_INVALID_PARAMS is returned if the Time pointer is passed in as NULL.

Remarks

If the implementation cannot supply an absolute time value, then it may supply atime relative to some system-
defined epoch, such as system boot. If the time value is less than or equal to SAHPI_TIME_MAX_RELATIVE, then it
isrelative; if it is greater than SAHPI_TIME_MAX_RELATIVE, then it is absolute. The HPI implementation must
provide valid timestamps for Event Log entries, using a default time base if no time has been set. Thus, the
value SAHPI_TIME_UNSPECIFIED iS never returned.

54

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Domain Functions

6.4.6 saHpiEventLogTimeSet()

This function sets the Event Log's clock, which is used to timestamp events written into the Event Log.

Prototype

SaErrorT SAHPI_API1 saHpiEventLogTimeSet (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiTimeT Time

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Resourceld —[in] Identifier for the Resource containing the Event Log. Set to
SAHP1_UNSPECIFIED_RESOURCE_ID to address the Domain Event Log.

Time—[in] Time to which the Event Log clock should be set.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not have an Event Log capability
(SAHPI_CAPABILITY_EVENT_LOG) set. Note this condition only appliesto Resource Event Logs. Domain Event
Logs are mandatory, and should not return this code.

SA_ERR_HPI_INVALID_PARAMS is returned when the Time parameter is set to SAHP1_TIME_UNSPECIFIED.

For situations when the underlying implementation cannot represent atime value that is specified in Time,
SA_ERR_HPI_INVALID_DATA isreturned.

Remarks

If the Time parameter value is less than or equal to SAHPI_TIME_MAX_RELATIVE, but not
SAHPI_TIME_UNSPECIFIED, then it isrelative; if it is greater than SAHPI_TIME_MAX_RELATIVE, then it is absolute.
Setting this parameter to the value saHPI_TIME_UNSPECIFIED isinvalid and will result in an error return code of
SA_ERR_HPI_INVALID_PARAMS.

Entries placed in the Event Log after this function is called will have Event Log timestamps (i.e., the
Timestamp field in the SaHpiEventLogEntryT structure) based on the new time. Setting the clock does
not affect existing Event Log entries. If thetimeis set to arelative time, subsequent entries placed in the Event
Log will have an Event Log timestamp expressed as arelative time; if the time is set to an absolute time,
subsequent entries will have an Event Log timestamp expressed as an absolute time.

Thisfunction only sets the Event Log time clock and does not have any direct bearing on the timestamps
placed on events (i.e., the Timestamp field in the SaHp 1 EventT structure), or the timestamps placed in the
domain RPT info record. Setting the clocks used to generate timestamps other than Event Log timestampsis
implementation-dependent, and should be documented by the HPI implementation provider.

Some underlying implementations may not be able to handle the same relative and absolute time ranges, as
those defined in HPI. Such limitations will be documented. When atime valueis set in aregion that is not
supported by the implementation, an error code of SA_ERR_HP1_INVALID_DATA will be returned.

HPI Specification SAI-HPI-B.01.01 55

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Serwc_e Avalla_blllty”" Hardware Platform Interface aBERVICE
Domain Functions it

6.4.7 saHpiEventLogStateGet()

This function enables an HPI User to get the Event Log state.

Prototype

SaErrorT SAHPI_API1 saHpiEventLogStateGet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHP1_OUT SaHpiBoolT *EnableState

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Resourceld —[in] Identifier for the Resource containing the Event Log. Set to
SAHP1_UNSPECIFIED_RESOURCE_ID to address the Domain Event Log.

EnableState — [out] Pointer to the current Event Log enable state. True indicates that the Event Log is enabled;
Falseindicates that it is disabled.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not have an Event Log capability
(SAHPI_CAPABILITY_EVENT_LOG) set. Note this condition only appliesto Resource Event Logs. Domain Event
Logs are mandatory, and should not return this code.

SA_ERR_HPI_INVALID_PARAMS isreturned if the EnableState pointer is passed in asNULL.

Remarks

If the Event Log is disabled, no events generated within the HPI implementation will be added to the Event
Log. Events may still be added to the Event Log with the saHpiEventLogEntryAdd () function. When
the Event Log is enabled, events may be automatically added to the Event Log as they are generated in a
resource or adomain, however, it is implementation-specific which events are automatically added to any
Event Log.

56

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Domain Functions

6.4.8 saHpiEventLogStateSet()

This function enables an HPI User to set the Event Log enabled state.

Prototype

SaErrorT SAHPI_API1 saHpiEventLogStateSet (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiBoolT EnableState

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Resourceld —[in] Identifier for the Resource containing the Event Log. Set to
SAHP1_UNSPECIFIED_RESOURCE_ID to address the Domain Event Log.

EnableState —[in] Event Log state to be set. True indicates that the Event Log is to be enabled; False indicates
that it isto be disabled.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not have an Event Log capability
(SAHPI_CAPABILITY_EVENT_LOG) set. Note this condition only appliesto Resource Event Logs. Domain Event
Logs are mandatory, and should not return this code.

Remarks

If the Event Log is disabled no events generated within the HPI implementation will be added to the Event
Log. Events may still be added to the Event Log using the saHp i EventLogEntryAdd () function. When
the Event Log is enabled events may be automatically added to the Event Log as they are generated in a
resource or adomain. The actual set of eventsthat are automatically added to any Event Log is
implementation-specific.

Typicaly, the HPI implementation will provide an appropriate default value for this parameter, which may
vary by resource. Thisfunction is provided so that an HPI User can override the default, if desired.

If aresource hosting an Event Log isre-initialized (e.g., because of a hot swap action), the HPI implementation
may reset the value of this parameter.

HPI Specification SAI-HPI-B.01.01 57

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Servic_e Availa_bilityTM Hardware Platform Interface A
Domain Functions et

6.4.9 saHpiEventLogOverflowReset()

This function resets the OverflowFlag in the Event Log info record of the specified Event Log.

Prototype

SaErrorT SAHPI_API saHpiEventLogOverflowReset (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Resourceld —[in] Identifier for the Resource containing the Event Log. Set to
SAHPI_UNSPECIFIED_RESOURCE_ID to address the Domain Event Log.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_INVALID_cMD isreturned if the implementation does not support independent clearing of the
OverflowFlag on this Event Log.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not have an Event Log capability
(SAHPI_CAPABILITY_EVENT_LOG) set. Note this condition only appliesto Resource Event Logs. Domain Event
Logs are mandatory, and should not return this code.

Remarks

The only effect of this function isto clear the OverflowFlag field in the Event Log info record for the specified
Event Log. If the Event Log isstill full, the OverflowFlag will be set again as soon as another entry needs to
be added to the Event Log.

Some Event Log implementations may not allow resetting of the OverflowFlag except as a by-product of
clearing the entire Event Log with the saHpiEventLogClear () function. Such an implementation will
return the error code, SA_ERR_HP1_INVALID_CMD to thisfunction. The OverflowResetable flag in the Event Log
info record indicates whether or not the implementation supports resetting the OverflowFlag without clearing
the Event Log.

58

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY

e Domain Functions

6.5 Events

Events are collected and processed by the domain controller. The domain controller is responsible for processing each
event in the order it isreceived. Event processing by the domain controller includes optionally logging the event to the
Domain Event Log, and publishing the event to all session subscriptions.

The HPI event management service allows a session user to receive events as they are generated, or when requested.
Before events can be received, the session user must subscribe to the domain's events. A session that subscribes to
events will receive all events, which are collected in the domain controller for the domain associated with the session;
that is, all events relevant to that domain.

Invoking the saHpiEventGet() function retrieves events. Thisfunction may be invoked in blocking or non-
blocking modes; to retrieve events as they occur, invoke saHp i EventGet () with blocking set (i.e., set the timeout
parameter to SAHPI1_TIMEOUT_BLOCK), and it will return when an event is available. In either case,
saHpiEventGet() will return the next available event on the session’s event queue, if there is one aready there.

After the subscription, al subsequent events are added to the event queue as the domain controller collects them.
Capacity and management of event queues is implementation-specific. Event queues may be of afixed size, or may be
dynamically sized depending on available memory resources at any moment. A mechanism is provided, however, to
report an event queue overflow to an HPI User. When an overflow is reported, this means that one or more events
were unable to be queued to a particular event queue because of space limitations, regardless of how the
implementation manages event queue space.

Implementations should drop the new, incoming events when reporting queue overflows rather than deleting existing
gueued events to make room for the new ones. If additional events are to be queued before an HPI User has read any
events from the queue (and thus had the opportunity to be informed of the overflow), and the implementation is able to
gueue the additional events, it may do so, but should leave the overflow flag set until an HPI User next calls
saHpiEventGet().

Implementations should be designed to ensure that at least one event may always be placed on every event queue.
Thus, it should not be possible to have the overflow flag set for a queue that has no events queued. Thisisimportant
because the overflow flag is reported to an HPI User in conjunction with an event being returned to an HPI User.

HPI Specification SAI-HPI-B.01.01 59

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY

Domain Functions v

6.5.1 saHpiSubscribe()

This function allows an HPI User to subscribe for events. This single call provides subscription to all session
events, regardless of event type or event severity.

Prototype

SaErrorT SAHPI_API1 saHpiSubscribe (
SAHP1_IN SaHpiSessionldT Sessionld

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_DUPLICATE isreturned when a subscription is already in place for this session.

Remarks

Only one subscription is allowed per session, and additional subscriberswill receive an appropriate error code.
No event filtering will be done by the HPI implementation.

60

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Domain Functions

6.5.2 saHpiUnsubscribe()

This function removes the event subscription for the session.

Prototype

SaErrorT SAHPI_API1 saHpiUnsubscribe (
SAHP1_IN SaHpiSessionldT Sessionld

)

Parameters

Sessionld —[in] Session for which event subscription will be closed.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_INVALID_REQUEST isreturned if the session is not currently subscribed for events.

Remarks

After removal of a subscription, additional saHpiEventGet() calswill not be allowed on the session
unless an HPI User re-subscribes for events on the session first. Any eventsthat are still in the event queue
when thisfunction is called will be cleared fromiit.

HPI Specification SAI-HPI-B.01.01 61

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Serwc_e Avalla_blllty”" Hardware Platform Interface aBERVICE
Domain Functions it

6.5.3 saHpiEventGet()

Thisfunction allows an HPI User to get an event. Thiscall isonly valid within a session that has subscribed

for events.

Prototype

SaErrorT SAHPI_API saHpiEventGet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHPI1_IN SaHpiTimeoutT Timeout,
SAHP1_OUT SaHpiEventT *Event,
SAHPI_INOUT SaHpiRdrT *Rdr,
SAHPI_INOUT SaHpiRptEntryT *RptEntry,
SAHP1_INOUT SaHpiEvtQueueStatusT *EventQueueStatus

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Timeout — [in] The number of nanoseconds to wait for an event to arrive. Reserved time out values:

e SAHPI_TIMEOUT_IMMEDIATE Time out immediately if there are no events available
(non-blocking call).

e SAHPI_TIMEOUT_BLOCK Call should not return until an event isretrieved.
Event — [out] Pointer to the next available event.

Rdr —[in/out] Pointer to structure to receive the resource data associated with the event. If NULL, no RDR
will be returned.

RptEntry — [in/out] Pointer to structure to receive the RPT entry associated with the resource that generated the
event. If NULL, no RPT entry will be returned.

EventQueueStatus — [in/out] Pointer to location to store event queue status. If NULL, event queue status will
not be returned.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_INVALID_REQUEST isreturned if an HPI User is not currently subscribed for eventsin this session.

SA_ERR_HPI1_INVALID_PARAMS isreturned if the:

e Event pointer ispassed inas NULL.

e Timeout parameter is not set to SAHP1_TIMEOUT_BLOCK, SAHPI_TIMEOUT_IMMEDIATE Or a positive value.
SA_ERR_HPI_TIMEOUT isreturned if no event is available to return within the timeout period. If
SAHPI_TIMEOUT_IMMEDIATE is passed in the Timeout parameter, this error return will be used if there is no event
gueued when the function is called.

Remarks

SaHpiEventGet () will aso return an EventQueueStatus flag to an HPI User. Thisflag indicates whether
or not a queue overflow has occurred. The overflow flag is set if any events were unable to be queued because
of space limitations in the interface implementation. The overflow flag is reset whenever
saHpiEventGet() iscaled.

62 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Domain Functions

If there are one or more events on the event queue when this function is called, it will immediately return the
next event on the queue. Otherwise, if the Timeout parameter is SAHPI_TIMEOUT_IMMEDIATE, it will return
SA_ERR_HPI_TIMEOUT immediately. Otherwise, it will block for time specified by the timeout parameter; if an
event is added to the queue within that time it will be returned immediately; if not, saHpiEventGet () will
return SA_ERR_HPI_TIMEOUT. If the Timeout parameter iS SAHPI_TIMEOUT_BLOCK, the saHpiEventGet()
will block indefinitely, until an event becomes available, and then return that event. This providesfor
notification of events as they occur.

If an HPI User provides a pointer for an RPT entry, but the event does not include avalid Resourceld for a
resource in the domain (e.g., OEM or USER type event), then the RptEntry->ResourceCapabilities field will be
set to zero. No valid RPT entry will have a zero ResourceCapabilities.

If an HPI User provides a pointer for an RDR, but there is no valid RDR associated with the event being
returned (e.g., returned event is not a sensor event), then the Rdr->Rdr Type field will be set to
SAHP1_NO_RECORD.

The timestamp reported in the returned event structure is the best approximation an implementation hasto
when the event actually occurred. The implementation may need to make an approximation (such asthetime
the event was placed on the event queue) because it may not have access to the actual time the event occurred.
The value SAHPI_TIME_UNSPECIFIED indicates that the time of the event cannot be determined.

If the implementation cannot supply an absolute timestamp, then it may supply atimestamp relative to some
system-defined epoch, such as system boot. If the timestamp valueis less than or equal to
SAHPI_TIME_MAX_RELATIVE, but not SAHPI_TIME_UNSPECIFIED, then it isrelative; if it is greater than
SAHP1_TIME_MAX_RELATIVE, then it is absolute.

If an HPI User passes aNULL pointer for the returned EventQueueStatus pointer, the event status will not be
returned, but the overflow flag, if set, will still bereset. Thus, if an HPI User needs to know about event queue
overflows, the EventQueueStatus parameter should never be NULL, and the overflow flag should be checked
after every call to saHpiEventGet().

If saHpiEventGet() iscalled with atimeout value other than SAHP1_TIMEOUT_IMMEDIATE, and the session
is subsequently closed from another thread, this function will return with SA_ERR_HP1_INVALID_SESSION. If
saHpiEventGet() is called with atimeout value other than SAHPI_TIMEOUT_IMMEDIATE, and an HPI User
subsequently calls saHpiUnsubscribe () from another thread, this function will return with
SA_ERR_HPI_INVALID_REQUEST.

HPI Specification SAI-HPI-B.01.01 63

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Servic_e Availa_bilityTM Hardware Platform Interface aBERVICE
Domain Functions it

6.5.4 saHpiEventAdd()

This function enables an HPI User to add events to the HPI domain identified by the Sessionld. The domain
controller processes an event added with this function asif the event originated from within the domain. The
domain controller will attempt to publish eventsto all active event subscribers and will attempt to log eventsin
the Domain Event Log, if room is available.

Prototype
SaErrorT SAHPI_API saHpiEventAdd (
SAHPI1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiEventT *EvtEntry
);
Parameters

Sessionld - [in] Identifier for a session context previously obtained using saHp i SessionOpen().

EvtEntry - [in] Pointer to event to add to the domain. Event must be of type SAHP1_ET_USER, and the Source
field must be SAHP1_UNSPECIFIED_RESOURCE_ID.
Return Value

SA_oK isreturned if the event is successfully added to the domain; otherwise, an error code is returned.

SA_ERR_HPI1_INVALID_PARAMS isreturned if the:
e EVtEntry parameter isNULL.

e Event structure passed viathe EVtEntry parameter is not an event of type SAHPI_ET_USER with the Source
field being SAHP1_UNSPECIFIED_RESOURCE_ID.

e Event structure passed viathe EVtEntry parameter has an invalid Severity.

e SaHpiTextBufferT structure passed as part of the User Event structureisnot valid. Thiswould
occur when:

= TheDataTypeis not one of the enumerated values for that type, or

= Thedatafield contains characters that are not legal according to the value of DataType, or

= ThelLanguageis not one of the enumerated values for that type when the DataType is
SAHPI_TL_TYPE_UNICODE OF SAHPI_TL_TYPE_TEXT.

SA_ERR_HPI_INVALID_DATA is returned if the event data does not meet implementation-specific restrictions on
how much event data may be provided in a SAHPI_ET_USER event.

Remarks

Specific implementations of HPI may have restrictions on how much data may be included in a SAHPI_ET_USER
event. |f more event datais provided than can be processed, an error will be returned. The event data size
restriction for the SAHPI_ET_USER event type is provided in the User EventMaxSize field in the domain Event
Loginfo structure. An HPI User should call the function saHpiEventLogInfoGet() to retrieve the Event
Log info structure.

The domain controller will attempt to publish the event to all sessions within the domain with active event
subscriptions; however, a session’s event queue may overflow due to the addition of the new event.

The domain controller will attempt to log the event in the Domain Event Log; however, the Domain Event Log
may overflow due to the addition of the new event.

64 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE

AVAILABILITY

Service Availability™ Hardware Platform Interface
Domain Functions

6.6

Domain Alarm Table

The domain controller maintains a Domain Alarm Table (DAT) which contains entries for each active alarmin the
domain. Alarms are added to and deleted from the DAT by the HPI implementation as the presence or absence of the
corresponding conditions are detected by the domain controller. HPI functions are provided so that HPI Users may
also add or delete entriesin the DAT to reflect HPI User-detected alarm conditions.

There will be an entry in the DAT whenever one of the following conditionsis present in the domain, or in aresource
contained in the domain:

Significant Asserted Sensor Event State,
Significant Resource Failure,

OEM Alarm Condition,

User Defined Condition.

Each of these conditions is described in more detail below.

Significant Asserted Sensor Event State

A significant asserted sensor event state is any event state on a sensor that is asserted, provided that:

a) thesensor isenabled,
b) event generation for the sensor is enabled,

c) thesensor assertion event mask is configured so that the assertion of the event state causes an event to be

generated, and

d) theevent that is generated when the event state is asserted has a severity of SAHPI_MINOR, SAHPI_MAJOR, OF

SAHPI1_CRITICAL.

A separate entry in the DAT will be present for each event state on each sensor in the domain for which the
preceding conditions apply. HPI Users cannot remove these entries from the DAT; entries reflecting
significant asserted sensor states will be automatically removed from the table when:

a) theevent stateisno longer asserted on the sensor,
b) achangein the configuration or status of the sensor is made such that the asserted event state would no

longer constitute an alarm. For example, the sensor is disabled, sensor event generation is disabled, etc.

c) theresourceisno longer present in the domain, or
d) theresourceismarked as*“Failed” in the domain.

Significant Resource Failure

A significant resource failure is any detected resource failure provided that the severity associated with the
resource entry in the RPT is SAHPI_MINOR, SAHPI_MAJOR, OF SAHPI_CRITICAL.

HPI Users cannot remove these entries from the DAT; entries reflecting significant resource failures will be
automatically removed from the table when:

a) theresourceisno longer failed,

b) the severity associated with the resource entry in the RPT is set to something other than SAHP1_MINOR,
SAHPI_MAJOR, Of SAHPI_CRITICAL, Of

¢) theresource associated with the alarm is removed from the domain.

HPI Specification SAI-HPI-B.01.01

65

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Servic_e Availa_bilityTM Hardware Platform Interface aBERVICE
Domain Functions it

Note: Note that resource failures that are indistinguishable from hot swap extractions do not result in alarms being
added to the DAT. See Section 3.8 on page 26 for more information about resource failures.

OEM Alarm Condition

An HPI implementation may add OEM aarmsto the DAT to reflect platform-specific alarm conditions.

a) HPI Users cannot remove these entries from the DAT; entries reflecting OEM aarm conditions will be
automatically removed from the table by the HPI implementation when the alarm condition is cleared.

User Defined Condition

HPI Users may also add alarm entries to the DAT using the saHp i AlarmAdd () function described in
Section 6.6.4 on page 72. By adding entriesto the DAT, an HPI User can represent fault conditions of
significant severity that are not detected by an HPI implementation. A User Alarm remains present in the DAT
until a subsequent HPI User operation deletesit. HPI Users may only add alarm entries to the DAT with a
severity of SAHPI_MINOR, SAHPI_MAJOR OF SAHPI_CRITICAL.

An HPI User may manage the DAT using the HPI functions defined below. HPI User management of the DAT
includes retrieving alarms for processing, acknowledging alarms, and adding or removing User Alarms. Alarms can be
retrieved, acknowledged, and removed by Alarmld (single aarm), or by severity (group of alarms). For example, an
HPI User canretrieve alist of al active alarms, or alist of al active critical alarms.

When alarms are automatically added to the DAT by the HPI implementation, the alarm entry in the DAT isinitially
flagged as “ unacknowledged.” An HPI User can change the state to “acknowledged” by calling
saHpiAlarmAcknowledge() . When aUser Alarmis added to the DAT, it may beinitially added as either
“acknowledged” or “unacknowledged.”

In order to ensure that there isroom in the DAT to store al non-User Alarms that may be required at any onetime, an
HPI implementation will generally need to impose alimit on the number of User Alarms that can be added to the DAT.
Thislimit is defined in the Domain Info structure, and errors will be returned if an HPI User attempts to add more
alarms than are permitted.

Thereisaso aflag in the Domain Info structure indicating that one or more non-User Alarms that should be in the
DAT are not present due to an overflow condition. However, the DAT should be sized, and User Alarms limited so
that overflows of non-User Alarms will not occur except under very unusual circumstances.

When peer domains are defined, each peer will contain aDAT. Because the peer domains each contain the same set of
resources, generally each peer domain’s DAT will contain the same set of non-User Alarms reflecting alarm conditions
in those resources. However, these alarms may not be identical in the peer domains. The Alarmld or acknowledged
status may differ between the DATs. Additionally, entriesin the DATs reflecting domain alarm conditions (e.g., a
resource failure alarm indicating the inability to communicate with a particular resource) may differ among peer
domains. Also, HPI User actions — adding or deleting User Alarms, acknowledging alarms — are specific to a
particular DAT. If an HPI User adds, acknowledges, or deletes an alarm in the DAT of adomain, this does not
automatically cause similar changes to the DAT in apeer domain.

66 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Domain Functions

6.6.1 saHpiAlarmGetNext()

This function alowsretrieval of an alarm from the current set of alarms held in the Domain Alarm Table
(DAT).

Prototype
SaErrorT SAHPI_API1 saHpiAlarmGetNext(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiSeverityT Severity,
SAHPI_IN SaHpiBoolT UnacknowledgedOnly,
SAHP1_INOUT SaHpiAlarmT *Alarm
);
Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Severity —[in] Severity level of alarmsto retrieve. Set to SAHPI_ALL_SEVERITIES to retrieve alarms of any
severity; otherwise, set to requested severity level.

UnacknowledgedOnly —[in] Set to True to indicate only unacknowledged alarms should be returned. Set to
False to indicate either an acknowledged or unacknowledged alarm may be returned.

Alarm—[in/out] Pointer to the structure to hold the returned alarm entry. Also, on input, Alarm->Alarmid and
Alarm->Timestamp are used to identify the previous alarm.
Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_INVALID_PARAMS is returned when:
e Severity isnot one of the valid enumerated values for this type.
e The Alarm parameter is passed in asNULL.

SA_ERR_HP1_NOT_PRESENT isreturned:

e |f thereareno additional alarmsin the DAT that meet the criteria specified by the Severity and
UnacknowledgedOnly parameters:

e |f the passed Alarm->Alarmid field was set to SAHPI_FIRST_ENTRY and there are no darmsin the DAT
that meet the criteria specified by the Severity and UnacknowledgedOnly parameters.

SA_ERR_HPI_INVALID_DATA is returned if the passed Alarm->Alarmld matches an alarm in the DAT, but the
passed Alarm->Timestamp does not match the timestamp of that alarm.

Remarks

All arms contained in the DAT are maintained in the order in which they were added. This function will
return the next alarm meeting the specifications given by an HPI User that was added to the DAT after the
alarm whose Alarmld and Timestamp is passed by an HPI User, even if the alarm associated with the Alarmlid
and Timestamp has been deleted. If SAHPI_FIRST_ENTRY is passed asthe Alarmid, the first alarm in the DAT
meeting the specifications given by an HPI User is returned.

Alarm selection can be restricted to only alarms of a specified severity, and/or only unacknowledged alarms.

HPI Specification SAI-HPI-B.01.01 67

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY

Domain Functions v

Toretrieve all alarms contained within the DAT meeting specific requirements, call
saHpiAlarmGetNext() with the Alarm->Alarmid field set to SAHPI_FIRST_ENTRY and the Severity and
UnacknowledgedOnly parameters set to select what alarms should be returned. Then, repeatedly call
saHpiAlarmGetNext() passing the previoudy returned alarm as the Alarm parameter, and the same
values for Severity and UnacknowledgedOnly until the function returns with the error code
SA_ERR_HPI_NOT_PRESENT.

SAHPI_FIRST_ENTRY and SAHPI_LAST_ENTRY are reserved Alarmld values, and will never be assigned to an
adarminthe DAT.

The elements Alarmid and Timestamp are used in the Alarm parameter to identify the previous aarm; the next
alarm added to the table after this alarm that meets the Severity and UnacknowledgedOnly requirements will be
returned. Alarm->Alarmld may be set to SAHPI_FIRST_ENTRY to select the first dlarm in the DAT meeting the
Severity and Unacknowl edgedOnly requirements. If Alarm->Alarmld iS SAHPI_FIRST_ENTRY, then
Alarm->Timestamp isignored.

68

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Domain Functions

6.6.2 saHpiAlarmGet()

Thisfunction allows retrieval of a specific alarm in the Domain Alarm Table (DAT) by referencing its
Alarmid.

Prototype

SaErrorT SAHPI_API1 saHpiAlarmGet(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiAlarmldT Alarmid,
SAHPI_OUT SaHpiAlarmT *Alarm

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Alarmld —[in] Alarmld of the alarm to be retrieved from the DAT.
Alarm—[out] Pointer to the structure to hold the returned alarm entry.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_NOT_PRESENT isreturned if the requested Alarmid does not correspond to an alarm contained in the
DAT.

SA_ERR_HPI_INVALID_PARAMS is returned when the Alarm parameter is passed in as NULL.

Remarks

SAHPI_FIRST_ENTRY and SAHPI_LAST_ENTRY are reserved Alarmld values, and will never be assigned to an
alarmin the DAT.

HPI Specification SAI-HPI-B.01.01 69

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Serwc_e Avalla_blllty”" Hardware Platform Interface aBERVICE
Domain Functions it

6.6.3 saHpiAlarmAcknowledge()

Thisfunction allows an HPI User to acknowledge a single alarm entry or agroup of alarm entries by severity.

Prototype

SaErrorT SAHPI_API1 saHpiAlarmAcknowledge(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiAlarmldT Alarmid,
SAHPI_IN SaHpiSeverityT Severity

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Alarmld —[in] Identifier of the alarm to be acknowledged. Reserved Alarmid values:

e SAHPI_ENTRY_UNSPECIFIED Ignore this parameter.
Severity —[in] Severity level of alarmsto acknowledge. Ignored unless Alarmid is SAHPI_ENTRY_UNSPECIFIED.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_NOT_PRESENT isreturned if an alarm entry identified by the Alarmld parameter does not exist in
the DAT.

SA_ERR_HPI_INVALID_PARAMS isreturned if Alarmld is SAHPI_ENTRY_UNSPECIFIED and Severity is not one of
the valid enumerated values for this type.

Remarks

An HPI User acknowledges an alarm to indicate that it is aware of the alarm and to influence platform-specific
alarm annunciation that may be provided by the implementation. Typically, an implementation ignores
acknowledged alarms when announcing an alarm on annunciation devices such as audible sirens and dry
contact closures. However, alarm annunciation is implementation-specific.

An acknowledged alarm will have the Acknowledged field in the alarm entry set to True.

Alarms are acknowledged by one of two ways: asingle alarm entry by Alarmid regardless of severity or asa
group of alarm entries by Severity regardless of Alarmid.

To acknowledge all alarms contained within the DAT, set the Severity parameter to SAHPI_ALL_SEVERITIES,
and set the Alarmld parameter to SAHPI_ENTRY_UNSPECIFIED.

To acknowledge all alarms of a specific severity contained within the DAT, set the Severity parameter to the
appropriate value, and set the Alarmld parameter to SAHP1_ENTRY_UNSPECIFIED.

To acknowledge asingle alarm entry, set the Alarmld parameter to a value other than
SAHPI_ENTRY_UNSPECIFIED. The Alarmld must be avalid identifier for an alarm entry present in the DAT at
the time of the function call.

If an alarm has been previously acknowledged, acknowledging it again has no effect. However, thisis not an
error.

If the Alarmld parameter has a value other than SAHP1_ENTRY_UNSPECIFIED, the Severity parameter isignored.

70 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY . .
rraw Domain Functions

If the Alarmld parameter is passed as SAHP1_ENTRY_UNSPECIFIED, and no alarms are present that meet the
reguested Severity, this function will have no effect. However, thisis not an error.

SAHPI_ENTRY_UNSPECIFIED is defined as the same value as SAHPI_FIRST_ENTRY, SO using either symbol will
have the same effect. However, SAHPI_ENTRY_UNSPECIFIED should be used with this function for clarity.

HPI Specification SAI-HPI-B.01.01 71

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Domain Functions

SERVICE
AVAILABILITY

6.6.4 saHpiAlarmAdd()

This function is used to add a User Alarm to the DAT.

Prototype

SaErrorT SAHPI_API1 saHpiAlarmAdd(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_INOUT SaHpiAlarmT *Alarm

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Alarm-[in/out] Pointer to the alarm entry structure that contains the new User Alarm to add to the DAT.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_INVALID_PARAMS is returned when the Alarm pointer is passed in as NULL.

SA_ERR_HPI_INVALID_PARAMS is returned when Alarm->Severity is not one of the following enumerated values:

SAHP1_MINOR, SAHP1_MAJOR, Or SAHP1_CRITICAL.

SA_ERR_HPI_INVALID_PARAMS is returned when Alarm->AlarmCond.Type is not
SAHPI_STATUS_COND_TYPE_USER.

SA_ERR_HPI_OUT_OF_SPACE is returned if the DAT is not able to add an additional User Alarm due to space

limits or limits imposed on the number of User Alarms permitted in the DAT.

Remarks

The Alarmld, and Timestamp fields within the Alarm parameter are not used by this function. Instead, on

successful completion, these fields are set to new values associated with the added alarm.

72 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Domain Functions

6.6.5 saHpiAlarmDelete()

Thisfunction allows an HPI User to delete asingle User Alarm or agroup of User Alarms from the DAT.
Alarms may be deleted individually by specifying a specific Alarmid, or they may be deleted as a group by
specifying a Severity.

Prototype

SaErrorT SAHPI_API saHpiAlarmDelete(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiAlarmldT Alarmid,
SAHPI_IN SaHpiSeverityT Severity

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Alarmld —[in] Alarm identifier of the alarm entry to delete. Reserved values:

e SAHPI_ENTRY_UNSPECIFIED Ignore this parameter.
Severity —[in] Severity level of alarmsto delete. Ignored unless Alarmid is SAHPI_ENTRY_UNSPECIFIED.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_INVALID_PARAMS isreturned if Alarmld is SAHPI_ENTRY_UNSPECIFIED and Severity is not one of
the valid enumerated values for this type.

SA_ERR_HPI_NOT_PRESENT isreturned if an alarm entry identified by the Alarmld parameter does not exist in
the DAT.

SA_ERR_HPI_READ_ONLY isreturned if the Alarmld parameter indicates a non-User Alarm.

Remarks

Only User Alarms added to the DAT can be deleted. When deleting alarms by severity, only User Alarms of
the requested severity will be deleted.

To delete asingle, specific alarm, set the Alarmld parameter to avalue representing an actual User Alarmin the
DAT. The Severity parameter isignored when the Alarmlid parameter is set to avalue other than
SAHPI_ENTRY_UNSPECIFIED.

To delete agroup of User Alarms, set the Alarmld parameter to SAHPI_ENTRY_UNSPECIFIED, and set the
Severity parameter to identify which severity of alarms should be deleted. To clear al User Alarms contained
within the DAT, set the Severity parameter to SAHPI_ALL_SEVERITIES.

If the Alarmld parameter is passed as SAHPI_ENTRY_UNSPECIFIED, and no User Alarms are present that meet the
specified Severity, this function will have no effect. However, thisis not an error.

SAHPI_ENTRY_UNSPECIFIED is defined as the same value as SAHPI_FIRST_ENTRY, SO using either symbol will
have the same effect. However, SAHPI_ENTRY_UNSPECIFIED should be used with this function for clarity.

HPI Specification SAI-HPI-B.01.01 73

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY

Resource Functions Pt

7 Resource Functions

7.1 Resource Data Record (RDR) Repository Management

This set of HPI functionsis used to access the Resource Data Record (RDR) repository for a specific resource. Every
resource that contains any management instruments (sensors, controls, watchdog timers, inventory data repositories,
and annunciators) must have an associated RDR (i.e., the “RDR Repository” capability, SAHPI_CAPABILITY_RDR, must
be set in their corresponding RPT entries). Most resources will contain management instruments, so most will contain
an RDR. The RDR repository holds information indicating the set of sensors, controls, watchdogs, inventory data
repositories and annunciators for al of the entities that are managed by aresource. All sensors, controls, watchdogs,
inventory data repositories and annunciators present in aresource must be specified in the resource’ s RDR repository.

The concept of RDRs provides for much of HPI’ s portability and extensibility across a multitude of hardware platform
implementations. Because each platform will have adifferent population of domain controllers and resources, the
RDR concept provides a means of discovering and managing these varied populations of hardware platforms and their
management instruments. The RDR repository is used during discovery to learn the management capabilities of the
resource.

The HPI modd uses a distributed repository where each resource maintains alocal repository of records.

Figure 7. Distributed Resource Data Record Repositories

HP'I A7

HF Implerneniation

Domain Corgmler Respume 0 Rezqume 1 LN}] Respure M

REsiurce

Presance Table
o "

—

o E—
~ ey
! 4

S
Doman Event Log
o "

At theresource level, the RDR repository is alogical database containing a collection of records that describe
management instruments. Each RDR contains common fields that define the record type and naming information.

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.1.1 saHpiRdrGet()

This function returns a resource data record from the addressed resource.

Prototype

SaErrorT SAHPI_API saHpiRdrGet (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiEntryldT Entryld,
SAHP1_OUT SaHpiEntryldT *NextEntryld,
SAHPI_OUT SaHpiRdrT *Rdr

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Entryld —[in] Identifier of the RDR entry to retrieve. Reserved Entryld values:
e SAHPI_FIRST_ENTRY Get first entry.

e SAHPI_LAST_ENTRY Reserved as delimiter for end of list. Not avalid entry identifier.
NextEntryld — [out] Pointer to location to store Entryld of next entry in RDR repository.
Rdr —[out] Pointer to the structure to receive the requested resource data record.

Return Value
SA_OK isreturned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource contains no RDR records (and thus does not have the
SAHPI_CAPABILITY_RDR flag set inits RPT entry).

SA_ERR_HPI_NOT_PRESENT isreturned if an Entryld (other than SAHP1_FIRST_ENTRY) is passed that does not
correspond to an actual Entryld in the resource’ s RDR repository.
SA_ERR_HPI_INVALID_PARAMS isreturned if:

e SAHPI_LAST_ENTRY is passed in to Entryld.

e NextEntryld pointer is passed in asNULL.

e Rdr pointerispassedinasNULL.

Remarks

Submitting an Entryld of SAHPI_FIRST_ENTRY resultsin the first RDR being read. A returned NextEntryld of
SAHPI_LAST_ENTRY indicates the last RDR has been returned. A successful retrieval will include the next valid
Entryld. To retrieve the entire list of RDRs, call this function first with an Entryld of SAHP1_FIRST_ENTRY and
then use the returned NextEntryld in the next call. Proceed until the NextEntryld returned is SAHP1_LAST_ENTRY.

A resource’ s RDR repository is static over the lifetime of the resource; therefore no precautions are required
against changes to the content of the RDR repository while it is being accessed.

HPI Specification SAI-HPI-B.01.01 75

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.1.2 saHpiRdrGetByInstrumentld()

This function returns the Resource Data Record (RDR) for a specific management instrument hosted by the

addressed resource.

Prototype

SaErrorT SAHPI_API1 saHpiRdrGetBylnstrumentld (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiRdrTypeT RdrType,
SAHPI1_IN SaHpilnstrumentldT Instrumentld,
SAHP1_OUT SaHpiRdrT *Rdr

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
RdrType —[in] Type of RDR being requested.

Instrumentld —[in] Instrument number identifying the specific RDR to be returned. Thisis a sensor number,
control number, watchdog timer number, IDR number, or annunciator number, depending on the value of the
Rdr Type parameter.

Rdr —[out] Pointer to the structure to receive the requested RDR.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the:

e Resource contains no RDR records (and thus does not have the SAHP1I_CAPABILITY_RDR flag setinits
RPT entry).

e Type of management instrument specified in the RdrType parameter is not supported by the resource, as
indicated by the Capability field in its RPT entry.

SA_ERR_HPI_NOT_PRESENT is returned if the specific management instrument identified in the Instrumentld
parameter is not present in the addressed resource.

SA_ERR_HPI1_INVALID_PARAMS is returned when the:
e RdrType parameter is not avalid enumerated value for the type.
e RdrTypeisSAHPI_NO_RECORD.
e Rdr pointerispassedinasNULL.

Remarks

The RDR to bereturned is identified by RdrType (sensor, control, watchdog timer, inventory data repository, or
annunciator) and Instrumentld (sensor number, control number, watchdog number, IDR number, or
annunciator number) for the specific management instrument for the RDR being requested.

76 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Resource Functions

7.2 Sensors

These functions are valid for resources that have the Sensor capability (SAHP1_CAPABILITY_SENSOR) Set in their
corresponding RPT entries.

Sensors may report a“Reading” (avalue related to whatever it is that the sensor is measuring or monitoring) and up to
15 different “Event States.” Sensors may monitor an individual condition, or they may report an aggregate of
conditions as described in Section 7.2.3 on page 79.

7.2.1 Sensor Events and Sensor Event States

Each Event State isa single bit value that may be asserted or deasserted. The set of Event States a sensor may
support is defined by the sensor’s “ Event Category.” A particular sensor, however, does not have to support all
the Event States defined for its event category. The specific Event States that a particular sensor supports are
indicated in the “Events’ field in the sensor’s RDR.

A sensor is not required to support any Event States. If no Event States are supported by a sensor, the “ Events’
field will be 0x0000. A sensor may not support any Event States that are not defined for its event category.

Each Event State is independent, although in some event categories the meaning assigned to the Event States
will imply that certain Event States will be mutually exclusive. For example, a sensor that uses the
SAHPI_EC_LIMIT event category should only have one of the two Event States, SAHPI_ES_LIMIT_NOT_EXCEEDED
Or SAHPI_ES_LIMIT_EXCEEDED asserted at any onetime.

Except where mutual exclusion isimplied, however, sensors may have multiple Event States asserted
simultaneously. For example, the event category SAHP1_EC_THRESHOLD uses six different event statesto report
the relationship between the value currently measured by the sensor and up to six different “threshold” values.
Each threshold is independently examined, and each Event State that represents a threshold that has been
“crossed” will be asserted. Threshold values must be configured so that “Minor”, “Major” and “Critical”
thresholds are increasingly extreme readings, such that when a“Major” threshold has been crossed, the
corresponding “Minor” threshold will also have been crossed, and thus both Event States will be asserted.

When a sensor Event State is asserted or deasserted, an event may be generated by the resource. The generated
event identifies the sensor and the event state being asserted or deasserted. The HPI implementation may
assign event severity levelsfor each event state assertion or deassertion on an individual sensor basis.
However, sensors that have event categories of SAHP1_EC_THRESHOLD Or SAHP1_EC_SEVERITY must use these
specific severities for these events:

Table 3. Event Severities for the Event Category SAHPI_EC_THRESHOLD

SAHPI_EC_THRESHOLD Event State Severity for Assertion Event Severity for Deassertion Event
SAHPI_ES_LOWER_MINOR SAHPI_ MINOR SAHPI_ MINOR
SAHPI_ES_LOWER_MAJOR SAHPI_ MAJOR SAHPI_ MAJOR

SAHPI_ES_LOWER_CRITICAL SAHPI_ CRITICAL SAHPI_ CRITICAL
SAHPI_ES_UPPER_MINOR SAHPI_ MINOR SAHPI_ MINOR
SAHPI_ES_UPPER_MAJOR SAHPI_ MAJOR SAHPI_ MAJOR

SAHPI_ES_UPPER_CRITICAL SAHPI_ CRITICAL SAHPI_ CRITICAL

Table 4. Event Severities for the Event Category SAHPI_EC_SEVERITY

SAHPI_EC_SEVERITY Event State Severity for Assertion Event Severity for Deassertion Event
SAHPI_ES_OK SAHPI_OK SAHPI_OK
SAHPI_ES_MINOR_FROM_OK SAHPI_MINOR SAHPI_MINOR
HPI Specification SAI-HPI-B.01.01 77

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface AL ATy

Resource Functions i

SAHPI_ES_MAJOR_FROM_LESS SAHPI_MAJOR SAHPI_MAJOR

SAHPI_ES_CRITICAL_FROM_LESS SAHPI_CRITICAL SAHPI_CRITICAL
SAHPI_ES_MINOR_FROM_MORE SAHPI_MINOR SAHPI_MINOR
SAHPI_ES_MAJOR_FROM_CRITICAL SAHPI_MAJOR SAHPI_MAJOR

SAHPI_ES_CRITICAL SAHPI_CRITICAL SAHPI_CRITICAL

SAHPI_ES_MONITOR <defined by implementation> <defined by implementation>
SAHPI_ES_INFORMATIONAL SAHPI_INFORMATIONAL SAHPI_INFORMATIONAL

Whether or not an event is generated when an Event State is asserted or deasserted is dependent on three status
settings within the sensor.

1) Each sensor contains “event masks’ for assertion and deassertion events. These masks indicate which
Event State assertions or deassertions will result in events being generated. When an Event Stateis
asserted, if the bit corresponding to that Event State is set in the sensor’ s assert event mask, then an event
will be generated. If the corresponding bit is not set in the sensor’ s assert event mask, no event will be
generated. Similarly, when an Event State is deasserted, an event will be generated if the corresponding
bit is set in the sensor’ s deassert event mask.

Each sensor maintains separate assert and deassert event masks, but in resources that have the
SAHPI_CAPABILITY_EVT_DEASSERTS capability set, the values for these two masks in a sensor will always
be the same. Thus, any events generated when an Event State is asserted will be matched by events
generated when the Event State is deasserted. For sensors in these resources, changing the assertion event
mask automatically makes corresponding changes to the deassertion event mask.

2) Each sensor contains a“sensor event enable” status. No events will be generated when Event States
change unless the sensor event enable statusis “enabled.” Changing the “ sensor event enable” status for a
sensor does not change the settings of the assert and deassert event masks. Thus, an HPI User can
temporarily disable al event generation for a sensor, then later re-enable event generation as per the
settings in the assert and deassert event masks.

3) Each sensor contains a“ sensor enable” status. If the sensor enable statusis set to “disabled,” the sensor
does not report areading or Event States in response to the saHpi SensorReadingGet () function
call, nor does it generate any events when Event States change.

When an Event State is asserted (or deasserted), if the corresponding bit in the sensor’ s assert (or deassert)
event mask is set, and the “ sensor event enable” statusis“enabled”, and the “sensor enable” statusis
“enabled,” then an event will be generated reporting the event state assertion or deassertion.

When asensor is disabled (i.e., the “sensor enable” status for the sensor is set to “disabled”), the
assertion/deassertion status of all event states supported by the sensor are undefined. When the sensor becomes
enabled, an implementation may generate events, as configured by the sensor event enable and event mask
settings, as each event state becomes defined. Alternatively, an implementation may establish the initial
assertion/deassertion status of all event states upon becoming enabled. In this case, event state transitions will
not occur, and events will not be generated for the already-existing event states.

HPI function calls can be used to change the assert and deassert event masks, as well as the settings of the
“sensor event enable”’ and “ sensor enable” status for the sensor. However, sensors may restrict the level of
control available to an HPI User. These restrictions are advertised in the RDR for that sensor.

The changes made to a sensor configuration by an HPI User function are applicable to all HPI Users that have
access to the sensor. Disabling event generation means that the sensor will not generate the disabled event at
al —not just that the requesting HPI User will not see the event. Similarly, changing the threshold values for a
particular sensor (with the saHpiSensorThresholdsSet () function) will change the thresholds used by
the sensor as seen by all HPI Users.

78 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

A Resource Functions

Events are generated whenever the sensor enable status, the sensor event enable status, or the assert or deassert
event mask for a sensor changes. The “ Sensor Enable Change” event reports the new event enable
configuration (sensor enable status, sensor event enable status, and assert/deassert event masks) and optionally
reports the current Event State for the sensor. This event is only generated when an actual change is made to
the sensor’ s enable status. For example, if an HPI User calls saHpiSensorEventEnableSet() to disable
event generation for a sensor that already has events disabled, no event will be generated.

7.2.2 Sensor Configuration

Sensors contain several configuration parameters that may be set with the appropriate set sensor functions
described below. Typicaly, these parameters are set to appropriate defaults by the HPI implementation. These
“set” functions are available for management software to override these defaults.

Note. When the FRU managed by aresource is removed and reinserted, or the resource is otherwise re-initialized, the
HPI implementation may reset these parameters. If the resource that hosts the sensor supports parameter control
(see Section 7.8 on page 151), it may be possible to store the newly loaded parameter valuesin non-volatile
storage so that the new settings will remain with the resource through removal, reinsertion, etc.

7.2.3 Aggregate Sensors

If aresource entry in the RPT has the capability bit of SAHP1_CAPABILITY_AGGREGATE_STATUS Set it indicates
that the resource includes three pre-defined sensors that report aggregate resource status. These sensors, if
present, are reflected in the RDR table of the resource and are accessible with the APIs described in Sections
7.2.5 through 7.2.14, just like any other sensors hosted by the resource. The purpose of these sensorsisto
provide an HPI User with a simple way to detect overall operational, power, or temperature status of the entity
managed by the resource. |If the SAHPI_CAPABILITY_AGGREGATE_STATUS flag is set, all three of the predefined
sensors described in Table 5 must be present in the resource.

Each resource, which supports aggregate resource status, must provide the following default sensors:

Table 5. Aggregate Resource Sensors

Sensor Number Sensor Type Sensor Category Comment
SAHPI_DEFAGSENS_OPER | SAHPI_OPERATIONAL SAHPI_EC_ENABLE Aggregate operational status of
(0x00000100) Resource
SAHPI_DEFAGSENS_PWR SAHPI_POWER_UNIT SAHPI_EC_THRESHOLD Aggregate power status of resource
(0x00000101)

SAHPI_DEFAGSENS_TEMP | SAHPI_TEMPERATURE SAHPI_EC_THRESHOLD Aggregate thermal status of resource
(0x00000102)

Note. When one of the aggregate power/temperature sensors has a critical threshold status, the operational aggregate
sensor should be set to "disabled”.

71.2.4 Sensor Ranges

A range of named sensor numbers has been defined to be 0x00000100 through 0x000001FF. Implementations
shall not assign sensor numbers within the named sensor number range, unless the associated sensors are
specifically named by the specification.

Within this range, the sensor numbers from 0x00000100 to 0x0000010F are used exclusively for standard
aggregate sensors. Currently three standard aggregate sensors are named above. |mplementations shall not
assign sensor numbers within the named sensor number range, unless the associated sensors are specifically
named by the specification.

HPI Specification SAI-HPI-B.01.01 79

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.2.5 saHpiSensorReadingGet()

Thisfunction is used to retrieve a sensor reading.

Prototype

SaErrorT SAHPI_API1 saHpiSensorReadingGet (
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiSensorNumT SensorNum,
SAHP1_INOUT SaHpiSensorReadingT *Reading,
SAHPI_INOUT SaHpiEventStateT *EventState

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
SensorNum — [in] Sensor number for which the sensor reading is being retrieved.

Reading — [in/out] Pointer to a structure to receive sensor reading values. If NULL, the sensor reading value
will not be returned.

EventState — [in/out] Pointer to location to receive sensor event states. If NULL, the sensor event states will
not be returned.

Return Value
SA_OK isreturned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support sensors, as indicated by
SAHPI_CAPABILITY_SENSOR in the resource's RPT entry.

SA_ERR_HPI_INVALID_REQUEST isreturned if the sensor is currently disabled.
SA_ERR_HPI_NOT_PRESENT isreturned if the sensor is not present.

Remarks

For sensors that return atype of SAHPI_SENSOR_READING_TYPE_BUFFER, the format of the returned data buffer is
implementation-specific.

If the sensor does not provide a reading, the Reading structure returned by the
saHpiSensorReadingGet() function will indicate the reading is not supported by setting the | sSupported
flag to False.

If the sensor does not support any event states, a value of 0x0000 will be returned for the EventSate value.
Thisisindistinguishable from the return for a sensor that does support event states, but currently has no event
states asserted. The Sensor RDR Events field can be examined to determine if the sensor supports any event
States.

Itislegal for both the Reading parameter and the EventState parameter to be NULL. In this case, no datais
returned other than the return code. This can be used to determine if a sensor is present and enabled without
actually returning current sensor data. If the sensor is present and enabled, sA_okK is returned; otherwise, an
error code s returned.

80 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.2.6 saHpiSensorThresholdsGet()

This function retrieves the thresholds for the given sensor.

Prototype

SaErrorT SAHPI_API saHpiSensorThresholdsGet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiSensorNumT SensorNum,
SAHP1_OUT SaHpiSensorThresholdsT *SensorThresholds

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

SensorNum — [in] Sensor number for which threshold values are being retrieved.

Sensor Thresholds — [out] Pointer to returned sensor thresholds.

Return Value

SA_OK isreturned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support sensors, as indicated by
SAHPI_CAPABILITY_SENSOR in the resource's RPT entry.

SA_ERR_HPI_INVALID_PARAMS isreturned if the Sensor Thresholds pointer is passed in as NULL.

SA_ERR_HPI_INVALID_CMD isreturned if:
e Getting athreshold on a sensor that is not a threshold type.

e The sensor does not have any readable threshold values.
SA_ERR_HPI_NOT_PRESENT isreturned if the sensor is not present.

Remarks

Thisfunction only applies to sensors that support readable thresholds, as indicated by the IsAccessible field in
the SaHpiSensorThdDefnT structure of the sensor’s RDR being set to True and the ReadThold field in the
same structure having a non-zero value.

For thresholds that do not apply to the identified sensor, the IsSupported flag of the threshold value field will
be set to False.

HPI Specification SAI-HPI-B.01.01 81

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.2.7 saHpiSensorThresholdsSet()

This function sets the specified thresholds for the given sensor.

Prototype

SaErrorT SAHPI_API saHpiSensorThresholdsSet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiSensorNumT SensorNum,
SAHPI1_IN SaHpiSensorThresholdsT *SensorThresholds

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

SensorNum — [in] Sensor number for which threshold values are being set.

Sensor Thresholds — [in] Pointer to the sensor thresholds values being set.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_INVALID_DATA is returned if any of the threshold values are provided in aformat not supported by
the sensor.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support sensors, as indicated by
SAHPI_CAPABILITY_SENSOR in the resource's RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the sensor is not present.

SA_ERR_HPI_INVALID_CMD isreturned when:
e Writing to athreshold that is not writable.

e Setting athreshold on a sensor that is not a threshold type as indicated by the IsAccessible field of the
SaHpiSensorThdDefnT structure.

e Setting athreshold outside of the Min-Max range as defined by the Range field of the
SensorDataFormat of the RDR.
SA_ERR_HPI_INVALID_DATA isreturned when:
e Thresholds are set out-of-order (see Remarks).

e A negative hysteresis valueis provided.

Remarks

This function only applies to sensors that support writable thresholds, as indicated by the IsAccessible field in
the SaHpiSensorThdDefnT structure of the sensor’s RDR being set to True and the WriteThold field in the
same structure having a non-zero value.

The type of value provided for each threshold setting must correspond to the reading format supported by the
sensor, as defined by the reading type in the DataFormat field of the sensor’s RDR (saHpiSensorRecT).

82 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

E Service Availability™ Hardware Platform Interface
BILITY .
" Resource Functions

Sensor thresholds cannot be set outside of the range defined by the Range field of the Sensor DataFormat of the
Sensor RDR. If saHP1_SRF_MAX indicates that a maximum reading exists, no sensor threshold may be set
greater than the Max value. If SAHPI_SRF_MIN indicates that a minimum reading exists, no sensor threshold

may be set less than the Min value.

Thresholds are required to be set progressively in-order, so that Upper Critical >= Upper Major >= Upper
Minor >= Lower Minor >= Lower Major >= Lower Critical.

HPI Specification SAI-HPI-B.01.01 83

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Service Avallabl_llty”" Hardware Platform Interface aBERVICE
Resource Functions o i

7.2.8 saHpiSensorTypeGet()

This function retrieves the sensor type and event category for the specified sensor.

Prototype

SaErrorT SAHPI_API1 saHpiSensorTypeGet (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiSensorNumT SensorNum,
SAHP1_OUT SaHpiSensorTypeT *Type,
SAHP1_OUT SaHpiEventCategoryT *Category

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld — [in] Resource identified for this operation.

SensorNum — [in] Sensor number for which the type is being retrieved.

Type —[out] Pointer to returned enumerated sensor type for the specified sensor.

Category — [out] Pointer to location to receive the returned sensor event category.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support sensors, as indicated by
SAHPI_CAPABILITY_SENSOR in the resource's RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the sensor is not present.

SA_ERR_HPI_INVALID_PARAMS isreturned if the:
e TypepointerispassedinasNULL.
e Category pointer ispassed in as NULL.

Remarks

None.

84 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Resource Functions

7.2.9 saHpiSensorEnableGet()

This function returns the current sensor enable status for an addressed sensor.

Prototype

SaErrorT SAHPI_API1 saHpiSensorEnableGet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiSensorNumT SensorNum,
SAHP1_OUT SaHpiBoolT *SensorEnabled

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

SensorNum — [in] Sensor number for which the sensor enable status is being requested.
SensorEnabled — [out] Pointer to the location to store the sensor enable status.

Return Value

SA_OK isreturned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support sensors, as indicated by
SAHPI_CAPABILITY_SENSOR in the resource's RPT entry.

SA_ERR_HPI_INVALID_PARAMS is returned when the SensorEnabled pointer is set to NULL.
SA_ERR_HPI_NOT_PRESENT isreturned if the sensor is not present.

Remarks

The SaHpiBool T value pointed to by the SensorEnabled parameter will be set to Trueif the sensor is
enabled, or Falseif the sensor is disabled.

HPI Specification SAI-HPI-B.01.01 85

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Service Avallabl_llty”" Hardware Platform Interface aBERVICE
Resource Functions o i

7.2.10 saHpiSensorEnableSet()

This function sets the sensor enable status for an addressed sensor.

Prototype

SaErrorT SAHPI_API1 saHpiSensorEnableSet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiSensorNumT SensorNum,
SAHP1_IN SaHpiBoolT SensorEnabled

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

SensorNum — [in] Sensor number for which the sensor enable status is being set.

SensorEnabled — [in] Sensor enable status to be set for the sensor.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support sensors, as indicated by
SAHPI_CAPABILITY_SENSOR in the resource's RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the sensor is not present.

SA_ERR_HPI_READ_ONLY isreturned if the sensor does not support changing the enable status (i.e., the
EnableCtrl field in the Sensor RDR is set to False).

Remarks

If asensor is disabled, any callsto saHpiSensorReadingGet() for that sensor will return an error, and
no events will be generated for the sensor.

Calling saHpiSensorEnableSet() with a SensorEnabled parameter of True will enable the sensor. A
SensorEnabled parameter of False will disable the sensor.

If the sensor enable status changes as the result of this function call, an event will be generated.

86 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Resource Functions

7.2.11 saHpiSensorEventEnableGet()

This function returns the current sensor event enable status for an addressed sensor.

Prototype
SaErrorT SAHPI_API1 saHpiSensorEventEnableGet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiSensorNumT SensorNum,
SAHP1_OUT SaHpiBoolT *SensorEventsEnabled
);
Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

SensorNum — [in] Sensor number for which the sensor event enable status is being requested.

Sensor EventsEnabled — [out] Pointer to the location to store the sensor event enable status.

Return Value

SA_OK isreturned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support sensors, as indicated by
SAHPI_CAPABILITY_SENSOR in the resource's RPT entry.

SA_ERR_HPI_INVALID_PARAMS is returned when the Sensor EventsEnabled pointer is set to NULL.
SA_ERR_HPI_NOT_PRESENT isreturned if the sensor is not present.

Remarks

The SaHpiBool T value pointed to by the SensorEventsEnabled parameter will be set to Trueif event
generation for the sensor is enabled, or False if event generation for the sensor is disabled.

HPI Specification SAI-HPI-B.01.01 87

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.2.12 saHpiSensorEventEnableSet()

This function sets the sensor event enable status for an addressed sensor.

Prototype
SaErrorT SAHPI_API1 saHpiSensorEventEnableSet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiSensorNumT SensorNum,
SAHP1_IN SaHpiBoolT SensorEventsEnabled
);
Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

SensorNum — [in] Sensor number for which the sensor enable status is being set.

Sensor EventsEnabled —[in] Sensor event enable status to be set for the sensor.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support sensors, as indicated by
SAHPI_CAPABILITY_SENSOR in the resource's RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the sensor is not present.

SA_ERR_HPI_READ_ONLY isreturned if the sensor does not support changing the event enable status (i.e., the
EventCtrl field in the Sensor RDR is set to SAHPI_SEC_READ_ONLY).

Remarks

If event generation for a sensor is disabled, no events will be generated as aresult of the assertion or
deassertion of any event state, regardless of the setting of the assert or deassert event masks for the sensor. |If
event generation for a sensor is enabled, events will be generated when event states are asserted or deasserted,
according to the settings of the assert and deassert event masks for the sensor. Event states may still be read for
asensor even if event generation is disabled, by using the saHpiSensorReadingGet() function.

Calling saHpiSensorEventEnableSet () with a Sensor EventsEnabled parameter of True will enable
event generation for the sensor. A Sensor EventsEnabled parameter of False will disable event generation for
the sensor.

If the sensor event enabled status changes as a result of this function call, an event will be generated.

88 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.2.13 saHpiSensorEventMasksGet()

This function returns the assert and deassert event masks for a sensor.

Prototype

SaErrorT SAHPI_API saHpiSensorEventMasksGet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiSensorNumT SensorNum,
SAHP1_INOUT SaHpiEventStateT *AssertEventMask,
SAHPI_INOUT SaHpiEventStateT *DeassertEventMask

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
SensorNum — [in] Sensor number for which the event enable configuration is being requested.

AssertEventMask — [in/out] Pointer to location to store sensor assert event mask. If NULL, assert event mask is
not returned.

DeassertEventMask — [in/out] Pointer to location to store sensor deassert event mask. If NULL, deassert event
mask is not returned.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support sensors, as indicated by
SAHPI_CAPABILITY_SENSOR in the resource's RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the sensor is not present.

Remarks

Two bit-mask values are returned by the saHp i SensorEventMasksGet() function; one for the sensor
assert event mask, and one for the sensor deassert event mask. A bit set to '1' in the AssertEventMask value
indicates that an event will be generated by the sensor when the corresponding event state for that sensor
changes from deasserted to asserted. A bit set to '1' in the DeassertEventMask value indicates that an event will
be generated by the sensor when the corresponding event state for that sensor changes from asserted to
deasserted.

Eventswill only be generated by the sensor if the appropriate AssertEventMask or DeassertEventMask bit is
Set, sensor events are enabled, and the sensor is enabled.

For sensors hosted by resources that have the SAHPI_CAPABILITY_EVT_DEASSERTS flag set in its RPT entry, the
AssertEventMask and the DeassertEventMask values will always be the same.

HPI Specification SAI-HPI-B.01.01 89

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.2.14 saHpiSensorEventMasksSet()

This function provides the ability to change the settings of the sensor assert and deassert event masks. Two
parameters contain bit-mask values indicating which bits in the sensor assert and deassert event masks should
be updated. In addition, there is an Action parameter.

Prototype

SaErrorT SAHPI_API saHpiSensorEventMasksSet (
SAHPI1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiSensorNumT SensorNum,
SAHP1_IN SaHpiSensorEventMaskActionT Action,
SAHPI_IN SaHpiEventStateT AssertEventMask,
SAHPI_IN SaHpiEventStateT DeassertEventMask

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
SensorNum —[in] Sensor number for which the event enable configuration is being set.

Action — [in] Enumerated value describing what change should be made to the sensor event masks:

e SAHPI_SENS_ADD_EVENTS_TO_MASKS —for each bit set in the AssertEventMask and DeassertEventMask
parameters, set the corresponding bit in the sensor’ s assert and deassert event masks, respectively.

e SAHPI_SENS_REMOVE_EVENTS_FROM_MASKS — for each bit set in the AssertEventMask and
DeassertEventMask parameters, clear the corresponding bit in the sensor’ s assert and deassert event
masks, respectively.

AssertEventMask — [in] Bit mask or special value indicating which bits in the sensor’ s assert event mask should
be set or cleared. (But see Remarks concerning resources with the SAHPI_EVT_DEASSERTS_CAPABILITY flag set.)

DeassertEventMask —[in] Bit mask or specia value indicating which bitsin the sensor’ s deassert event mask
should be set or cleared. (But see Remarks concerning resources with the SAHPI_EVT_DEASSERTS_CAPABILITY
flag set.)

Return Value

SA_OK isreturned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support sensors, as indicated by
SAHPI_CAPABILITY_SENSOR in the resource's RPT entry.

SA_ERR_HPI_INVALID_DATA is returned if the Action parameter is SAHPI_SENS_ADD_EVENTS_TO_MASKS, and
either of the AssertEventMask or DeassertEventMask parameters include a bit for an event state that is not
supported by the sensor.

SA_ERR_HPI_INVALID_PARAMS isreturned if the Action parameter is out of range.

SA_ERR_HPI_NOT_PRESENT isreturned if the sensor is not present.

SA_ERR_HPI_READ_ONLY isreturned if the sensor does not support updating the assert and deassert event masks
(i.e., the EventCtrl field in the Sensor RDR is set t0 SAHPI_SEC_READ_ONLY_MASKS Of SAHP1_SEC_READ_ONLY).

90 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Resource Functions

Remarks

The bitsin the sensor assert and deassert event masks that correspond to ‘1’ bitsin the bit-mask parameters will
be set or cleared, as indicated by the Action parameter. The bits in the sensor assert and deassert event masks
corresponding to ‘0" bitsin the bit-mask parameters will be unchanged.

Assuming that a sensor is enabled and event generation for the sensor is enabled, then for each bit set in the
sensor’ s assert event mask, an event will be generated when the sensor’ s corresponding event state changes
from deasserted to asserted. Similarly, for each hit set in the sensor’s deassert event mask, an event will be
generated when the sensor’ s corresponding event state changes from asserted to deasserted.

For sensors hosted by a resource that has the SAHP1_CAPABILITY_EVT_DEASSERTS flag set in its RPT entry, the
assert and deassert event masks cannot be independently configured. When
saHpiSensorEventMasksSet() iscalled for sensorsin aresource with this capability, the
DeassertEventMask parameter is ignored, and the AssertEventMask parameter is used to determine which bits
to set or clear in both the assert event mask and deassert event mask for the sensor.

The AssertEventMask or DeassertEventMask parameter may be set to the special value,
SAHPI_ALL_EVENT_STATES, indicating that all event states supported by the sensor should be added to or
removed from, the corresponding sensor event mask.

If the sensor assert and/or deassert event masks change as a result of this function call, an event will be
generated.

HPI Specification SAI-HPI-B.01.01 91

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.3 Controls

These functions are valid for resources, which have the Control capability (SAHPI1_CAPABILITY_CONTROL) Set in their
corresponding RPT entries.

In HPI, controls have an associated state and mode. A control’s state reflects how the control is currently set. For
instance, an LED that was illuminated would reflect a state of on (SAHP1_CTRL_STATE_ON).

A control’s mode describes how the control is managed. The control may be managed automatically by the
implementation (auto mode). Or it may be managed by an HPI User (manual mode). Some controls allow their modes
to be changed, allowing an HPI User to determine if they will manage the control, or relinquish the management to the
implementation. But, other controls do not allow the mode to be changed. These static-mode controls are indicated
with the ReadOnly flag set as part of the default control mode.

92 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.3.1 saHpiControlTypeGet()

This function retrieves the control type of acontrol object.

Prototype

SaErrorT SAHPI_API1 saHpiControlTypeGet (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiCtrINumT CtriNum,
SAHP1_OUT SaHpiCtriTypeT *Type

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
CtrINum —[in] Control number for which the typeis being retrieved.

Type —[out] Pointer to SaHpiCtr1TypeT variable to receive the enumerated control type for the specified
control.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support controls, asindicated by
SAHPI_CAPABILITY_CONTROL in the resource's RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the control is not present.
SA_ERR_HPI_INVALID_PARAMS isreturned if the Type pointer is passed in as NULL.

Remarks

The Type parameter must point to avariable of type SaHpiCtr 1 TypeT. Upon successful completion, the
enumerated control typeis returned in the variable pointed to by Type.

HPI Specification SAI-HPI-B.01.01 93

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.3.2 saHpiControlGet()

This function retrieves the current state and mode of a control object.

Prototype

SaErrorT SAHPI_API saHpiControlGet (
SAHPI_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiCtrINumT CtriINum,
SAHP1_OUT SaHpiCtriIModeT *CtriIMode,
SAHPI_INOUT SaHpiCtriStateT *CtriState

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld — [in] Resource identified for this operation.

CtrINum —[in] Control number for which the state and mode are being retrieved.

CtrIMode — [out] Pointer to the mode of the control. 1f NULL, the control’s mode will not be returned.
CtrlState — [in/out] Pointer to a control data structure into which the current control state will be placed. For
text controls, the line number to read is passed in via CtrlSate-> StateUnion. Text.Line. If NULL, the control’s
state will not be returned.

Return Value
SA_OK isreturned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_INVALID_cMD isreturned if the control isawrite-only control, asindicated by the WriteOnly flag
in the control’s RDR (see remarks).

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support controls, as indicated by the
SAHPI_CAPABILITY_CONTROL in the resource’s RPT entry.

SA_ERR_HPI_INVALID_DATA is returned if the addressed control is atext control, and the line number passed in
CtrISate->SateUnion. Text.Line does not exist in the control and is not SAHPI_TLN_ALL_LINES.

SA_ERR_HPI_NOT_PRESENT isreturned if the control is not present.

Remarks

Note that the CtrlState parameter is both an input and an output parameter for this function. Thisis necessary
to support line number inputs for text controls, as discussed below.

In some cases, the state of a control may be set, but the corresponding state cannot be read at alater time. Such
controls are delineated with the WriteOnly flag in the Control’s RDR.

Note that text controls are uniquein that they have a state associated with each line of the control — the state
being the text on that line. The line number to be read is passed in to saHpiControlGet() via
CtrlState-> StateUnion.Text.Line; the contents of that line of the control will be returned in

CirIState-> StateUnion.Text. Text. Thefirst line of the text control isline number “1”.

94

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Resource Functions

If the line number passed in isSAHPI_TLN_ALL_LINES, then saHpiControlGet() will return the entire text
of the control, or as much of it aswill fitin asingle SaHpi TextBufferT, in

CtrIState-> SateUnion.Text. Text. This value will consist of the text of all the lines concatenated, using the
maximum number of characters for each line (no trimming of trailing blanks).

Note that depending on the data type and language, the text may be encoded in 2-byte Unicode, which requires
two bytes of data per character.

Note that the number of lines and columns in atext control can be obtained from the control’s Resource Data
Record.

Write-only controls alow the control’s state to be set, but the control state cannot be subsequently read. Such
controls are indicated in the RDR, when the WriteOnly flag is set. SA_ERR_HPI_INVALID_CMD is returned when
caling this function for awrite-only control.

Itislega for both the CtrIMode parameter and the CtrlState parameter to be NULL. In this case, no datais
returned other than the return code.

HPI Specification SAI-HPI-B.01.01 95

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Resource Functions

7.3.3 saHpiControlSet()

Thisfunction is used for setting the state and/or mode of the specified control object.

Prototype

SaErrorT SAHPI_API saHpiControlSet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiCtrINumT CtriINum,
SAHP1_IN SaHpiCtriModeT CtriMode,
SAHPI1_IN SaHpiCtriStateT *CtriState

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

CtrINum —[in] Control number for which the state and/or mode is being set.

CtrIMode — [in] The mode to set on the control.

CtrIState — [in] Pointer to a control state data structure holding the state to be set.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support controls, asindicated by the
SAHPI1_CAPABILITY_CONTROL in the resource’ s RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the control is not present.

SA_ERR_HPI_INVALID_DATA isreturned when the:
e CtrIState->Typefield is not the correct type for the control identified by the CtrINum parameter.
e CtrIState->SateUnion.Analog is out of range of the control record’s analog Min and Max values.

e CtrlState->SateUnion.Text. Text.DataLength, combined with the Ctrl Sate-> StateUnion.Text.Line,
overflows the remaining text control space.

e CtrIState->SateUnion.Text. Text.DataTypeis not set to the DataType specified in the RDR.

e DataType specified in the RDR iS SAHPI_TL_TYPE_UNICODE OF SAHPI_TL_TYPE_TEXT and
CirIState-> StateUnion. Text. Text.Language is not set to the Language specified in the RDR.

e OEM control dataisinvalid (see remarks below).

SA_ERR_HPI_INVALID_PARAMS isreturned if the:
e CtrIMode isnot one of the valid enumerated values for this type.
e CtrIMode parameter is not SAHP1_CTRL_MODE_AUTO and the CtrlState pointer is passed in as NULL.
e CtrlState->SateUnion.Digital is not one of the valid enumerated values for this type.

e CtrlState->SateUnion.Stream.SreamLength is bigger than SAHPI_CTRL_MAX_STREAM_LENGTH.

e SaHpiTextBufferT structure passed as CtrlSate->StateUnion. Text. Text contains text characters that

are not allowed according to the value of CtrlSate-> StateUnion.Text. Text.DataType.

96

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

SE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Resource Functions

SA_ERR_HPI_INVALID_REQUEST is returned when SAHPI_CTRL_STATE_PULSE_ON isissued to adigital control,
which isON (in either manual or auto mode). It isalso returned when SAHPI_CTRL_STATE_PULSE_OFF isissued
to adigita control, which is OFF (in either manual or auto mode).

SA_ERR_HPI_READ_ONLY is returned when attempting to change the mode of a control with a read-only mode.

Remarks

When the mode is set to SAHPI_CTRL_MODE_AUTO, the state input is ignored. Ignored state inputs are not checked
by the implementation.

The CtrlSate parameter must be of the correct type for the specified control.

If the CtrIMode parameter is set to SAHPI_CTRL_MODE_AUTO, then the CtrlState parameter is not evaluated, and
may be set to any value by an HPI User, including aNULL pointer. Text controls include aline number and a
line of text in the CtrlState parameter, allowing update of just asingle line of atext control. Thefirst line of the
text control isline number “1”. If lessthan afull line of datais written, the control will clear al spaces beyond
those written on the line. Thus writing a zero-length string will clear the addressed line. It is also possible to
include more characters in the text passed in the CtrlState structure than will fit on oneling; in this case, the
control will wrap to the next line (still clearing the trailing characters on the last line written). Thus, there are
two ways to write multiple lines to atext control: (a) call saHpiControlSet() repeatedly for each line, or
(b) call saHpiControlSet() once and send more characters than will fit on one line. An HPI User should
not assume any “cursor positioning” characters are available to use, but rather should always write full lines
and alow “wrapping” to occur. When calling saHpiControlSet() for atext control, an HPl User may set
the line number to SAHPI_TLN_ALL_LINES; in this case, the entire control will be cleared, and the datawill be
written starting on line 1. (Thisis different from simply writing at line 1, which only alters the lines written to.)

This feature may be used to clear the entire control, which can be accomplished by setting:

CtriState->StateUnion.Text.Line = SAHPI_TLN_ALL_LINES;
CtriState->StateUnion.Text.Text.DataLength = 0O;

Note that the number of lines and columns in atext control can be obtained from the control’s RDR.

The Manufacturerld (Mld) field of an OEM control isignored by the implementation when calling
saHpiControlSet().

On an OEM contral, it is up to the implementation to determine what isinvalid data, and to return the specified
error code.

HPI Specification SAI-HPI-B.01.01 97

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.4 Inventory Data Repositories

Entity inventory datais descriptive information associated with a specific entity. Thisinformation may include serial
numbers, part numbers, manufacturing dates, etc. Theinformation istypically stored in the form of text stringsand is
grouped into categories such as Board Information, Product Information, etc. Inventory datais also extensible
allowing storage of OEM and custom fields.

Entity inventory dataistypically stored in some form of non-volatile storage, providing static data across system
reboots and power cycles. However, there is no requirement for an HPI implementation to provide non-volatile
storage.

A resource providing entity inventory data access will have the Inventory Data capability
(SAHP1_CAPABILITY_INVENTORY_DATA) set in its corresponding RPT entry. Resources that support the Inventory Data
capability contain one or more Inventory Data Repositories. An “Inventory Data Repository Record” in the RDR
repository of the resource can be used to identify an available Inventory Data Repository.

Figure 8. IDR Association with Entity

Resource Entity Inventory Data

Entity O

Inventory Data

Repository

Entity 1

Inventory Data
Repository

Each resource that supports the Inventory Data capability must have an inventory data repository for the entity
identified in the RPT entry for the resource (which will be the only, or the “primary” entity managed by this resource).
The Inventory Data Repository for this entity must use the IDR identifier of SAHP1_DEFAULT_INVENTORY_ID.
Additional entities managed by the resource may have their own Inventory Data Repositories with other identifiers.

A category of inventory datais defined as an Inventory Data Area and a collection of Inventory Data Areas is defined
as an Inventory Data Repository. An Inventory Data Repository is associated with asingle entity asit contains
information that can only be related to asingle entity like a serial number.

An Inventory Data Repository (IDR) is composed of a Repository Information Header and one or more Inventory Data
Areas. An Inventory Data Areais composed of an Area Header and one or more Inventory Data Fields.

An Inventory Data Repository may contain multiple areas of the same areatype, like“OEM” areas. Inventory Data
Areas may contain multiple fields of the same field type, like “ custom” fields.

98 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Resource Functions

Inventory Data Area (IDA) identifiers are unique within a given IDR, meaning the Areald will refer to only one area
within agiven IDR. Likewise, an Inventory Data Field identifier is unique within a given IDA, meaning the Fieldid
will refer to only one field within agiven IDA. A Fieldld isonly unique within agiven IDA, and may represent
different fields within different Inventory Data Aress.

Figure 9. Depicted Layout of IDR

Repository Information Header Inventory Data Area Header
Inventory Data Inventory Data Area Inventory Data Field
Repository "Internal” "Manufacturer Name"

Inventory Data Field
"Product Name"

Inventory Data Area
"Board" Inventory Data Field
"Product Version"

Inventory Data Field
Inventory Data Area "Model Number"
"Product”

Inventory Data Field
"Serial Number"

Inventory Data Area Inventory Data Field
"Chassis" "Part Number"

Inventory Data Field

"Asset Tag"
Inventory Data Area
"OEM" Inventory Data Field
"Custom"

Inventory Data Field
Inventory Data Area "Custom"
"OEM"

Functions are provided to retrieve and modify each element of an Inventory Data Repository. The“Get” functions
allow management applications to read the Inventory Data Repository at the element level, and the “Add, Set, and
Delete” functions allow updates of the individual repository elements.

Thetypical usageisto first locate the existence of the Inventory Data Repository by locating the Inventory Data
Repository Record in the resource RDR Repository. Using the Idrid obtained from the Inventory Data Repository
Record, retrieve the Inventory Data Repository Information, which will return the number of Inventory Data Areas
contained within the Repository. Next retrieve the Inventory Data Area Headers for each Inventory Data Areain the
Repository. The Area Header will contain the Areatype, and the number of Inventory Data Fields contained with the
area. Finally, retrieve the Inventory Data Fields contained within each Inventory Data Area. The Inventory Data Fields
will identify the field type and include the field datain a standard SaHp i TextBufferT data structure. Areascan be
added or removed from agiven IDR. Fields can be added, modified, and removed from a given Area.

Modification of an IDR may be limited by the underlying storage implementation. An IDR implementation can be
fixed in size and may have limited room or no room for extendibility. An DR implementation can be read-only or
have elements, which are read-only such as Areas or Fields. A fixed size IDR having limited extendibility may not
allow additions of Areas and Fields. When an attempt is made to add an Area or Field, an appropriate error codeis
returned. An IDR with read-only elements does not allow additions, deletions or modifications of those elements. The
read-only attribute may apply to afield, area, or the entire repository. When an attempt is made to modify aread-only
element, an appropriate error code is returned.

HPI Specification SAI-HPI-B.01.01 99

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Service Avallabl_llty”" Hardware Platform Interface aBERVICE
Resource Functions o i

The dataformat of Inventory Data Fields is implementation-specific. Specific implementations should provide
documentation detailing the appropriate data formats for date and other specific fields. When an attempt is made to
add or modify afield with incorrectly formatted data, an appropriate error code is returned.

100 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY .
raea Resource Functions
7.4.1 saHpildrinfoGet()

This function returns the Inventory Data Repository information including the number of areas contained
within the IDR and the update counter. The Inventory Data Repository is associated with a specific entity.

Prototype

SaErrorT SAHPI_API1 saHpildrinfoGet(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpildridT Idrid,
SAHP1_OUT SaHpildrinfoT *1drinfo

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Idrid —[in] Identifier for the Inventory Data Repository.

Idrinfo —[out] Pointer to the information describing the requested I nventory Data Repository.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support an inventory data repository, as indicated
by SAHP1_CAPABILITY_INVENTORY_DATA in the resource's RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the IDR is not present.
SA_ERR_HPI_INVALID_PARAMS isreturned if the Idrinfo pointer is passed in as NULL.

Remarks

The update counter provides a means for insuring that no additions or changes are missed when retrieving the
IDR data. In order to use this feature, an HPI User should invoke the saHpi IdrInfoGet(), and retrieve
the update counter value before retrieving the first Area. After retrieving all Areas and Fields of the IDR, an
HPI User should again invoke the saHp i Idr InfoGet () to get the update counter value. If the update
counter value has not been incremented, no modification or additions were made to the IDR during data
retrieval.

HPI Specification SAI-HPI-B.01.01 101

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.4.2 saHpildrAreaHeaderGet()

This function returns the Inventory Data Area header information for a specific area associated with a particular
Inventory Data Repository.

Prototype

SaErrorT SAHPI_API1 saHpildrAreaHeaderGet(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpildridT 1drid,
SAHPI1_IN SaHpildrAreaTypeT AreaType,
SAHPI_IN SaHpiEntryldT Areald,
SAHPI1_OUT SaHpiEntryldT *NextAreald,
SAHPI1_OUT SaHpildrAreaHeaderT *Header

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Idrid —[in] Identifier for the Inventory Data Repository.

AreaType—[in] Type of Inventory Data Area.

Areald —[in] Identifier of Area entry to retrieve from the IDR. Reserved Areald values:
e SAHPI_FIRST_ENTRY Get first entry.

e SAHPI_LAST_ENTRY Reserved as adelimiter for end of list. Not avalid Areald.
NextAreald — [out] Pointer to location to store the Areald of next area of the requested type within the IDR.
Header —[out] Pointer to Inventory Data Area Header into which the header information will be placed.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_CAPABILITY isreturned if the resource does not support an inventory data repository, as indicated
by SAHP1_CAPABILITY_INVENTORY_DATA in the resource's RPT entry.
SA_ERR_HPI1_NOT_PRESENT isreturned if the:
e |IDRisnot present.

e AreaType parameter is set to SAHPI_IDR_AREATYPE_UNSPECIFIED, and the area specified by the Areald
parameter does not exist in the IDR.

e AreaType parameter is set to a specific areatype, but an area matching both the Areald parameter and
AreaType parameter does not exist.
SA_ERR_HPI_INVALID_PARAMS isreturned if:
e AreaTypeisnot one of the valid enumerated values for this type.
e TheArealdisaninvalid reserved value such as SAHPI_LAST_ENTRY.
e The NextAreald pointer ispassed in as NULL.
e TheHeader pointer ispassed in asNULL.

102 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY .
rraw Resource Functions

Remarks

Thisfunction allowsretrieval of an Inventory Data Area Header by one of two ways:. by Areald regardless of
type or by AreaType and Areald.

Toretrieve all areas contained within an IDR, set the AreaType parameter to
SAHPI_IDR_AREATYPE_UNSPECIFIED, and set the Areald parameter to SAHP1_FIRST_ENTRY for thefirst call. For
each subsequent call, set the Areald parameter to the value returned in the NextAreald parameter. Continue
calling this function until the NextAreald parameter contains the value SAHP1_LAST_ENTRY.

Toretrieve areas of specific type within an IDR, set the AreaType parameter to avalid AreaType enumeration.
Use the Areald parameter in the same manner described above to retrieve all areas of the specified type. Set
the Areald parameter to SAHPI_FIRST_ENTRY to retrieve the first area of that type. Usethe value returned in
NextAreald to retrieve the remaining areas of that type until SAHPI_LAST_ENTRY is returned.

HPI Specification SAI-HPI-B.01.01 103

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.4.3 saHpildrAreaAdd()

Thisfunction is used to add an Areato the specified Inventory Data Repository.

Prototype

SaErrorT SAHPI_API1 saHpildrAreaAdd(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI1_IN SaHpildridT 1drid,
SAHPI1_IN SaHpildrAreaTypeT AreaType,
SAHP1_OUT SaHpiEntryldT *Areald

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Idrid —[in] Identifier for the Inventory Data Repository.

AreaType—[in] Type of Areato add.

Areald-[out] Pointer to location to store the Areald of the newly created area.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support an inventory data repository, as indicated
by SAHP1_CAPABILITY_INVENTORY_DATA in the resource's RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the IDR is not present.
SA_ERR_HPI_INVALID_DATA is returned when attempting to add an area with an AreaType of
SAHPI_IDR_AREATYPE_UNSPECIFIED or when adding an area that does not meet the i mplementation-specific

restrictions.

SA_ERR_HPI_OUT_OF_SPACE is returned if the IDR does not have enough free space to allow the addition of the
area.

SA_ERR_HPI1_INVALID_PARAMS isreturned if the:
e Areald pointer ispassed in asNULL.

e AreaTypeisnot one of the valid enumerated values for this type.
SA_ERR_HPI_READ_ONLY isreturned if the IDR is read-only and does not allow the addition of the area.

Remarks

On successful completion, the Areald parameter will contain the Areald of the newly created area.

On successful completion, the ReadOnly element in the new Area s header will always be False.

104 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

ERVICE Service Availability™ Hardware Platform Interface
ABILITY .
. Resource Functions

SAHPI_IDR_AREATYPE_UNSPECIFIED isnot avalid areatype, and should not be used with this function. If
SAHPI_IDR_AREATYPE_UNSPECIFIED is specified as the areatype, an error code of SA_ERR_HPI_INVALID_DATA iS
returned. Thisareatypeisonly valid when used with the saHpi IdrAreaHeaderGet () function to
retrieve areas of an unspecified type.

Some implementations may restrict the types of areas that may be added. These restrictions should be
documented. SA_ERR_HPI_INVALID_DATA is returned when attempting to add an invalid area type.

HPI Specification SAI-HPI-B.01.01 105

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.4.4 saHpildrAreaDelete()

Thisfunction is used to delete an Inventory Data Area, including the Area header and all fields contained with
the area, from a particular Inventory Data Repository.

Prototype

SaErrorT SAHPI_API saHpildrAreaDelete(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpildridT Idrid,
SAHPI1_IN SaHpiEntryldT Areald

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Idrid —[in] Identifier for the Inventory Data Repository.

Areald —[in] Identifier of Areaentry to delete from the IDR.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support an inventory data repository, as indicated
by SAHP1_CAPABILITY_INVENTORY_DATA in the resource's RPT entry.

SA_ERR_HP1_NOT_PRESENT isreturned if the:
e |IDRisnot present.

e Areaidentified by the Areald parameter does not exist within the IDR.

SA_ERR_HPI_INVALID_PARAMS isreturned when the Areald is an invalid reserved value such as
SAHPI_LAST_ENTRY.

SA_ERR_HP1_READ_ONLY isreturned if the:
e |DA isread-only and therefore cannot be deleted.
e |DA contains aread-only Field and therefore cannot be deleted.

e |IDRisread-only asdeletions are not permitted for an areafrom aread-only IDR.

Remarks

Deleting an Inventory Data Area also deletes all fields contained within the area.

In some implementations, certain Areas are intrinsically read-only. The ReadOnly flag, in the area header,
indicatesif the Area is read-only.

If the Inventory Data Areais not read-only, but contains a Field that is read-only, the Area cannot be deleted.
An attempt to delete an Area that contains aread-only Field will return an error.

106 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.4.5 saHpildrFieldGet()

This function returns the Inventory Data Field information from a particular Inventory Data Area and
Repository.

Prototype

SaErrorT SAHPI_API saHpildrFieldGet(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI1_IN SaHpildridT 1drid,
SAHPI1_IN SaHpiEntryldT Areald,
SAHPI_IN SaHpildrFieldTypeT FieldType,
SAHPI_IN SaHpiEntryldT Fieldld,
SAHPI_OUT SaHpiEntryldT *NextFieldld,
SAHPI1_OUT SaHpildrFieldT *Field

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Idrid —[in] Identifier for the Inventory Data Repository.

Areald —[in] Areaidentifier for the IDA.

FieldType—[in] Type of Inventory Data Field.

Fieldld —[in] Identifier of Field to retrieve from the IDA. Reserved Fieldld values:
e SAHPI_FIRST_ENTRY Get first entry.

e SAHPI_LAST_ENTRY Reserved as adelimiter for end of list. Not avalid Fieldld.
NextFieldld — [out] Pointer to location to store the Fieldld of next field of the requested type in the IDA.
Field —[out] Pointer to Inventory Data Field into which the field information will be placed.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support an inventory data repository, as indicated
by SAHP1_CAPABILITY_INVENTORY_DATA in the resource's RPT entry.

SA_ERR_HP1_NOT_PRESENT isreturned if the:
e |IDRisnot present.
e Areaidentified by Areald is not present.

e FieldType parameter is set to SAHPI_IDR_FIELDTYPE_UNSPECIFIED, and the field specified by the Fieldid
parameter does not exist in the IDA.

e FieldType parameter is set to a specific field type, but afield matching both the Fieldld parameter and
FieldType parameter does not exist.

SA_ERR_HPI_INVALID_PARAMS isreturned if:

e FieldTypeisnot one of the valid enumerated values for this type.

HPI Specification SAI-HPI-B.01.01 107

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface N v

Resource Functions

e TheArealdor Fiedidisaninvalid reserved value such as SAHP1_LAST_ENTRY.
e The NextFieldld pointer is passed in as NULL.
e TheField pointer ispassed in as NULL.

Remarks

Thisfunction allowsretrieval of an Inventory Data Field by one of two ways: by Fieldld regardless of type or
by FieldType and Fieldld.

Toretrieve all fields contained within an IDA, set the FieldType parameter to
SAHPI_IDR_FIELDTYPE_UNSPECIFIED, and set the Fieldld parameter to SAHPI_FIRST_ENTRY for thefirst call.
For each subsequent call, set the Fieldld parameter to the value returned in the NextFieldld parameter.
Continue calling this function until the NextFieldld parameter contains the value SAHP1_LAST_ENTRY.

Toretrieve fields of a specific type within an IDA, set the FieldType parameter to avalid Field type
enumeration. Usethe Fieldld parameter in the same manner described above to retrieve all fields of the
specified type. Set the Fieldld parameter to SAHPI_FIRST_ENTRY to retrieve the first field of that type. Usethe
value returned in NextFieldld to retrieve the remaining fields of that type until SAHPI_LAST_ENTRY iSreturned.

108

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY .
raea Resource Functions
7.4.6 saHpildrFieldAdd()

Thisfunction is used to add afield to the specified Inventory Data Area with a specific Inventory Data
Repository.

Prototype

SaErrorT SAHPI_API saHpildrFieldAdd(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpildridT 1drid,
SAHPI_INOUT SaHpildrFieldT *Field

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Idrid —[in] Identifier for the Inventory Data Repository.

Field—[in/out] Pointer to Inventory Data Field, which contains the new field information to add to the IDA.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support an inventory data repository, as indicated
by SAHP1_CAPABILITY_INVENTORY_DATA in the resource's RPT entry.

SA_ERR_HP1_NOT_PRESENT isreturned if the:
e |IDRisnot present.
e Areaidentified by Field—>Areald does not exist within the IDR.

SA_ERR_HPI_INVALID_DATA isreturned if the Field datais incorrectly formatted or does not meet the
restrictions for the implementation.

SA_ERR_HPI_OUT_OF_SPACE is returned if the IDR does not have enough free space to allow the addition of the
field.

SA_ERR_HP1_READ_ONLY isreturned if the:
e Areaidentified by Field—Areald isread-only and does not allow modification to its fields.
e |IDRisidentified by Idrld, isread-only, and does not allow modification to itsfields.

SA_ERR_HPI1_INVALID_PARAMS isreturned if the:
e TheField typeis not one of the valid field type enumerated values.
e Fieldtype, Field—>Type, is set to SAHPI__IDR_FIELDTYPE_UNSPECIFIED.
e SaHpiTextBufferT structure passed as part of the Field parameter is not valid. Thisoccurs when:
= The DataTypeis not one of the enumerated values for that type, or

= Thedatafield contains charactersthat are not legal according to the value of DataType, or

HPI Specification SAI-HPI-B.01.01 109

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY

Resource Functions Aot

= ThelLanguageis not one of the enumerated values for that type when the DataType is
SAHPI_TL_TYPE_UNICODE Or SAHPI_TL_TYPE_TEXT.

e Field pointer ispassed in as NULL.

Remarks

The Fieldld element within the Field parameter is not used by this function. Instead, on successful completion,
the Fieldld field is set to the new value associated with the added Field.

The ReadOnly element in the Field parameter is not used by this function. On successful completion, the
ReadOnly element in the new Field will always be False.

Addition of aread-only Inventory Data Field is not alowed; therefore the ReadOnly element in the
SaHpildrFieldT parameter isignored.

SAHPI_IDR_FIELDTYPE_UNSPECIFIED isnot avalid field type, and should not be used with thisfunction. If
SAHPI_IDR_FIELDTYPE_UNSPECIFIED is specified as the field type, an error code of SA_ERR_HP1_INVALID_DATA
isreturned. Thisfield typeisonly valid when used with the saHpi ldrFieldGet() function to retrieve
fields of an unspecified type.

Some implementations have restrictions on what fields are valid in specific areas and/or the data format of
some fields. These restrictions should be documented. SA_ERR_HP1_INVALID_DATA isreturned when the field
type or field data does not meet the implementation-specific restrictions.

The Areald element within the Field parameter identifies the specific IDA into which the new field is added.

110

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.4.7 saHpildrFieldSet()

Thisfunction is used to update an Inventory Data Field for a particular Inventory Data Area and Repository.

Prototype

SaErrorT SAHPI_API saHpildrFieldSet(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI1_IN SaHpildridT 1drid,
SAHPI1_IN SaHpildrFieldT *Field

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Idrid —[in] Identifier for the Inventory Data Repository.

Field —[in] Pointer to Inventory Data Field, which contains the updated field information.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support an inventory data repository, as indicated
by SAHP1_CAPABILITY_INVENTORY_DATA in the resource's RPT entry.

SA_ERR_HP1_NOT_PRESENT isreturned if the:
e |IDRisnot present.

e Areaidentified by Field—>Areald does not exist within the IDR or if the Field does not exist within the
Inventory Data Area.

SA_ERR_HPI_INVALID_PARAMS isreturned if the:
e Field pointer ispassed in as NULL.
e Fieldtype, Field—>Type, isnot set to one of the valid field type enumerated values.

e Fieldtype, Field—>Type, is set to SAHPI__IDR_FIELDTYPE_UNSPECIFIED.

SA_ERR_HPI_INVALID_DATA isreturned if the field dataisincorrectly formatted or does not meet the restrictions
for the implementation.

SA_ERR_HPI_OUT_OF_SPACE is returned if the IDR does not have enough free space to alow the modification of
the field dueto an increase in the field size.

SA_ERR_HPI_READ_ONLY isreturned if the:
e Fieldisread-only and does not allow modifications.
e Areaisread-only and does not allow modifications to itsfields.
e |IDRisread-only and does not allow modifications to its fields.

SA_ERR_HPI_INVALID_PARAMS isreturned if the SaHpi TextBuFferT structure passed as part of the Field
parameter is not valid. This occurs when:

HPI Specification SAI-HPI-B.01.01 111

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface N v

Resource Functions

e The DataTypeis not one of the enumerated values for that type, or
e Thedatafield contains characters that are not legal according to the value of DataType, or

e Thelanguageis not one of the enumerated values for that type when the DataTypeis
SAHPI_TL_TYPE_UNICODE Of SAHPI_TL_TYPE_TEXT.

Remarks

This function allows modification of both the FieldType and Field data of a given Inventory Data Field. This
function does not allow modification of the read-only attribute of the Inventory Data Field; therefore after a
successful update, the ReadOnly element in the updated Field will always be False. The input value for
ReadOnly isignored.

SAHPI_IDR_FIELDTYPE_UNSPECIFIED isnot avalid field type, and should not be used with this function. If
SAHPI_IDR_FIELDTYPE_UNSPECIFIED is specified as the new field type, an error code of
SA_ERR_HPI_INVALID_DATA isreturned. Thisfield typeisonly valid when used with the

saHpi ldrFieldGet() function to retrieve fields of an unspecified type.

Some implementations have restrictions on what fields are valid in specific areas and/or the data format of
some fields. These restrictions should be documented. SA_ERR_HP1_INVALID_DATA is returned when the field
type or field data does not meet the implementation-specific restrictions.

In some implementations, certain Fields are intrinsically read-only. The ReadOnly flag, in the field structure,
indicatesif the Field is read-only.

The Field to update isidentified by the Areald and Fieldld elements within the Field parameter.

112

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY .
raea Resource Functions
7.4.8 saHpildrFieldDelete()

Thisfunction is used to delete an Inventory Data Field from a particular Inventory Data Area and Repository.

Prototype

SaErrorT SAHPI_API saHpildrFieldDelete(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpildridT Idrid,
SAHPI1_IN SaHpiEntryldT Areald,
SAHPI_IN SaHpiEntryldT Fieldld

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Idrid —[in] Identifier for the Inventory Data Repository.

Areald —[in] Areaidentifier for the IDA.

Fieldld —[in] Identifier of Field to delete from the IDA.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support an inventory data repository, as indicated
by SAHP1_CAPABILITY_INVENTORY_DATA in the resource's RPT entry.
SA_ERR_HPI1_NOT_PRESENT isreturned if the:
e |IDRisnot present.
e Areaidentified by the Areald parameter does not exist within the IDR, or if the Field identified by the
Fieldld parameter does not exist within the IDA.
SA_ERR_HPI_READ_ONLY isreturned if the field, the IDA, or the IDR is read-only and does not allow deletion.

SA_ERR_HPI1_INVALID_PARAMS is returned when the Areald or Fieldld is an invalid reserved value such as
SAHPI_LAST ENTRY.
Remarks

In some implementations, certain fields are intrinsically read-only. The ReadOnly flag, in the field structure,
indicatesif the field is read-only.

HPI Specification SAI-HPI-B.01.01 113

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.5 Watchdog Timers

Many high availability platforms contain watchdog timers to provide a means of monitoring the overall health of the
software system. The HPI provides a standardized set of functions to access these watchdog timers. Additionally, the
HPI provides a means to configure selected actions that will be taken when the watchdog timer expires. These actions
include generating various sorts of interrupts, and performing power off, power cycle, and reset actions.

As awatchdog timer counts down and expires, up to two different actions may be performed: a*“ pre-timer interrupt”
action and a“watchdog expiration” action. Each of these actions may be separately configured for the watchdog timer,
and they may be set to both happen when the watchdog timer expires, or the pre-timer interrupt may be set to happen a
fixed time interval before the watchdog timer expires.

The pre-timer interrupt action may be set to “NMI”, “SMI”, “Message Interrupt”, “OEM”, or “None”’. Setting the pre-
timer interrupt action to “None” must be supported on all platforms. The other actions are not necessarily supported
and the specific action taken is dependent on the platform capabilities. An event will be generated when the pre-timer
expires, unless the pre-timer interrupt action is “None” and the pre-timer interval is zero, in which caseitis
implementation-dependent whether or not an event is generated.

One of three watchdog timer expiration actions may be selected. These actions are “Reset”, “Power Down”, and
“Power Cycle”. Not all of these options may be supported on all platforms, and what kind of reset action is taken
(warm, cold, etc.) when “Reset” is selected is platform dependent. It is also possible to specify “No action,” meaning
that no reset, power down, or power cycle is done when the timer expires. “No action” isrequired to be supported on
all platforms. Even with no action configured, it is still possible to generate an HPI event, as described below.

The HPI watchdog timer function set provides a means for the calling software to get, set, and reset the watchdog.
These functions are valid for resources that have the watchdog timer capability set in their corresponding RPT entries.

More than one watchdog timer may be supported per resource. Each of the watchdog timer APIsinclude a “watchdog
number” parameter to address a specific timer accessed through that resource. If the RPT entry for aresource indicates
that it supports watchdog timers, then there must be at least one watchdog timer hosted by the resource, with the
watchdog number of SAHP1_DEFAULT_WATCHDOG_NUM. If additional watchdog timers are hosted by the resource, they
may have any watchdog number, and may be located by watchdog records in the RDR repository. The watchdog
records in the RDR repository identify which entity a particular watchdog timer is associated with. Power, interrupt, or
reset actions will operate on that entity when the watchdog times out.

A watchdog timer is configured with the saHpiWatchdogT imerSet() function. An HPI User passes awatchdog
timer structure that includes information on the expiration interval for the watchdog timer, the pre-timer interrupt
interval, pre-timer and expiration actions, event generation support, and information identifying the current user of the
watchdog timer.

Thelast of these items provides support for the fact that there may be multiple users of the watchdog over time. A
timer use value is set whenever the watchdog is set, and separate flags are maintained indicating timer expiration while
any particular timer use was active. There are no restrictions on the use of the timer use values, but several have pre-
defined meanings. Care should be taken against using timer use values inconsistently with their pre-defined meanings
because an HPI User may make assumptions about the meaning of awatchdog timeout based on these definitions.

Configuring the watchdog timer with the saHpiWatchdogT imerSet() function does not automatically start it
running. Generally, a subsequent call to saHpiWatchdogTimerReset() isrequired to start the watchdog timer.
However, if the watchdog timer is already running when the saHpiWatchdogTimerSet() functioniscalled, it
may be configured to continue running with the new configuration, without requiring a separate
saHpiWatchdogTimerReset() function call.

114 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY

A Resource Functions

If the Watchdog has been configured to issue a Pre-Timeout interrupt, and that interrupt has already occurred, the
saHpiWatchdogTimerReset() function will not reset the watchdog counter. The only way to stop a Watchdog
from timing out once a Pre-Timeout interrupt has occurred isto use the saHpiWatchdogTimerSet() functionto
reset and/or stop the timer.

A watchdog timer may be configured to generate events asit counts down past a pre-timer interrupt point and when it
expires. Setting the Log field in the SaHpiWatchdogT structure to True enables event generation.

If event generation is configured and the pre-timer interrupt interval is non-zero, an event will be generated when the
pre-timer interrupt point is reached before the watchdog timer expires. This event will have the WatchdogAction field
set to SAHPI_WAE_TIMER_INT indicating that the pre-timeout interrupt point is reached and will include information on
what pre-timer interrupt action is being taken in the WatchdogPreTimer Action field. The severity associated with a
watchdog pre-timer interrupt event is SAHPI_MAJOR regardless of the pre-timer interrupt action.

If event generation is configured and the watchdog timer is not stopped, an event will be generated when the timer
expires (in addition to a pre-timer interrupt event). This event will have the WatchdogAction field set to a value other
than SAHP1_WAE_TIMER_INT indicating the expiration of the timer and the action taken upon expiration (may be
SAHPI_WAE_NO_ACTION). When the WatchdogAction field is not SAHP1_WAE_TIMER_INT, the WatchdogPreTimerAction
fieldisignored. The severity associated with a watchdog timer expiration event when the action is
SAHPI_WAE_NO_ACTION iS SAHPI_INFORMATIONAL ; otherwise the severity of the event is SAHPI_MAJOR.

If event generation is configured and the pre-timer interrupt interval is zero and the pre-timer interrupt action is not
SAHP1_WP1_NONE, two events will be generated when the watchdog timer expires. If the pre-timer interrupt action is
SAHP1_WPI_NONE and the pre-timer interrupt interval is zero, it isimplementation-specific whether a pre-timer interrupt
event is generated. The WatchdogAction field in the event structure determines the type of watchdog event; pre-timer
interrupt or timer expiration. When the pre-timer action and timer action occur concurrently, there is no guarantee on
the ordering of events or that the pre-timer interrupt action occurred before the timer action.

Refer to Appendix A for an example of watchdog usage.

HPI Specification SAI-HPI-B.01.01 115

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Service Avallabl_llty”" Hardware Platform Interface aBERVICE
Resource Functions o i

7.5.1 saHpiWatchdogTimerGet()

This function retrieves the current watchdog timer settings and configuration.

Prototype

SaErrorT SAHPI_API1 saHpiWatchdogTimerGet (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiWatchdogNumT WatchdogNum,
SAHP1_OUT SaHpiWatchdogT *Watchdog

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

WatchdogNum — [in] Watchdog number that specifies the watchdog timer on aresource.

Watchdog — [out] Pointer to watchdog data structure.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support awatchdog timer, as indicated by
SAHPI_CAPABILITY_WATCHDOG in the resource's RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the WatchdogNum is not present.
SA_ERR_HPI_INVALID_PARAMS is returned when the Watchdog pointer is passed in asNULL.

Remarks

See the description of the SaHpiWatchdogT structure in Section 8.11 on page 180 for details on what
information is returned by this function.

When the watchdog action is SAHPI_WA_RESET, the type of reset (warm or cold) isimplementation-dependent.

116 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.5.2 saHpiWatchdogTimerSet()

This function provides a method for initializing the watchdog timer configuration.

Once the appropriate configuration has been set using saHpiWatchdogTimerSet(), an HPl User must
then call saHpiWatchdogTimerReset() toinitialy start the watchdog timer, unless the watchdog timer
was already running prior to calling saHpiWatchdogTimerSet() and the Running field in the passed
Watchdog structure is True.

Prototype

SaErrorT SAHPI_API1 saHpiWatchdogTimerSet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHP1_IN SaHpiWatchdogNumT WatchdogNum,
SAHPI_IN SaHpiWatchdogT *Watchdog

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

WatchdogNum — [in] The watchdog number specifying the specific watchdog timer on aresource.
Watchdog — [in] Pointer to watchdog data structure.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support awatchdog timer, as indicated by
SAHPI_CAPABILITY_WATCHDOG in the resource's RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the WatchdogNum is not present.

SA_ERR_HPI1_INVALID_PARAMS is returned when the:
e Watchdog->TimerUse is not one of the valid enumerated values for this type.
e Watchdog->TimerAction is not one of the valid enumerated values for this type.
e Watchdog-> PretimerInterrupt is not one of the valid enumerated values for this type.
e Watchdog pointer is passed in as NULL.

SA_ERR_HPI_INVALID_DATA isreturned when the:
e Watchdog->PreTimeoutlnterval is outside the acceptable range for the implementation.
e Watchdog->Initial Count is outside the acceptable range for the implementation.
e Value of Watchdog->PreTimeoutlnterval is greater than the value of Watchdog-> I nitial Count.
e Watchdog->Pretimerinterrupt is set to an unsupported value. See remarks.
e Watchdog->TimerAction is set to an unsupported value. See remarks.

e Watchdog->TimerUseis set to an unsupported value. See remarks.

HPI Specification SAI-HPI-B.01.01 117

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface N v

Resource Functions

Remarks

Configuring the watchdog timer with the saHpiWatchdogT imerSet() function does not start the timer
running. If the timer was previously stopped when this function is called, then it will remain stopped, and must
be started by calling saHpiWatchdogTimerReset(). If thetimer was previously running, then it will
continue to run if the Watchdog->Running field passed is True, or will be stopped if the Watchdog->Running
field passed is False. If it continuesto run, it will restart its count-down from the newly configured initial
count value.

If theinitial counter valueis set to 0, then any configured pre-timer interrupt action or watchdog timer
expiration action will be taken immediately when the watchdog timer is started. This provides a mechanism
for software to force an immediate recovery action should that be dependent on a Watchdog timeout occurring.

See the description of the SaHpiWatchdogT structure for more details on the effects of this command related
to specific data passed in that structure.

Some implementations impose a limit on the acceptable ranges for the PreTimeoutinterval or Initial Count.
These limitations must be documented. SA_ERR_HPI_INVALID_DATA isreturned if an attempt is made to set a
value outside of the supported range.

Some implementations cannot accept al of the enumerated values for TimerUse, TimerAction, or
PretimerInterrupt. These restrictions should be documented. SA_ERR_HPI_INVALID_DATA isreturned if an
attempt is made to select an unsupported option.

When the watchdog action is set to SAHP1_WA_RESET, the type of reset (warm or cold) isimplementation-
dependent.

118

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY .
raea Resource Functions
7.5.3 saHpiWatchdogTimerReset()

This function provides a method to start or restart the watchdog timer from the initial countdown value.

Prototype

SaErrorT SAHPI_API1 saHpiWatchdogTimerReset (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiWatchdogNumT WatchdogNum

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
WatchdogNum — [in] The watchdog number specifying the specific watchdog timer on aresource.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support awatchdog timer, as indicated by
SAHPI_CAPABILITY_WATCHDOG in the resource's RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the WatchdogNum is not present.
SA_ERR_HPI_INVALID_REQUEST isreturned if the current watchdog state does not allow areset.

Remarks

If the Watchdog has been configured to issue a Pre-Timeout interrupt, and that interrupt has already occurred,
the saHpiWatchdogTimerReset() function will not reset the watchdog counter. The only way to stop a
Watchdog from timing out once a Pre-Timeout interrupt has occurred is to use the
saHpiWatchdogTimerSet() function to reset and/or stop the timer.

HPI Specification SAI-HPI-B.01.01 119

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.6 Annunciators

This section describes the Annunciator Management I nstrument and its uses.

A common requirement of high-availability systemsisthe ability to report fault conditions and other status information
to system technicians, operators, or other supervising management systems, via some sort of display panels, LEDs,
sirens, etc.

A platform may provide annunciation of fault conditions based on alarm entriesin the DAT, as described in Section
3.2.1 on page 16 and in Section 6.6 on page 65. While thisfacility provides for complete platform-independence for an
HPI User, it aso limits the HPI User’s ability to control what alarms are being announced, or how alarms are
announced.

An HPI implementation may provide more control to an HPI User over what conditions are announced and how, while
still maintaining a high degree of portability by defining Annunciator management instruments.

An Annunciator management instrument holds a set of individual announcements. The function of the Annunciator is
to communicate the contents of its current set viawhatever platform-specific mechanism is associated with that
particular Annunciator management instrument. For example, if announcements are to be communicated vialighting a
set of LEDs on a front-panel display, the Annunciator management instrument may analyze its current set of
announcements and turn on asingle LED reflecting the most severe condition found, or turn on a*“System Ok™ LED if
there are currently no itemsin the set. A different Annunciator may continuously scroll each announcement in its set
on atext display, aswell asturning on LEDs and setting dry-contact relays to reflect the severity of conditions present.
A third Annunciator may announce itemsin its set by sending messages to a proprietary management system, or by
sending emails or pages to a system technician.

The Annunciator provides a common interface to these varied mechanisms for announcing conditions, so an HPI User
is not burdened by platform-to-platform differences. However, the current content of any Annunciator management
instrument is not defined by the HPI standard in the same way that the contents of the DAT are defined. Thus, the HPI
implementation and HPI Users can exert more control over what conditions should be announced. Further, a platform
can contain multiple Annunciator management instruments, each reflecting a different physical announcement device
in the platform. By exposing each separately, HPI Users and the HPI implementation can control which conditions are
handled by each announcement device.

An Annunciator management instrument may be implemented using other HPI controls that are in “auto” mode; for
example, digital controlsto turn LEDs on and off, stream controls to sound audible alerts, and/or text controls to
display detailed information. However, Annunciators may also operate directly to report conditions using mechanisms
that are not themselves visible directly in the HPI interface.

Over time, announcements are added to and deleted from an Annunciator’s current set of announcements. This may be
done automatically by the HPI implementation to reflect platform fault conditions, or by an HPI User viathe HPI
interface. When announcements are added or deleted automatically by the HPI implementation, it is implementation-
specific which announcements are added or removed.

Each Annunciator management instrument has a current mode that indicates whether announcements are added and
removed automatically by the HPI implementation, by an HPI User, or both. The mode may be set to one of three
values, with the following meanings:

e SAHPI_ANNUNCIATOR_MODE_AUTO — the HPI implementation automatically adds and del etes announcements; an
HPI User is not permitted to add or del ete announcements.

e SAHPI_ANNUNCIATOR_MODE_USER —an HPI User may add and del ete announcements; the HPI implementation
will not automatically add or delete announcements.

e SAHPI_ANNUNCIATOR_MODE_SHARED —the HPI implementation automatically adds and del etes announcements,
and an HPI User may also add and del ete announcements.

120 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Resource Functions

The initial mode of each Annunciator isimplementation-specific. An HPI User may change the mode of Annunciators
with the saHpiAnnunciatorModeSet() function. However, the mode may be configured to be “Read-only”, in
which case an HPI User will not be able to change the mode.

When the modeis“User” or “Shared”, HPI Users may add or delete any types of announcements in the Annunciator’s
current set — not just User announcements. Thisisallowed so that an HPI User can exert complete control over what
conditions are being announced, if that is required. To distinguish between announcements added to an Annunciator
automatically and those added by an HPI User, an AddedByUser field in the announcement indicates the source of the
announcement in the set.

Each announcement in an Annunciator’ s current set contains a severity level, details describing the specific condition
that is being reported, an Acknowledged flag, atimestamp indicating when the announcement was added to the set, and
an Entryld that uniquely identifies the particular status item within the set.

Entrylds are assigned to announcements as they are added to the set aswell as a Timestamp. After an announcement is
deleted from the current set, its Entryld may be reused for a newly added announcement as long as the new
announcement will have a different timestamp than any previously deleted announcement using the same Entryld.
Thus, the Entryld and Timestamp together will uniquely identify any announcement, which was ever present in the
Annunciator’s set.

The actual meaning of the Acknowledged flag is arbitrary, and the actions taken by the platform when announcements
are flagged as “ acknowledged” or “unacknowledged” are implementation-specific. Theintended use of the flag isto
indicate whether a particular announcement in the current set has been recognized by whomever or whatever is
inspecting the LEDs, displays, etc., that are being driven by the Annunciator management instrument. Thus, when
announcements are added to the current set, generally the flag should be set to indicate that the condition is
“unacknowledged”. Later, either asthe result of an HPI User function call, or due to some implementati on-dependent
action (such as pressing an “acknowledge’ button on a front-panel display), the flag can be changed to indicate that the
announcement is now “acknowledged.”

The ahility to acknowledge announcements is not controlled by the Annunciator “mode” setting (Auto, User, or
Shared). Any announcement may be acknowledged by the HPI implementation, or viathe
saHpiAnnunciatorAcknowledge() function cal, regardless of the current mode setting for the Annunciator.

Resources that contain Annunciator management instruments contain the SAHP1_CAPABILITY_ANNUNCIATOR capability
flag in their RPT entries, and support the following functions. More than one Annunciator management instrument
may be supported by aresource, if there are separate discrete announcing mechanisms controlled by the resource, each
of which should potentially announce different sets of conditions.

Each Annunciator management instrument will have an RDR that identifies the particular annunciator, and provides
fixed configuration information including the annunciator output type. The Entity Path in the Annunciator RDR should
indicate the platform entity with which the Annunciator is associated. For example, if an Annunciator is designed to
announce conditions related to a particular system chassis, then the entity path for that Annunciator should be the entity
path for the system chassis. If an annunciator is not associated with any particular system entity, it may have an
“empty” Entity Path (first entity typein the path is SAHP1_ENT_R0OT). Each Annunciator management instrument
supported by aresource has a unique number, used to address that particular Annunciator in the following API
functions.

HPI Specification SAI-HPI-B.01.01 121

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.6.1 saHpiAnnunciatorGetNext()

This function alowsretrieval of an announcement from the current set of announcements held in the

Annunciator.

Prototype

SaErrorT SAHPI_API1 saHpiAnnunciatorGetNext(
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiAnnunciatorNumT AnnunciatorNum,
SAHP1_IN SaHpiSeverityT Severity,
SAHPI_IN SaHpiBoolT UnacknowledgedOnly,
SAHPI1_INOUT SaHpiAnnouncementT *Announcement

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
AnnunciatorNum — [in] Annunciator number for the addressed Annunciator.

Severity —[in] Severity level of announcementsto retrieve. Set to SAHPI_ALL_SEVERITIES to retrieve
announcement of any severity; otherwise, set to requested severity level.

UnacknowledgedOnly —[in] Set to True to indicate only unacknowledged announcements should be returned.
Set to False to indicate either an acknowledged or unacknowledged announcement may be returned.

Announcement — [in/out] Pointer to the structure to hold the returned announcement. Also, on input,
Announcement->Entryld and Announcement->Timestamp are used to identify the “previous’ announcement.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support Annunciators, as indicated by
SAHPI_CAPABILITY_ANNUNCIATOR in the resource’ s RPT entry.

SA_ERR_HPI_INVALID_PARAMS is returned when Severity is not one of the valid enumerated values for this type.

SA_ERR_HPI1_NOT_PRESENT isreturned if:
e The Annunciator Num passed does not address a valid Annunciator supported by the resource.

e There are no announcements (or no unacknowledged announcements if UnacknowledgedOnly is True)
that meet the specified Severity in the current set after the announcement identified by Announcement-
>Entryld and Announcement->Timestamp.

e There are no announcements (or no unacknowledged announcements if UnacknowledgedOnly is True)
that meet the specified Severity in the current set if the passed Announcement->Entryld field was set to
SAHPI_FIRST_ENTRY.

SA_ERR_HPI_INVALID_PARAMS is returned when the Announcement parameter is passed in as NULL.

SA_ERR_HPI_INVALID_DATA is returned if the passed Announcement->Entryld matches an announcement in the
current set, but the passed Announcement->Timestamp does not match the timestamp of that announcement.

122 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Resource Functions

Remarks

All announcements contained in the set are maintained in the order in which they were added. Thisfunction
will return the next announcement meeting the specifications given by an HPI User that was added to the set
after the announcement whose Entryld and timestamp is passed by an HPI User. |f SAHPI_FIRST_ENTRY iS
passed as the Entryld, the first announcement in the set meeting the specifications given by an HPI User is
returned. This function should operate even if the announcement associated with the Entryld and Timestamp
passed by an HPI User has been deleted.

Selection can be restricted to only announcements of a specified severity, and/or only unacknowledged
announcements. To retrieve all announcements contained meeting specific requirements, call
saHpiAnnunciatorGetNext() with the Satus->Entryld field set to SAHPI_FIRST_ENTRY and the
Severity and Unacknowl edgedOnly parameters set to select what announcements should be returned. Then,
repeatedly call saHpiAnnunciatorGetNext() passing the previously returned announcement as the
Announcement parameter, and the same values for Severity and UnacknowledgedOnly until the function returns
with the error code SA_ERR_HP1_NOT_PRESENT.

SAHPI_FIRST_ENTRY and SAHPI_LAST_ENTRY are reserved Entryld values, and will never be assigned to an
announcement.

The elements Entryld and Timestamp are used in the Announcement parameter to identify the “ previous”
announcement; the next announcement added to the table after this announcement that meets the Severity and
UnacknowledgedOnly requirements will be returned. Announcement->Entryld may be set to
SAHPI_FIRST_ENTRY to select the first announcement in the current set meeting the Severity and
UnacknowledgedOnly requirements. If Announcement->Entryld is SAHPI_FIRST_ENTRY, then
Announcement->Timestamp is ignored.

HPI Specification SAI-HPI-B.01.01 123

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Service Avallabl_llty”" Hardware Platform Interface aBERVICE
Resource Functions o i

7.6.2 saHpiAnnunciatorGet()

Thisfunction allows retrieva of a specific announcement in the Annunciator’s current set by referencing its

Entryld.

Prototype

SaErrorT SAHPI_API1 saHpiAnnunciatorGet(
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiAnnunciatorNumT AnnunciatorNum,
SAHP1_IN SaHpiEntryldT Entryld,
SAHP1_OUT SaHpiAnnouncementT *Announcement

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Annunciator Num —[in] Annunciator number for the addressed Annunciator.

Entryld —[in] Identifier of the announcement to retrieve from the Annunciator.

Announcement — [out] Pointer to the structure to hold the returned announcement.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support Annunciators, as indicated by
SAHPI_CAPABILITY_ANNUNCIATOR in the resource’ s RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if:
e The Annunciator Num passed does not address a valid Annunciator supported by the resource.

e Therequested Entryld does not correspond to an announcement contained in the Annunciator.

SA_ERR_HPI_INVALID_PARAMS is returned when the Announcement parameter is passed in as NULL.

Remarks
SAHPI_FIRST_ENTRY and SAHPI_LAST_ENTRY are reserved Entryld values, and will never be assigned to
announcements.

124 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.6.3 saHpiAnnunciatorAcknowledge()

This function allows an HPI User to acknowledge a single announcement or a group of announcements by
severity.

Prototype

SaErrorT SAHPI_API1 saHpiAnnunciatorAcknowledge(
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiAnnunciatorNumT AnnunciatorNum,
SAHP1_IN SaHpiEntryldT Entryld,
SAHP1_IN SaHpiSeverityT Severity

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld — [in] Resource identified for this operation.
Annunciator Num —[in] Annunciator number for the addressed Annunciator.

Entryld —[in] Entry identifier of the announcement to acknowledge. Reserved Entryld values:

e SAHPI_ENTRY_UNSPECIFIED Ignorethis parameter.

Severity —[in] Severity level of announcements to acknowledge. Ignored unless Entryld is
SAHPI_ENTRY_UNSPECIFIED.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support Annunciators, as indicated by
SAHPI_CAPABILITY_ANNUNCIATOR in the resource’ s RPT entry.

SA_ERR_HPI1_NOT_PRESENT isreturned if:
e The Annunciator Num passed does not address a valid Annunciator supported by the resource.

e Anannouncement identified by the Entryld parameter does not exist in the current set.

SA_ERR_HPI_INVALID_PARAMS isreturned if Entryld is SAHPI_ENTRY_UNSPECIFIED and Severity is not one of the
valid enumerated values for thistype.

Remarks

Announcements are acknowledged by one of two ways: a single announcement by Entryld regardless of
severity or asagroup of announcements by severity regardless of Entryld.

An HPI User acknowledges an announcement to influence the platform-specific annunciation provided by the
Annunciator management instrument.

An acknowledged announcement will have the Acknowledged field set to True.

To acknowledge all announcements contained within the current set, set the Severity parameter to
SAHPI_ALL_SEVERITIES, and set the Entryld parameter to SAHPI_ENTRY_UNSPECIFIED.

HPI Specification SAI-HPI-B.01.01 125

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

To acknowledge all announcements of a specific severity, set the Severity parameter to the appropriate value,
and set the Entryld parameter to SAHPI_ENTRY_UNSPECIFIED.

To acknowledge a single announcement, set the Entryld parameter to a value other than
SAHPI_ENTRY_UNSPECIFIED. The Entryld must be avalid identifier for an announcement present in the current
Set.

If an announcement has been previously acknowledged, acknowledging it again has no effect. However, thisis
not an error.

If the Entryld parameter has a value other than SAHP1_ENTRY_UNSPECIFIED, the Severity parameter isignored.

If the Entryld parameter is passed as SAHPI_ENTRY_UNSPECIFIED, and ho announcements are present that meet
the requested Severity, this function will have no effect. However, thisisnot an error.

SAHPI_ENTRY_UNSPECIFIED is defined as the same value as SAHPI_FIRST_ENTRY, SO using either symbol will
have the same effect. However, SAHPI_ENTRY_UNSPECIFIED should be used with this function for clarity.

126

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY .
reanm Resource Functions
7.6.4 saHpiAnnunciatorAdd()
Thisfunction is used to add an announcement to the set of items held by an Annunciator management
instrument.
Prototype
SaErrorT SAHPI_API1 saHpiAnnunciatorAdd(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiAnnunciatorNumT AnnunciatorNum,
SAHP1_INOUT SaHpiAnnouncementT *Announcement
);
Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Resourceld —[in] Resource identified for this operation.

Annunciator Num —[in] Annunciator number for the addressed Annunciator.

Announcement —[infout] Pointer to structure that contains the new announcement to add to the set.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support Annunciators, as indicated by
SAHPI_CAPABILITY_ANNUNCIATOR in the resource’ s RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the Annunciator Num passed does not address a valid Annunciator
supported by the resource.

SA_ERR_HPI_INVALID_PARAMS is returned when:

The Announcement pointer is passed in asNULL.
The Announcement-> Severity passed is not valid.
The Announcement->StatusCond structure passed in is not valid.

SA_ERR_HP1_OUT_OF_SPACE isreturned if the Annunciator is not able to add an additional announcement due to
resource limits.

SA_ERR_HP1_READ_ONLY isreturned if the Annunciator isin auto mode.

Remarks

The Entryld, Timestamp, and AddedByUser fields within the Announcement parameter are not used by this
function. Instead, on successful completion, these fields are set to new values associated with the added
announcement. AddedByUser will always be set to True.

HPI Specification SAI-HPI-B.01.01 127

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.6.5 saHpiAnnunciatorDelete()

Thisfunction allows an HPI User to delete a single announcement or a group of announcements from the
current set of an Annunciator. Announcements may be deleted individually by specifying a specific Entryld, or
they may be deleted as a group by specifying a severity.

Prototype

SaErrorT SAHPI_API1 saHpiAnnunciatorDelete(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiAnnunciatorNumT AnnunciatorNum,
SAHPI1_IN SaHpiEntryldT Entryld,
SAHPI_IN SaHpiSeverityT Severity

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
Annunciator Num — [in] Annunciator number for the addressed Annunciator.

Entryld —[in] Entry identifier of the announcement to delete. Reserved Entryld values:

e SAHPI_ENTRY_UNSPECIFIED Ignorethis parameter.
Severity —[in] Severity level of announcementsto delete. Ignored unless Entryld is
SAHPI_ENTRY_UNSPECIFIED.
Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support Annunciators, as indicated by
SAHPI_CAPABILITY_ANNUNCIATOR in the resource’ s RPT entry.

SA_ERR_HPI_INVALID_PARAMS isreturned if Entryld is SAHPI_ENTRY_UNSPECIFIED and Severity is not one of the
valid enumerated values for thistype.
SA_ERR_HPI1_NOT_PRESENT isreturned if:
e The Annunciator Num passed does not address a valid Annunciator supported by the resource
e Anannouncement identified by the Entryld parameter does not exist in the current set of the
Annunciator.

SA_ERR_HPI1_READ_ONLY isreturned if the Annunciator is in auto mode.

Remarks

To delete a single, specific announcement, set the Entryld parameter to a value representing an actual
announcement in the current set. The Severity parameter isignored when the Entryld parameter is set to a
value other than SAHP1_ENTRY_UNSPECIFIED.

To delete agroup of announcements, set the Entryld parameter to SAHPI_ENTRY_UNSPECIFIED, and set the
Severity parameter to identify which severity of announcements should be deleted. To clear al announcements
contained within the Annunciator, set the Severity parameter to SAHPI_ALL_SEVERITIES.

128 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY .
o e Resource Functions

If the Entryld parameter is passed as SAHP1_ENTRY_UNSPECIFIED, and no announcements are present that meet
the specified Severity, this function will have no effect. However, thisisnot an error.

SAHPI_ENTRY_UNSPECIFIED is defined as the same value as SAHPI_FIRST_ENTRY, SO using either symbol will
have the same effect. However, SAHPI_ENTRY_UNSPECIFIED should be used with this function for clarity.

HPI Specification SAI-HPI-B.01.01 129

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Service Avallabl_llty”" Hardware Platform Interface aBERVICE
Resource Functions o i

7.6.6 saHpiAnnunciatorModeGet()

Thisfunction allows an HPI User to retrieve the current operating mode of an Annunciator. The mode indicates
whether or not an HPI User isallowed to add or delete items in the set, and whether or not the HPI
implementation will automatically add or delete itemsin the set.

Prototype

SaErrorT SAHPI_API saHpiAnnunciatorModeGet(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiAnnunciatorNumT AnnunciatorNum,
SAHP1_OUT SaHpiAnnunciatorModeT *Mode

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld — [in] Resource identified for this operation.
Annunciator Num —[in] Annunciator number for the addressed Annunciator.

Mode — [out] Pointer to location to store the current operating mode of the Annunciator where the returned
value will be one of the following:

e SAHPI_ANNUNCIATOR_MODE_AUTO — the HPI implementation may add or delete announcements in the set;
an HPI User may not add or delete announcements in the set.

e SAHPI_ANNUNCIATOR_MODE_USER — the HPI implementation may not add or delete announcementsin the
set; an HPI User may add or delete announcementsin the set.

e SAHPI_ANNUNCIATOR_MODE_SHARED — both the HPI implementation and an HPI User may add or delete
announcementsin the set.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support Annunciators, as indicated by
SAHPI_CAPABILITY_ANNUNCIATOR in the resource’ s RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the Annunciator Num passed does not address a valid Annunciator
supported by the resource.

SA_ERR_HPI_INVALID_PARAMS isreturned if Modeis passed inasNULL.

Remarks

None.

130 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.6.7 saHpiAnnunciatorModeSet()

This function allows an HPI User to change the current operating mode of an Annunciator. The mode indicates
whether or not an HPI User is allowed to add or delete announcements in the set, and whether or not the HPI
implementation will automatically add or delete announcementsin the set.

Prototype

SaErrorT SAHPI_API1 saHpiAnnunciatorModeSet(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiAnnunciatorNumT AnnunciatorNum,
SAHPI1_IN SaHpiAnnunciatorModeT Mode

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld — [in] Resource identified for this operation.
Annunciator Num —[in] Annunciator number for the addressed Annunciator.

Mode — [out] Mode to set for the Annunciator:

e SAHPI_ANNUNCIATOR_MODE_AUTO — the HPI implementation may add or delete announcements in the set;
an HPI User may not add or delete announcements in the set.

e SAHPI_ANNUNCIATOR_MODE_USER — the HPI implementation may not add or delete announcementsin the
set; an HPI User may add or delete announcementsin the set.

e SAHPI_ANNUNCIATOR_MODE_SHARED — both the HPI implementation and an HPI User may add or delete
announcementsin the set.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support Annunciators, as indicated by
SAHPI_CAPABILITY_ANNUNCIATOR in the resource’ s RPT entry.

SA_ERR_HPI_NOT_PRESENT isreturned if the Annunciator Num passed does not address a valid Annunciator
supported by the resource.

SA_ERR_HPI_INVALID_PARAMS isreturned if Modeis not avalid enumerated value for thistype.
SA_ERR_HPI_READ_ONLY isreturned if mode changing is not permitted for this Annunciator.

Remarks

None.

HPI Specification SAI-HPI-B.01.01 131

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY

Resource Functions Aot

7.7 Managed Hot Swap

Resources which support standard hot swap events and functions will have the FRU capability
(SAHPI1_CAPABILITY_FRU) set, and possibly the Managed Hot Swap capability (SAHP1_CAPABILITY_MANAGED_HOTSWAP)
set in their RPT entry. Including the FRU capability indicates that the resource may be inserted or removed during
normal operation, and that hot swap events will be issued when insertions or removals occur. Including the Managed
Hot Swap capability indicates that the resource follows the full hot swap model and usage described in this section and
can be managed using the functions defined below. A resource with the FRU capability set but without the Managed
Hot Swap capability set follows the simplified hot swap model described in this section. Table 6 summarizes the
meaning of these two capahility flags.

Table 6. Hot Swap Capabilities

Capability Flags Hot Swap Model Hot Swap Events Issued Hot Swap
Supported Functions
Supported
SAHPI_CAPABILITY_FRU=0 None None None
SAHPI_CAPABILITY_MANAGED_HOTSWAP=0
SAHPI_CAPABILITY_FRU=1 Simplified For transition between Active- and None
SAHPI_CAPABILITY_MANAGED_HOTSWAP=0 Not-Present states only
SAHPI_CAPABILITY_FRU=1 Full For transition between any states in All
SAHPI_CAPABILITY_MANAGED_HOTSWAP=1 the full hot-swap model
SAHPI_CAPABILITY_FRU=0 llegal N/A N/A
SAHPI_CAPABILITY_MANAGED_HOTSWAP=1 configuration

When aFRU entity isinserted into or removed from the system, the corresponding resource is added to or removed
from all domains in which that resource isvisible, and the RPTs in those domains are updated accordingly.

The hot swap model describes the behavior of aresource as it enters and exits an HPI domain and the associated events
that it (or the domain controller) generates to indicate state changes. Figure 10 depicts the full hot swap model defined
by HPI. In the abstracted hot swap model, the hot swap functions are directed to the resource associated with the actual
FRU being inserted or removed and not to the container of the FRU (such as a slot in CompactPCI). The hot swap
model is not intended to imply an implementation, but is intended to support existing hot swap implementations.

A resource may follow the full hot swap model using all five states, or it may follow a simplified model shownin
Figure 11 and transition between the NOT PRESENT and ACTIVE states. The full model is appropriate for resources
associated with FRUs that require processing to occur asthey are inserted or removed from the system. The simplified
model is appropriate for resources associated with FRUs that do not require insertion or removal processing, and
simply need to aert the management software of their comings and goings.

132

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY"

FORUM

Service Availability™ Hardware Platform Interface
Resource Functions

Figure 10. Full Hot Swap State Model

Active

Auto-insert policy
completes pormally, or
usef calls
saHpiResdgurceActiveSet()

Event ig'issued by resource
shoWing transition from
“Inserfion Pending” to "Actiye"

Insertion
Pending

Event is issued by

FRU is inserted in system
Event is issued by resource
showing transitign from “Not

Present” to “Inserfion Pending”

Isseed by domain(s)
igAransition from
ichéyer state it was in to “Not
Present”

Qsource
showing transition from “Is
Pending” to “Inactive”

. By meshanical action or call to
FRU“E’ rempved fro systep saHpiHotSwapActionRequest(),
urprise extractio request to actiyate FRU is
received

Event is issued by resource
showing transition from “Inactive”
to “Insertion Pending”

By mechanical action (eject latch)
or call to
saHpiHotSwapActionRequest(),
request to extract FRU is
reseived

Event is issued by resource
showing transition from “Active” to
“Extraction Penging”

Auto-extract policy aborts
extraction, or user calls
sapiResourceActiveSet()

Event is issued_by resource
showing transitiormfrem
“Extraction Pending” to “Active
Extraction
Pending

Auto-insert policy aborts
insertion or user calls
esQurcelnactiveSet()

ertion

Auto-extract policy completes
normally, gr user calls
saHpiResourgelnactiveSet()

Event is issugd by resource
showing trgnsition from
“Extraction Pending” to “Inactive”

Not . .
Present < FRU is removed from system Inactive
Event is issued by domain(s)
showing transition from
“Inactive” to “Not Present”
HPI Specification SAI-HPI-B.01.01 133

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Resource Functions

SERVICE
AVAILABILITY

Figure 11. Simplified Hot Swap Model

FRU is inserted in system

Event is issued by resource

showing transition from “Not
Present” to “active” state.

FRU is removed from system

Event is issued by resource showing
transition from “Active” state to “Not
Present” state.

The state of aresource asit enters adomain is unknown. Implementations may generate events, but an HPI User
should not rely on events to determine the health upon insertion, as HPI implementations are not required to generate

events to assert existing sensor states at the time of insertion.

HPI implementations may generate hot swap events that re-announce the current hot swap state of aresource. These

events will have matching values for the previous and current hot swap states.

134 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.7.1 Hot Swap States

The HPI Hot Swap model defines five states of a resource during hot swap that result in a state transition, and
the event that indicates the state transition. Hot swap events indicating normal state transitions are issued with
aseverity of SAHPI_INFORMATIONAL. Eventswhich indicate a*“ surprise extraction” are issued with the severity
set in the ResourceSeverity field of the RPT entry for the resource. A “surprise extraction” isatransition to the
NOT PRESENT state from any state other than INACTIVE. HPI implementations may generate hot swap
events that re-announce the current hot swap state of aresource. These events should have matching values for
the previous and current hot swap states, and should be issued with a severity of SAHP1_INFORMATIONAL.

The five hot swap states listed below describe the life cycle of aresource supporting the Managed Hot Swap
capability.

A resource which supports the “ Simplified Hot Swap Model” (FRU capability set, but Managed Hot Swap
capability not set) supports only the NOT PRESENT and ACTIVE states. These resourcestransition directly
between the NOT PRESENT and the ACTIVE state and issue a Hot Swap event when such a transition occurs.

NOT PRESENT

The NOT PRESENT state is actually avirtual state that represents a resource that is not currently present in the
domain, because the FRU associated with that resource is not currently present in the system. A resourceisin
this state before the FRU is physically inserted into the system or if it has been removed from the system. A
resource that supports the full hot swap model typically transitions to this state from the INACTIVE state, but a
resource can transition to this state from any state due to a surprise extraction of the FRU. The HPI
implementation should generate a hot swap event with HotSwapState = SAHPI_HS_STATE_NOT_PRESENT when
the resource transitions from any state to the NOT PRESENT state.

The event can indicate a normal transition from INACTIVE to the NOT PRESENT state or a surprise
extraction from any other state. Normal transition events are issued with a severity of SAHP1_INFORMAT 1ONAL.
A resource following the simplified hot swap model always indicates the transition to the NOT PRESENT state
as asurprise extraction.

When aresource associated with a FRU fails, many systems will detect thisas aNOT PRESENT state for the
FRU, and report it as atransition to the NOT PRESENT state (anormal transition if the resource wasin the
INACTIVE state, or asurprise extraction if it wasin adifferent state). If the resource is subsequently restored
to functionality, these systems will then detect the presence of the FRU, and report another state transition from
the NOT PRESENT state to the current hot swap state for the restored resource. If the current hot swap stateis
not the normal “initial” state for the FRU when it isinserted (i.e.,, INSERTION PENDING for aresource that
uses the full hot swap model or ACTIVE for aresource that uses the simplified hot swap model), then the
severity of the “unusual” hot swap event showing atransition from NOT PRESENT to a different state should
be the severity contained in the ResourceSeverity field in the resource’ s RPT entry.

HPI Specification SAI-HPI-B.01.01 135
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

INSERTION PENDING

The INSERTION PENDING state is entered after aresource that supports the full hot swap model has been
added to the domain, as aresult of the associated FRU being physically inserted into the system. This state
indicates the resource is transitioning from a NOT PRESENT state or INACTIVE state into the ACTIVE state.
When transitioning into the INSERTION PENDING state, the resource should generate a hot swap event with
HotSwapState = SAHP1_HS_STATE_INSERTION_PENDING. The event can be generated when the gjector latch is
shut (CompactPCl) or the deviceis seated in adlot.

Upon receiving the event, an HPI User has the opportunity to discover the capabilities of the resource before
allowing the FRU associated with the resource to power on and become an active component in the system.
During this state, the FRU can be commanded to power on or de-assert reset.

ACTIVE

The ACTIVE state indicates that aresource is now an active member of the domain.

After aFRU completes the hardware connection process, the associated resource entersthe ACTIVE state. This
does not mean that the FRU is now active at the software level, but merely indicates that the FRU is now active
in the system and that it should not be abruptly removed. The HPI implementation generates a hot swap event
with HotSwapState = SAHP1_HS_STATE_ACTIVE when the resource transitions to the ACTIVE state.

EXTRACTION PENDING

The EXTRACTION PENDING state indicates that the resource, which supports the full hot swap model, has
reguested extraction of the associated FRU. Typically, aresource enters an EXTRACTION PENDING state
when an gjector latch is opened (PICMG 2.1) or when a hot swap button is pressed. The HPI implementation
should generate a hot swap event with HotSwapState = SAHPI_HS_STATE_EXTRACTION_PENDING when a
resource that supports Managed Hot Swap requests extraction.

Upon receiving the event, an HPI User has the opportunity to unload software drivers, rel ocate processes, or
unmount file systems (software disconnect) before allowing a FRU to power down and disconnect from the
system.

INACTIVE

The INACTIVE state indicates that the FRU, which supports the full hot swap model, is no longer activein the
system, and that it has completed the extraction process. When a FRU compl etes the hardware disconnection
process, it islogically and electrically disconnected or isolated from the platform but still physically located in
the platform, so the associated resource remains in the domain. Typically, a FRU will be powered off or held in
reset when in this state. The HPI implementation should generate a hot swap event with HotSwapState =
SAHPI_HS_STATE_INACTIVE When the resource is transitioning to an INACTIVE state.

136 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.7.2 Hot Swap Auto Insertion and Auto Extraction Capabilities

A resource supporting hot swap typically supports default policies for insertion and extraction. On insertion,
the default policy may be for the resource to turn the associated FRU's local power on and to de-assert reset.
On extraction, the default policy may be for the resource to power off the FRU and turn on a hot swap
indicator. These policieswill automatically start after a configurable timeout period once the resource
transitions to the INSERTION PENDING or EXTRACTION PENDING state. At the end of executing one of
these palicies, the resource will automatically change the hotswap state to SAHP1_HS_STATE_ACTIVE oOr
SAHPI_HS_STATE_INACTIVE.

During the timeout period before the auto-insert or auto-extract policy begins, an HPI User can call
saHpiHotSwapPol icyCancel () to request that the automatic insertion or extraction policy not be run. 1If
the auto insertion or auto extraction policy is not run, then an HPI User must take all required actionsto bring
up or shut down the FRU, and must call saHpiResourceActiveSet() or
saHpiResourcelnactiveSet() to cause the transition out of the INSERTION PENDING or
EXTRACTION PENDING state.

Because a resource that supports the simplified hot swap model will never transition into INSERTION
PENDING or EXTRACTION PENDING tates, the saHpiHotSwapPolicyCancel () function is not
applicable to those resources.

7.7.3 Using Hot Swap

After receiving a hot swap event for aresource that supports the full hot swap model, an HPI User can cancel
the default policy (using saHpiHotSwapPolicyCancel (), as described above) of the hot swap process
for that resource. After canceling the auto-insertion policy, an HPI User can discover the capabilities of a
resource before the FRU is allowed to power on and become an active component in the system. An HPI User
can aso cancel the auto-extraction policy after receiving the extraction event (again by using
saHpiHotSwapPolicyCancel ()). Thisalowsan HPl User to complete the software disconnection
process before a FRU is allowed to power down or be removed from the system.

An HPI User can initiate resource hot swap actions using the saHpiHotSwapActionRequest() function,
assuming the FRU is physicaly installed in the system. This function allows an HPI User to simulate the
actions of installing a FRU, or requesting extraction of a FRU.

After receiving a hot swap event for aresource that supports the simplified hot swap model, an HPI User
should update its internal data, adjusting its processing to the insertion or removal of the FRU.

7.7.4 Hot Swap Functions

HPI defines a set of functions for managing the hot swap connection/disconnection process of resources that
follow the full hot swap model. These functions are supported by resources that have the Managed Hot Swap
capability set in their RPT entries.

Resources that support managed hot swap will often also support the Reset and Power functions described in
Section 7.9 on page 154 and Section 7.10 on page 157. However, support for these functionsis indicated by
separate resource Capability flags, and is not implied by the Managed Hot Swap capability, nor is the Managed
Hot Swap capability required for aresource to support those functions.

HPI Specification SAI-HPI-B.01.01 137
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.7.5 saHpiHotSwapPolicyCancel()

A resource supporting hot swap typically supports default policies for insertion and extraction. On insertion,
the default policy may be for the resource to turn the associated FRU’ s local power on and to de-assert reset.
On extraction, the default policy may be for the resource to immediately power off the FRU and turn on a hot
swap indicator. This function allows an HPI User, after receiving a hot swap event with HotSvapState equal to
SAHPI_HS_STATE_INSERTION_PENDING Of SAHPI_HS_STATE_EXTRACTION_PENDING, to prevent the default policy
from being executed.

Prototype

SaErrorT SAHPI_API saHpiHotSwapPolicyCancel (
SAHPI1_IN SaHpiSessionldT Sessionld,
SAHPI1_IN SaHpiResourceldT Resourceld

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_CAPABILITY isreturned if the resource does not support managed hot swap, as indicated by
SAHPI_CAPABILITY_MANAGED_HOTSWAP in the resource's RPT entry.
SA_ERR_HPI1_INVALID_REQUEST isreturned if the resourceis:

e NotintheINSERTION PENDING or EXTRACTION PENDING state.

e Processing an auto-insertion or auto-extraction policy.

Remarks

Each time the resource transitions to either the INSERTION PENDING or EXTRACTION PENDING state,
the default policies will execute after the configured timeout period, unless cancelled using
saHpiHotSwapPol icyCancel () after thetransition to INSERTION PENDING or EXTRACTION
PENDING state and before the timeout expires.The default policy cannot be canceled once it has begun to
execute.

Because a resource that supports the simplified hot swap model will never transition into INSERTION
PENDING or EXTRACTION PENDING states, this function is not applicable to those resources.

138 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.7.6 saHpiResourceActiveSet()

Thisfunction allows an HPI User to request a resource to transition to the ACTIVE state from the INSERTION
PENDING or EXTRACTION PENDING state.

Prototype

SaErrorT SAHPI_API saHpiResourceActiveSet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHP1_IN SaHpiResourceldT Resourceld

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support managed hot swap, as indicated by
SAHPI_CAPABILITY_MANAGED_HOTSWAP in the resource's RPT entry.

SA_ERR_HPI_INVALID_REQUEST isreturned if the resourceis:
e Notinthe INSERTION PENDING or EXTRACTION PENDING state.

e Processing an auto-insertion or auto-extraction policy.

Remarks

During insertion, a resource supporting hot swap will generate an event to indicate that it isin the INSERTION
PENDING state. If an HPI User calls saHpiHotSwapPol icyCancel () before the resource begins an
auto-insert operation, then the resource will remain in INSERTION PENDING state while an HPI User actson
the resource to integrate it into the system. During this state, an HPI User can instruct the resource to power on
the associated FRU, to de-assert reset, or to turn off its hot swap indicator using the
saHpiResourcePowerStateSet(), saHpiResourceResetStateSet(), or
saHpiHotSwapIndicatorStateSet() functions, respectively, if the resource has those associated
capabilities. Once an HPI User has completed with the integration of the FRU, this function must be called to
signal that the resource should now transition into the ACTIVE state.

An HPI User may also use this function to request a resource to return to the ACTIVE state from the
EXTRACTION PENDING state in order to reject an extraction request.

Because a resource that supports the simplified hot swap model will never transition into INSERTION
PENDING or EXTRACTION PENDING states, this function is not applicable to those resources.

Only valid if resourceisin INSERTION PENDING or EXTRACTION PENDING state and an auto-insert or
auto-extract policy action has not been initiated.

HPI Specification SAI-HPI-B.01.01 139
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.7.7 saHpiResourcelnactiveSet()

Thisfunction allows an HPI User to request aresource to transition to the INACTIVE state from the
INSERTION PENDING or EXTRACTION PENDING state.

Prototype

SaErrorT SAHPI_API saHpiResourcelnactiveSet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHP1_IN SaHpiResourceldT Resourceld

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support managed hot swap, as indicated by
SAHPI_CAPABILITY_MANAGED_HOTSWAP in the resource's RPT entry.

SA_ERR_HPI_INVALID_REQUEST isreturned if the resourceis:
e Notinthe INSERTION PENDING or EXTRACTION PENDING state.

e Processing an auto-insertion or auto-extraction policy.

Remarks

During extraction, aresource supporting hot swap will generate an event to indicate that it isin the
EXTRACTION PENDING sate. If an HPI User calls saHpiHotSwapPol icyCancel () before the
resource begins an auto-extract operation, then the resource will remain in EXTRACTION PENDING state
while an HPI User acts on the resource to isolate the associated FRU from the system. During this state, an HPI
User can instruct the resource to power off the FRU, to assert reset, or to turn on its hot swap indicator using
the saHpiResourcePowerStateSet(), saHpiResourceResetStateSet(), or
saHpiHotSwapIndicatorStateSet() functions, respectively, if the resource has these associated
capabilities. Once an HPI User has completed the shutdown of the FRU, this function must be called to signal
that the resource should now transition into the INACTIVE state.

An HPI User may also use this function to request aresource to return to the INACTIVE state from the
INSERTION PENDING state to abort a hot-swap insertion action.

Because a resource that supports the simplified hot swap model will never transition into INSERTION
PENDING or EXTRACTION PENDING states, this function is not applicable to those resources.

Only valid if resourceisin EXTRACTION PENDING or INSERTION PENDING state and an auto-extract or
auto-insert policy action has not been initiated.

140 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Resource Functions

7.7.8 saHpiAutolnsertTimeoutGet()

Thisfunction allows an HPI User to request the auto-insert timeout value within a specific domain. This value
indicates how long the resource will wait before the default auto-insertion policy isinvoked.

Prototype

SaErrorT SAHPI_API saHpiAutolnsertTimeoutGet(
SAHPI1_IN SaHpiSessionldT Sessionlid,
SAHP1_OUT SaHpiTimeoutT *Timeout

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Timeout — [out] Pointer to location to store the number of nanoseconds to wait before autonomous handling of
the hot swap event. Reserved time out values:

e SAHPI_TIMEOUT_IMMEDIATE indicates autonomous handling isimmediate.

e SAHPI_TIMEOUT_BLOCK indicates autonomous handling does not occur.

Return Value

SA_OK isreturned on successful completion; otherwise, an error code is returned.
SA_ERR_HPI_INVALID_PARAMS isreturned if the Timeout pointer is passed in asNULL.

Remarks

Each domain maintains a single auto-insert timeout value and it is applied to all contained resources upon
insertion, which support managed hot swap. Further information on the auto-insert timeout can be found in the
function saHpiAutolnsertTimeoutSet().

HPI Specification SAI-HPI-B.01.01 141
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.7.9 saHpiAutolnsertTimeoutSet()

This function allows an HPI User to configure a timeout for how long to wait before the default auto-insertion
policy isinvoked on aresource within a specific domain.

Prototype

SaErrorT SAHPI_API saHpiAutolnsertTimeoutSet(
SAHPI_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiTimeoutT Timeout

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().

Timeout — [in] The number of nanoseconds to wait before autonomous handling of the hot swap event.
Reserved time out values:

e SAHPI_TIMEOUT_IMMEDIATE indicates proceed immediately to autonomous handling.

e SAHPI_TIMEOUT_BLOCK indicates prevent autonomous handling.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_READ_ONLY isreturned if the auto-insert timeout for the domain isfixed asindicated by the
SAHPI_DOMAIN_CAP_AUTOINSERT_READ_ONLY flag in the Domainlinfo structure.

SA_ERR_HPI_INVALID_PARAMS is returned when the Timeout parameter is not set to SAHP1_TIMEOUT_BLOCK,
SAHPI_TIMEOUT_IMMEDIATE Or a positive value.

Remarks

This function accepts a parameter instructing each resource to impose a delay before performing its default hot
swap policy for auto-insertion. The parameter may be set to SAHPI_TIMEOUT_IMMEDIATE to direct resources to
proceed immediately to auto—insertion, or to SAHPI_TIMEOUT_BLOCK to prevent auto-insertion from ever
occurring. If the parameter is set to another value, then it defines the number of nanoseconds between the time
a hot swap event with HotSwapState = SAHP1_HS_STATE_INSERTION_PENDING iS generated, and the time that
the auto-insertion policy will be invoked for that resource. If, during thistime period, a

saHpiHotSwapPol icyCancel () function call is processed, the timer will be stopped, and the auto-
insertion policy will not be invoked. Each domain maintains a single auto-insert timeout value and it is applied
to all contained resources upon insertion, which support managed hot swap.

Once the auto-insertion policy begins, an HPI User will not be allowed to cancel the insertion policy; hence,
the timeout should be set appropriately to allow for this condition. Note that the timeout period begins when
the hot swap event with HotSwapState = SAHP1_HS_STATE_INSERTION_PENDING isinitially generated; not when
itisreceived by an HPI User with asaHpiEventGet () function call, or even when it is placed in a session
event queue.

A resource may exist in multiple domains, which themselves may have different auto-insertion timeout values.
Upon insertion, the resource will begin its auto-insertion policy based on the smallest auto-insertion timeout
value. Asanexample, if aresourceisinserted into two domains, one with an auto-insertion timeout of 5
seconds, and one with an auto-insertion timeout of 10 seconds, the resource will begin its auto-insertion policy
at 5 seconds.

142

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

S Service Availability™ Hardware Platform Interface
Resource Functions

An implementation may enforce afixed, preset timeout value. In such cases, the
SAHPI_DOMAIN_CAP_AUTOINSERT_READ_ONLY flag will be set to indicate that an HPI User cannot change the

auto-insert Timeout value. SA_ERR_HPI_READ_ONLY isreturned if an HPI User attempts to change a read-only
timeout.

HPI Specification SAI-HPI-B.01.01 143
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY

Resource Functions Aot

7.7.10 saHpiAutoExtractTimeoutGet()

Thisfunction allows an HPI User to request the timeout for how long a resource will wait before the default
auto-extraction policy is invoked.

Prototype

SaErrorT SAHPI_API1 saHpiAutoExtractTimeoutGet(
SAHP1_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHP1_OUT SaHpiTimeoutT *Timeout

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Timeout — [out] Pointer to location to store the number of nanoseconds to wait before autonomous handling of
the hot swap event. Reserved time out values:

e SAHPI_TIMEOUT_IMMEDIATE indicates autonomous handling isimmediate.

e SAHPI_TIMEOUT_BLOCK indicates autonomous handling does not occur.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support managed hot swap, as indicated by
SAHPI_CAPABILITY_MANAGED_HOTSWAP in the resource's RPT entry.

SA_ERR_HPI_INVALID_PARAMS isreturned if the Timeout pointer is passed in asNULL.

Remarks

Further information on auto-extract timeoutsis detailed in saHp i AutoExtractTimeoutSet().

144

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.7.11 saHpiAutoExtractTimeoutSet()

This function allows an HPI User to configure atimeout for how long to wait before the default auto-extraction
policy isinvoked.

Prototype

SaErrorT SAHPI_API1 saHpiAutoExtractTimeoutSet(
SAHPI1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiTimeoutT Timeout

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Timeout — [in] The number of nanoseconds to wait before autonomous handling of the hot swap event.
Reserved timeout values:

e SAHPI_TIMEOUT_IMMEDIATE indicates proceed immediately to autonomous handling.

e SAHPI_TIMEOUT_BLOCK indicates prevent autonomous handling.

Return Value

SA_OK isreturned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support managed hot swap, as indicated by
SAHPI_CAPABILITY_MANAGED_HOTSWAP in the resource's RPT entry.

SA_ERR_HPI_INVALID_PARAMS is returned when the Timeout parameter is not set to SAHP1_TIMEOUT_BLOCK,
SAHPI_TIMEOUT_IMMEDIATE Or a positive value.

SA_ERR_HPI_READ_ONLY isreturned if the auto-extract timeout for the resource isfixed, asindicated by the
SAHPI_HS_CAPABILITY_AUTOEXTRACT_READ_ONLY in the resource's RPT entry.

Remarks

This function accepts a parameter instructing the resource to impose adelay before performing its default hot
swap policy for auto-extraction. The parameter may be set to SAHP1_TIMEOUT_IMMEDIATE to direct the resource
to proceed immediately to auto-extraction, or to SAHPI_TIMEOUT_BLOCK to prevent auto-extraction from ever
occurring on aresource. If the parameter is set to another value, then it defines the number of nanoseconds
between the time a hot swap event with HotSwapState = SAHP1_HS_STATE_EXTRACTION_PENDING iS generated
and the time that the auto-extraction policy will be invoked for the resource. If, during this time period, a
saHpiHotSwapPol icyCancel () function call is processed, the timer will be stopped, and the auto-
extraction policy will not be invoked.

Once the auto-extraction policy begins, an HPI User will not be allowed to cancel the extraction policy; hence,
the timeout should be set appropriately to allow for this condition. Note that the timeout period begins when the
hot swap event with HotSwapState = SAHP1_HS_STATE_EXTRACTION_PENDING isinitially generated; not when it
isreceived by aHPI User with asaHpiEventGet() function call, or even when it is placed in a session
event queue.

HPI Specification SAI-HPI-B.01.01 145
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

The auto-extraction policy is set at the resource level and is only supported by resources supporting the
Managed Hot Swap capability. The auto-extraction timeout value cannot be modified if the resource’s “Hot
Swap AutoExtract Read-only” capahility is set. After discovering that a newly inserted resource supports
Managed Hot Swap, and read-write auto-extract timeouts, an HPI User may use this function to change the
timeout of the auto-extraction policy for that resource. If aresource supports the simplified hot swap model,
setting this timer has no effect since the resource will transition directly to NOT PRESENT state on an
extraction.

An implementation may enforce a fixed, preset timeout value. In such cases, the
SAHPI_HS_CAPABILITY_AUTOEXTRACT_READ_ONLY flag will be set to indicate that an HPI User cannot change the
auto-extract Timeout value. SA_ERR_HPI_READ_ONLY isreturned if an HPl User attempts to change a read-only
timeout.

146 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY .
o e Resource Functions

7.7.12 saHpiHotSwapStateGet()

Thisfunction allows an HPI User to retrieve the current hot swap state of a resource.

Prototype

SaErrorT SAHPI_API1 saHpiHotSwapStateGet (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHP1_OUT SaHpiHsStateT *State

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
Sate — [out] Pointer to location to store returned state information.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support managed hot swap, as indicated by
SAHPI_CAPABILITY_MANAGED_HOTSWAP in the resource's RPT entry.

SA_ERR_HPI_INVALID_PARAMS is returned if the Sate pointer is passed inas NULL.

Remarks

The returned state will be one of the following four states:
e SAHPI_HS_STATE_INSERTION_PENDING
e SAHPI_HS_STATE_ACTIVE
e SAHPI_HS_STATE_EXTRACTION_PENDING

e SAHPI_HS_STATE_INACTIVE

The state SAHPI_HS_STATE_NOT_PRESENT Will never be returned, because aresource that is not present cannot
be addressed by this function in thefirst place.

HPI Specification SAI-HPI-B.01.01 147
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.7.13 saHpiHotSwapActionRequest()

This function allows an HPI User to invoke an insertion or extraction process via software.

Prototype

SaErrorT SAHPI_API1 saHpiHotSwapActionRequest (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI1_IN SaHpiHsActionT Action

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Action —[in] Requested action:
e SAHPI_HS_ACTION_INSERTION

e SAHPI_HS_ACTION_EXTRACTION

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support managed hot swap, as indicated by
SAHPI_CAPABILITY_MANAGED_HOTSWAP in the resource's RPT entry.

SA_ERR_HPI_INVALID_REQUEST isreturned if the resource is not in an appropriate hot swap state, or if the
requested action is inappropriate for the current hot swap state. See the Remarks section below.

SA_ERR_HPI_INVALID_PARAMS is returned when Action is not one of the valid enumerated values for this type.

Remarks

A resource supporting hot swap typically requires a physical action on the associated FRU to invoke an
insertion or extraction process. An insertion process isinvoked by physically inserting the FRU into a chassis.
Physically opening an gector latch or pressing a button invokes the extraction process. This function provides
an alternative means to invoke an insertion or extraction process via software.
Thisfunction may only be called:

e Torequest an insertion action when the resource isin INACTIVE state.

e Torequest an extraction action when the resourceisin the ACTIVE state.

The function may not be called when the resource isin any other state.

148 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.7.14 saHpiHotSwaplndicatorStateGet()

Thisfunction allows an HPI User to retrieve the state of the hot swap indicator. A FRU associated with a hot-
swappable resource may include a hot swap indicator such asablue LED. Thisindicator signifies that the FRU
isready for removal.

Prototype

SaErrorT SAHPI_API1 saHpiHotSwaplndicatorStateGet (
SAHPI1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHP1_OUT SaHpiHsIndicatorStateT *State

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
Sate — [out] Pointer to location to store state of hot swap indicator.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support:
e Managed hot swap, asindicated by SAHP1_CAPABILITY_MANAGED_HOTSWAP in the resource's RPT entry.

e A hot swap indicator on the FRU as indicated by the SAHP1_HS_CAPABILITY_INDICATOR_SUPPORTED in
the resource’s RPT entry.

SA_ERR_HPI_INVALID_PARAMS is returned if the Sate pointer is passed inas NULL.

Remarks
Thereturned state is either SAHPI_HS_INDICATOR_OFF OF SAHPI_HS_INDICATOR_ON. Thisfunction will return the
state of the indicator, regardless of what hot swap state the resourceisin.

Not all resources supporting managed hot swap will necessarily support this function. Whether or not a
resource supports the hot swap indicator is specified in the Hot Swap Capabilitiesfield of the RPT entry.

HPI Specification SAI-HPI-B.01.01 149
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY

Resource Functions Aot

7.7.15 saHpiHotSwaplndicatorStateSet()

Thisfunction allows an HPI User to set the state of the hot swap indicator. A FRU associated with a hot-
swappable resource may include a hot swap indicator such asablue LED. Thisindicator signifies that the FRU
isready for removal.

Prototype

SaErrorT SAHPI_API1 saHpiHotSwaplndicatorStateSet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiHsIndicatorStateT State

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.
Sate—[in] State of hot swap indicator to be set.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support:
e Managed hot swap, asindicated by SAHP1_CAPABILITY_MANAGED_HOTSWAP in the resource’ s RPT entry.
e A hot swap indicator on the FRU as indicated by the SAHP1_HS_CAPABILITY_INDICATOR_SUPPORTED in
the resource’s RPT entry.

SA_ERR_HPI_INVALID_PARAMS is returned when State is not one of the valid enumerated values for thistype.

Remarks

Valid statesinclude SAHP1_HS_INDICATOR_OFF Or SAHPI_HS_INDICATOR_ON. This function will set the indicator
regardless of what hot swap state the resource isin, though it is recommended that this function be used only in
conjunction with moving the resource to the appropriate hot swap state.

Not all resources supporting managed hot swap will necessarily support this function. Whether or not a
resource supports the hot swap indicator is specified in the Hot Swap Capabilitiesfield of the RPT entry.

150

SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

A Resource Functions

7.8 Configuration

Thisfunction isvalid for any and all resources that have the Configuration capability
(SAHPI_CAPABILITY_CONFIGURATION) set in their corresponding RPT entries.

A resource maintains three sets of configuration items for the resource:
a) Thecurrent operational configuration settings
b) A setof “saved” configuration settings stored in non-volatile memory
¢) The*“factory default” configuration settings

Both the saved and factory default configuration settings are stored in non-volatile memory. Initially, when the
resource is manufactured, the saved and factory default settings are the same. When the resource starts, e.g., at system
startup or resource hot-swap insertion, the saved settings are used as the initial operational settings for the resource.
During operation, the operational configuration settings may be changed by various actions of the platform, and by HPI
Users making HPI API calls. ThesaHpiParmControl () API can be used to update the saved settings in non-
volatile memory to the current values of the operational settings, so that these settings will be used the next time the
resourceis started. The saHpiParmControl () API can aso be used to reset the current operationa settings to
either the “saved” settings or the “factory default” settings while the resource is operational. Figure 12 shows how
these three sets of configuration settings are used when the resource starts, and when saHpiParmControl () is
called with the various values for the Action parameter.

Note that when aresourceis physically removed from a system and then re-inserted, there can be no assurances as to
the state of the saved configuration settings.

Figure 12. Configuration Settings

Current Operational
Settings

"Factory Default” "Saved"
Settings Settings
B3127-01
HPI Specification SAI-HPI-B.01.01 151

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

The resource configuration items that are saved and restored with the saHpiParmControl () function arein three
categories; mandatory, optional, and implementati on-specific.

Every HPI resource that supports the Configuration capability must save and restore the mandatory configuration items
viathe saHpiParmControl () API. The mandatory configuration items are:

a) Auto-extract timeout value

b) Sensor enable states

C) Sensor event enable states

d) Sensor assert and deassert masks

€) Sensor threshold values and hysteresis values
Optional configuration settings may be saved and restored by aresource viathe saHpiParmControl () API.
Documentation for an HPI implementation should specify if these items are saved and restored, and if not saved,
whether their settings are in volatile or non-volatile memory. The optional configuration items are:

a) Control state and mode settings

b) Watchdog configuration settings

¢) Inventory Data Repository data. If Inventory Data Repository datais not saved and restored, but is
immediately persisted by the resource, thiswill be indicated by aflag in the IDR resource data record.

HPI implementations may also save and restore implementation specific items that are not exported via the HPI
interface when the saHpiParmControl () APl iscalled. Documentation for an HPI implementation should
describe these items, if any exist.

152 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY .
raea Resource Functions
7.8.1 saHpiParmControl()

Thisfunction allows an HPI User to save and restore parameters associated with a specific resource.

Prototype

SaErrorT SAHPI_API1 saHpiParmControl (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiParmActionT Action

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Action —[in] Action to perform on resource parameters.

e SAHPI_DEFAULT_PARM Restores the factory default settings for a specific resource. Factory
defaults include sensor thresholds and configurations, and resource- specific configuration parameters.

e SAHPI_SAVE_PARM Stores the resource configuration parameters in non-volatile storage.
Resource configuration parameters stored in non-volatile storage will survive power cycles and resource
resets.

e SAHPI_RESTORE_PARM Restores resource configuration parameters from non-volatile storage.

Resource configuration parameters include sensor thresholds and sensor configurations, as well as
resource-specific parameters.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support parameter control, asindicated by
SAHPI_CAPABILITY_CONFIGURATION in the resource’ s RPT entry.

SA_ERR_HPI_INVALID_PARAMS is returned when Action is not set to a proper value.

Remarks

Resource-specific parameters should be documented in an implementation guide for the HPI implementation.

When this AP is called with SAHP1_RESTORE_PARM as the action prior to having made a call with this API
where the action parameter was set to SAHP1_SAVE_PARM, the default parameters will be restored.

HPI Specification SAI-HPI-B.01.01 153
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.9 Reset Management

These functions are valid for resources that have the Reset capability (SAHPI_CAPABILITY_RESET) set in their
corresponding RPT entries.

Entities may be reset for avariety of reasons. A failed entity may be reset to bring it to a known state. In these cases,
either awarm reset or a cold reset may be performed. A warm reset preserves entity state, whereas a cold reset does
not. Both of these reset types are pul sed asserted and then de-asserted by the HPI implementation. This allows the HPI
implementation to hold the reset asserted for the appropriate length of time, as needed by each entity.

saHpiResourceResetStateSet() can also be used for insertion and extraction scenarios. A typical resource
supporting hot swap will have to ability to control local reset on the entity that it manages. During insertion, a resource
can be instructed to assert reset, while the entity powers on. During extraction a resource can be requested to assert
reset before the entity is powered off. SAHPI_RESET_ASSERT is used to hold the entity in reset. SAHPI_RESET_DEASSERT
isused to bring an entity out of the reset state.

154 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.9.1 saHpiResourceResetStateGet()

This function gets the reset state of an entity, allowing an HPI User to determine if the entity is being held with
its reset asserted. If aresource manages multiple entities, this function will address the entity which is
identified in the RPT entry for the resource.

Prototype

SaErrorT SAHPI_API saHpiResourceResetStateGet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHP1_OUT SaHpiResetActionT *ResetAction

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

ResetAction —[out] The current reset state of the entity. Valid reset states are:
e SAHPI_RESET_ASSERT: The entity’ sreset is asserted, e.g., for hot swap insertion/extraction purposes.

e SAHPI_RESET_DEASSERT: Theentity’sreset is not asserted.

Return Value
SA_oK isreturned if the resource has reset control, and the reset state has successfully been determined;
otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support reset control as indicated by
SAHPI_CAPABILITY_RESET in the resource’ s RPT entry.

SA_ERR_HPI_INVALID_PARAMS isreturned if the ResetAction pointer is passed in as NULL.

Remarks

SAHP1_COLD_RESET and SAHPI_WARM_RESET are pulsed resets, and are not valid valuesto be returned in
ResetAction. If the entity is not being held in reset (using SAHP1_RESET_ASSERT), the appropriate valueis
SAHPI_RESET_DEASSERT.

HPI Specification SAI-HPI-B.01.01 155
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilability™ SERVICE
Service Avallab|_llty Hardware Platform Interface aBERVICE
Resource Functions o i

7.9.2 saHpiResourceResetStateSet()

This function directs the resource to perform the specified reset type on the entity that it manages. If aresource
manages multiple entities, this function addresses the entity that isidentified in the RPT entry for the resource.

Prototype

SaErrorT SAHPI_API saHpiResourceResetStateSet (
SAHP1_IN SaHpiSessionldT Sessionld,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiResetActionT ResetAction

);

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

ResetAction —[in] Type of reset to perform on the entity. Valid reset actions are:

e SAHPI_COLD_RESET: Perform a‘Cold Reset’ on the entity (pulse), leaving reset de-asserted,
e SAHPI_WARM_RESET: Perform a‘Warm Reset’ on the entity (pulse), leaving reset de-asserted,
e SAHPI_RESET_ASSERT: Put the entity into reset state and hold reset asserted, e.g., for hot swap
insertion/extraction purposes,
e SAHPI_RESET_DEASSERT: Bring the entity out of the reset state.
Return Value

SA_oK isreturned if the resource has reset control, and the requested reset action has succeeded; otherwise, an
error code s returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support resource reset control, as indicated by
SAHPI_CAPABILITY_RESET in theresource’s RPT entry.

SA_ERR_HPI_INVALID_PARAMS is returned when the ResetAction is not set to a proper value.

SA_ERR_HPI_INVALID_cMD isreturned if the requested ResetAction is SAHPI_RESET_ASSERT and the resource
does not support this action.

SA_ERR_HPI1_INVALID_REQUEST isreturned if the ResetAction is SAHPI_COLD_RESET Or SAHP1_WARM_RESET and
reset is currently asserted.

Remarks

Some resources may hot support holding the entity in reset. If thisisthe case, the resource should return
SA_ERR_HPI_INVALID_cMD if the SAHPI_RESET_ASSERT action is requested. All resources that have the
SAHPI_CAPABILITY_RESET flag set in their RPTs should support SAHP1_COLD_RESET and SAHP1_WARM_RESET.
However, it is not required that these actions be different. That is, some resources may only have one sort of
reset action (e.g., a“cold” reset) which is executed when either SAHP1_COLD_RESET Of SAHPI_WARM_RESET iS
requested.

The sAHPI_RESET_ASSERT isused to hold an entity in reset, and SAHPI_RESET_DEASSERT is used to bring the
entity out of an asserted reset state.

156 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface
AVAILABILITY

A Resource Functions

7.10 Power Management

These functions are valid for resources that have the Power capability (SAHP1_CAPABILITY_POWER) Set in their
corresponding RPT entries.

Entities may be powered on, powered off or power-cycled. Itislegal to set any power state regardless of the current
state. If the power isaready in the state being set, the function will have no effect and will return normally (assuming
there are no other errors). A power cycle operation is equivalent to a power off followed, after an implementation-
dependent delay, by a power on. If the entity is aready powered off, a power cycle operation will result in turning the
power on.

saHpiResourcePowerStateSet() can also be used for insertion and extraction scenarios. A typical resource
supporting hot swap will also support power control for the FRU entity. During insertion, a resource can be instructed
to power on the FRU at an appropriate time. During extraction a resource can be requested to power off the FRU.

HPI Specification SAI-HPI-B.01.01 157
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

[ilabili SERVICE
Service Avallabl_llty”" Hardware Platform Interface aBERVICE
Resource Functions o i

7.10.1 saHpiResourcePowerStateGet()

This function gets the power state of an entity, allowing an HPI User to determine if the entity is currently
powered on or off. If aresource manages multiple entities, this function will address the entity whichis
identified in the RPT entry for the resource.

Prototype

SaErrorT SAHPI_API1 saHpiResourcePowerStateGet (
SAHPI1_IN SaHpiSessionldT Sessionlid,
SAHPI_IN SaHpiResourceldT Resourceld,
SAHP1_OUT SaHpiPowerStateT *State

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Sate —[out] The current power state of the resource. Valid power states are:
e SAHPI_POWER_OFF: The entity’s primary power is OFF,

e SAHPI_POWER_ON: The entity’s primary power is ON.

Return Value

SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support power management, as indicated by
SAHPI_CAPABILITY_POWER in the resource's RPT entry.

SA_ERR_HPI_INVALID_PARAMS isreturned if the Sate pointer is passed in as NULL.

Remarks

SAHPI_POWER_CYCLE is a pulsed power operation and is not avalid return for the power state.

158 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE Service Availability™ Hardware Platform Interface

AVAILABILITY

Resource Functions

7.10.2 saHpiResourcePowerStateSet()

This function directs the resource to perform the power control action on the entity that it manages. If a
resource manages multiple entities, this function addresses the entity that is identified in the RPT entry for the
resource.

Prototype

SaErrorT SAHPI_API saHpiResourcePowerStateSet (
SAHP1_IN SaHpiSessionldT Sessionlid,
SAHP1_IN SaHpiResourceldT Resourceld,
SAHPI_IN SaHpiPowerStateT State

)

Parameters

Sessionld —[in] Identifier for a session context previously obtained using saHpiSessionOpen().
Resourceld —[in] Resource identified for this operation.

Sate —[in] the requested power control action. Valid values are:
e SAHPI_POWER_OFF: The entity’s primary power is turned OFF,
e SAHPI_POWER_ON: The entity’s primary power isturned ON,

e SAHPI_POWER_CYCLE: The entity’s primary power is turned OFF, then turned ON.

Return Value
SA_OK is returned on successful completion; otherwise, an error code is returned.

SA_ERR_HPI_CAPABILITY isreturned if the resource does not support power management, as indicated by
SAHPI_CAPABILITY_POWER in the resource's RPT entry.

SA_ERR_HPI_INVALID_PARAMS is returned when State is not one of the valid enumerated values for this type.

Remarks

This function controls the hardware power on a FRU entity regardless of what hot-swap state the resourceisin.
For example, it islegal (and may be desirable) to cycle power on the FRU even whileit isin ACTIVE statein
order to attempt to clear afault condition. Similarly, aresource could be instructed to power on a FRU even
whileitisin INACTIVE state, for example, in order to run off-line diagnostics.

Not all resources supporting hot swap will necessarily support this function. In particular, resources that use the
simplified hot swap model may not have the ability to control FRU power.

This function may also be supported for non-FRU entitiesif power control is available for those entities.

HPI Specification SAI-HPI-B.01.01 159
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface P

Data Type Definitions

8 Data Type Definitions

8.1 Basic Data Types and Values

/

Fhkhkhdk Ak kA

KAAAAAAAA*K

*hkkkkkhkkk

Fhkkhdkhk ki

Basic Data Types and Values falsiaiadalaiaiaiatod

R

/

/* General Types — need to be specified correctly for the host architecture */

/*

*x It is recommended that these types be defined such that the data sizes
** and alignment of each data type are as indicated. The only requirement
** for source compatibility is that the types be defined to be able to

*x contain at least the required data (e.g., at least signed 8-bit values
*x must be contained in the data type defined as SaHpilnt8T, etc.)

** Following the full recommendations for data size and alignment, however,
*x may promote more binary compatibility.

*/

typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

ANNNNNNANNANNANNA
VVVVVVVVYV

typedef SaHpiUin
#define SAHPI_TR

SaHpiUint8T;
SaHpiUintl6T;
SaHpiUint32T;
SaHpiUint64T;
SaHpi Int8T;

SaHpi Intl6T;
SaHpi Int32T;
SaHpi Int64T;

/*
/*
/*
/*
/*
/*
/*
/*

SaHpiFloat64T; /*

unsigned 8-bit data, 1-byte alignment */
unsigned 16-bit data, 2-byte alignment */
unsigned 32-bit data, 4-byte alignment */
unsigned 64-bit data, 8-byte alignment */
signed 8-bit data, 1-byte alignment */
signed 16-bit data, 2-byte alignment */
signed 32-bit data, 4-byte alignment */
signed 64-bit data, 8-byte alignment */
64-bit floating point, 8-byte alignment */

t8T SaHpiBoolT;
/* While SAHPI_TRUE = 1, any non-zero

UE 1

#define SAHPI_FALSE 0

value is also considered to be True
and HPI Users/Implementers of this
specification should not test for
equality against SAHPI_TRUE. */

/* Platform, 0/S, or Vendor dependent */

#define SAHPI_AP
#define SAHPI_IN
#define SAHPI_OU
#define SAHPI_IN

/*

** ldentifier for the manufacturer

*x

T
OouT

** This is the IANA-assigned private enterprise number for the
** manufacturer of the resource or FRU, or of the manufacturer
** defining an OEM control or event type. A list of current

** JANA-assigned private enterprise numbers may be obtained at

E

** http://www. iana.org/assignments/enterprise-numbers

**

** |f a manufacturer does not currently have an assigned number, one
** may be obtained by following the instructions located at

**

kel http://www.iana.org/cgi-bin/enterprise.pl

*/

typedef SaHpiUint32T SaHpiManufacturerldT;
#define SAHPI_MANUFACTURER_ID_UNSPECIFIED (SaHpiManufacturerldT)O

/* Version Types

*/

160 SAI-HPI-B.01.01

HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Data Type Definitions

typedef SaHpiUint32T SaHpiVersionT;

/*
** Interface Version

*k

** The interface version is the version of the actual

** version of the implementation. It is a 24 bit value where

** the most significant 8 bits represent the compatibility level
** (with letters represented as the corresponding numbers);

** the next 8 bits represent the major version number; and

** the least significant 8 bits represent the minor version number.

*/

interface and not the

#define SAHPI_INTERFACE_VERSION (SaHpiVersionT)0x020101 /* B.01.01 */

/*
** Return Codes

**

** SaErrorT is defined in the HPI specification.

In the future a

** common SAF types definition may be created to contain this type. At
** that time, this typedef should be removed. Each of the return codes
** js defined in Section 4.1 of the specification.

*/

typedef SaHpilnt32T SaErrorT; /* Return code */

/*

** SA_OK:

*/

#define SA_OK

(SaErrorT)0x0000

/* This value is the base for all HPIl-specific error codes. */

#define SA_HPI_ERR_BASE

#define SA_ERR_HPI_ERROR

#define SA_ERR_HPI_UNSUPPORTED_API
#define SA_ERR_HPI_BUSY

#define SA_ERR_HPI_INTERNAL_ERROR
#define SA_ERR_HPI_INVALID_CMD
#define SA_ERR_HPI_TIMEOUT

#define SA_ERR_HPI_OUT_OF SPACE
#define SA_ERR_HPI_OUT_OF_ MEMORY
#define SA_ERR_HPI_INVALID_PARAMS
#define SA_ERR_HPI_INVALID_DATA
#define SA_ERR_HPI_NOT_PRESENT
#define SA_ERR_HPI_NO_RESPONSE
#define SA_ERR_HPI_DUPLICATE
#define SA_ERR_HPI_INVALID_SESSION
#define SA_ERR_HPI_INVALID_DOMAIN
#define SA_ERR_HPI_INVALID_RESOURCE
#define SA_ERR_HPI_INVALID_REQUEST
#define SA_ERR_HPI_ENTITY_NOT_PRESENT
#define SA_ERR_HPI_READ_ONLY
#define SA_ERR_HPI_CAPABILITY
#define SA_ERR_HPI_UNKNOWN

/*

-1000

(SaErrorT) (SA_HPI_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE
(SaErrorT) (SA_HP1_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE
(SaErrorT) (SA_HPI_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE
(SaErrorT) (SA_HP1_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE
(SaErrorT) (SA_HPI_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE
(SaErrorT) (SA_HP1_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE
(SaErrorT) (SA_HPI_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE
(SaErrorT) (SA_HPI_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE
(SaErrorT) (SA_HPI1_ERR_BASE

** Domain, Session and Resource Type Definitions

*/

/* Domain ID. */
typedef SaHpiUint32T SaHpiDomainldT;

/* The SAHPI_UNSPECIFIED_DOMAIN_ID value is used to specify the default

** domain.
*/

#define SAHPI_UNSPECIFIED_DOMAIN_ID (SaHpiDomainldT) OxFFFFFFFF

/* Session ID. */
typedef SaHpiUint32T SaHpiSessionldT;

/* Resource identifier. */
typedef SaHpiUint32T SaHpiResourceldT;

HPI Specification

SAI-HPI-B.01.01

161

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVI
AVAILABI

CE

LTy

/*
**
**

*/

The SAHPI_UNSPECIFIED_RESOURCE_ID value is used to specify the Domain
Event Log and to specify that there is no resource for such things as HPI
User events/alarms.

#define SAHPI_UNSPECIFIED_RESOURCE_ID (SaHpiResourceldT) OXFFFFFFFF

/*

Table Related Type Definitions */

typedef SaHpiUint32T SaHpiEntryldT;

#define SAHPI_FIRST_ENTRY (SaHpiEntryldT)0x00000000
#define SAHPI_LAST_ENTRY (SaHpiEntryldT)OxFFFFFFFF
#define SAHPI_ENTRY_UNSPECIFIED SAHPI_FIRST_ENTRY

/*

** Time Related Type Definitions

**

** An HPI time value represents the local time as the number of nanoseconds

** from 00:00:00, January 1, 1970, in a 64-bit signed integer. This format

** js sufficient to represent times with nano-second resolution from the

** year 1678 to 2262. Every APl which deals with time values must define

** the timezone used.

*xk

** 1t should be noted that although nano-second resolution is supported

** in the data type, the actual resolution provided by an implementation

** may be more limited than this.

*xk

** The value -2**63, which is 0x8000000000000000, is used to indicate

** “unknown/unspecified time”.

**

** Conversion to/from POSIX and other common time representations is

** relatively straightforward. The following code framgment converts

** petween SaHpiTimeT and time_t:

**

hoked time_t ttl, tt2;

*x SaHpiTimeT saHpiTime;

**

*x time(&ttl);

*x saHpiTime = (SaHpiTimeT) ttl * 1000000000;

*x tt2 = saHpiTime /7 1000000000;

**k

** The following fragment converts between SaHpiTimeT and a struct timeval:

**

*x struct timeval tvl, tv2;

*x SaHpiTimeT saHpiTime;

**

*x gettimeofday(&tvl, NULL);

*x saHpiTime = (SaHpiTimeT) tvl.tv_sec * 1000000000 + tvl.tv_usec * 1000;

*x tv2.tv_sec = saHpiTime / 1000000000;

** tv2.tv_usec = saHpiTime % 1000000000 / 1000;

**

** The following fragment converts between SaHpiTimeT and a struct timespec:

**k

** struct timespec tsl, ts2;

*x SaHpiTimeT saHpiTime;

*xk

** clock_gettime(CLOCK_REALTIME, &tsl);

x saHpiTime = (SaHpiTimeT) tsl.tv_sec * 1000000000 + tsl.tv_nsec;

*x ts2.tv_sec = saHpiTime / 1000000000;

*x ts2.tv_nsec = saHpiTime % 1000000000;

**

** Note, however, that since time_t is (effectively) universally 32 bits,

** all of these conversions will cease to work on January 18, 2038.

**

** Some subsystems may need the flexibility to report either absolute or

** relative (eg. to system boot) times. This will typically be in the

** case of a board which may or may not, depending on the system setup,

** have an idea of absolute time. For example, some boards may have

** *“time of day” clocks which start at zero, and never get set to the

** time of day.

**

** In these cases, times which represent “current” time (in events, for
162 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

AVAILABILITY
et Data Type Definitions

** example) can be reported based on the clock value, whether it has been
** set to the actual date/time, or whether it represents the elapsed time
** since boot. If it is the time since boot, the value will be (for 27

** years) less than 0x0C00000000000000, which is Mon May 26 16:58:48 1997.
** 1T the value is greater than this, then it can be assumed to be an

** absolute time.

**

** There is no practical need within the interface for expressing dates prior
** to the publication of this specification (which is more than five years
** after the “break point” between relative and absolute time). Thus, in all
** jnstances a time value should be interpreted as “relative” times if the
** value is less than or equal to SAHPI_TIME_MAX_RELATIVE (but not equal to
** SAHPI_TIME_UNSPECIFIED which always means the time is not available), or
** *“absolute” times if the value is greater than SAHPI_TIME_MAX_RELATIVE.

*/

typedef SaHpilnt64T SaHpiTimeT; /* Time in nanoseconds */

/* Unspecified or unknown time */
#define SAHPI_TIME_UNSPECIFIED (SaHpiTimeT) 0x8000000000000000LL

/* Maximum time that can be specified as relative */
#define SAHPI_TIME_MAX_RELATIVE (SaHpiTimeT) 0x0CO0000000000000LL
typedef SaHpiInt64T SaHpiTimeoutT; /* Timeout in nanoseconds */

/* Non-blocking call */
#define SAHPI_TIMEOUT_IMMEDIATE (SaHpiTimeoutT) 0x0000000000000000LL

/* Blocking call, wait indefinitely for call to complete */
#define SAHPI_TIMEOUT_BLOCK (SaHpiTimeoutT) -1LL

/*
** Language

**

** This enumeration lists all of the languages that can be associated with text.

**k

** SAHPI_LANG_UNDEF indicates that the language is unspecified or

** unknown.

*/

typedef enum {
SAHPI_LANG_UNDEF = 0, SAHPI_LANG_AFAR, SAHPI_LANG_ABKHAZIAN,
SAHP1_LANG_AFRIKAANS, SAHPI_LANG_AMHARIC, SAHPI_LANG_ARABIC,
SAHPI_LANG_ASSAMESE, SAHPI_LANG_AYMARA, SAHPI_LANG_AZERBAIJANI,
SAHPI_LANG_BASHKIR, SAHPI_LANG_BYELORUSSIAN, SAHPI_LANG_BULGARIAN,
SAHPI_LANG_BIHARI, SAHPI_LANG_BISLAMA, SAHPI_LANG_BENGALI,
SAHP1_LANG_TIBETAN, SAHPI_LANG_BRETON, SAHPI_LANG_CATALAN,
SAHPI_LANG_CORSICAN, SAHPI_LANG_CZECH, SAHPI_LANG_WELSH,
SAHPI_LANG_DANISH, SAHPI_LANG_GERMAN, SAHPI_LANG_BHUTANI,
SAHPI_LANG_GREEK, SAHPI_LANG_ENGLISH, SAHPI_LANG_ESPERANTO,
SAHP1_LANG_SPANISH, SAHPI_LANG_ESTONIAN, SAHPI_LANG_BASQUE,
SAHPI_LANG_PERSIAN, SAHPI_LANG_FINNISH, SAHPI_LANG_FIJI1,
SAHPI_LANG_FAEROESE, SAHPI_LANG_FRENCH, SAHPI_LANG_FRISIAN,
SAHPI_LANG_IRISH, SAHPI_LANG_SCOTSGAELIC, SAHPI_LANG_GALICIAN,
SAHP1_LANG_GUARANI, SAHPI_LANG_GUJARATI, SAHPI_LANG_HAUSA,
SAHPI_LANG_HINDI, SAHPI_LANG_CROATIAN, SAHPI_LANG_HUNGARIAN,
SAHPI_LANG_ARMENIAN, SAHPI_LANG_INTERLINGUA, SAHPI_LANG_INTERLINGUE,
SAHPI_LANG_INUPIAK, SAHPI_LANG_INDONESIAN, SAHPI_LANG_ICELANDIC,
SAHPI1_LANG_ITALIAN, SAHPI_LANG_HEBREW, SAHPI_LANG_JAPANESE,
SAHPI_LANG_YIDDISH, SAHPI_LANG_JAVANESE, SAHPI_LANG_GEORGIAN,
SAHPI_LANG_KAZAKH, SAHPI_LANG_GREENLANDIC, SAHPI_LANG_CAMBODIAN,
SAHPI_LANG_KANNADA, SAHPI_LANG_KOREAN, SAHPI_LANG_KASHMIRI,
SAHPI_LANG_KURDISH, SAHPI_LANG_KIRGHIZ, SAHPI_LANG_LATIN,
SAHP1_LANG_LINGALA, SAHPI_LANG_LAOTHIAN, SAHPI_LANG_LITHUANIAN,
SAHPI_LANG_LATVIANLETTISH, SAHPI_LANG_MALAGASY, SAHPI_LANG_MAORI,
SAHPI_LANG_MACEDONIAN, SAHPI_LANG_MALAYALAM, SAHPI_LANG_MONGOLIAN,
SAHPI_LANG_MOLDAVIAN, SAHPI_LANG_MARATHI, SAHPI_LANG_MALAY,
SAHPI1_LANG_MALTESE, SAHPI_LANG_BURMESE, SAHPI_LANG_NAURU,
SAHPI_LANG_NEPALI, SAHPI_LANG_DUTCH, SAHPI_LANG_NORWEGIAN,
SAHPI_LANG_OCCITAN, SAHPI_LANG_AFANOROMO, SAHPI_LANG_ORIYA,
SAHPI_LANG_PUNJABI, SAHPI_LANG_POLISH, SAHPI_LANG_PASHTOPUSHTO,
SAHP1_LANG_PORTUGUESE, SAHPI_LANG_QUECHUA, SAHPI_LANG_RHAETOROMANCE,
SAHPI_LANG_KIRUNDI, SAHPI_LANG_ROMANIAN, SAHPI_LANG_RUSSIAN,

HPI Specification SAI-HPI-B.01.01 163
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVICE
AVAILABILITY

SAHP1_LANG_KINYARWANDA, SAHPI_LANG_SANSKRIT, SAHPI_LANG_SINDHI,
SAHP1_LANG_SANGRO, SAHPI_LANG_SERBOCROATIAN, SAHPI_LANG_SINGHALESE,
SAHPI_LANG_SLOVAK, SAHPI_LANG_SLOVENIAN, SAHPI_LANG_SAMOAN,
SAHPI_LANG_SHONA, SAHPI_LANG_SOMALI, SAHPI_LANG_ALBANIAN,
SAHPI_LANG_SERBIAN, SAHPI_LANG_SISWATI, SAHPI_LANG_SESOTHO,
SAHP1_LANG_SUDANESE, SAHPI_LANG_SWEDISH, SAHPI_LANG_SWAHILI,
SAHPI_LANG_TAMIL, SAHPI_LANG_TELUGU, SAHPI_LANG_TAJIK,
SAHPI_LANG_THAI, SAHPI_LANG_TIGRINYA, SAHPI_LANG_TURKMEN,
SAHP1_LANG_TAGALOG, SAHPI_LANG_SETSWANA, SAHPI_LANG_TONGA,
SAHPI1_LANG_TURKISH, SAHPI_LANG_TSONGA, SAHPI_LANG_TATAR,
SAHPI_LANG_TWI, SAHPI_LANG_UKRAINIAN, SAHPI_LANG_URDU,
SAHPI_LANG_UZBEK, SAHPI_LANG_VIETNAMESE, SAHPI_LANG_VOLAPUK,
SAHPI_LANG_WOLOF, SAHPI_LANG_XHOSA, SAHPI_LANG_YORUBA,
SAHP1_LANG_CHINESE, SAHPI_LANG_ZULU

} SaHpilLanguageT;

/*

** Text Buffers

** These structures are used for defining the type of data in the text buffer

** and the length of the buffer. Text buffers are used in the inventory data,

** RDR, RPT, etc. for variable length strings of data.

** The encoding of the Data field in the SaHpiTextBufferT structure is defined
** py the value of the DataType field in the buffer. The following table

** describes the various encodings:

*x

x DataType Encoding
KR e

*x

** SAHPI_TL_TYPE_UNICODE 16-bit Unicode, least significant byte first.
*x Buffer must contain even number of bytes.
**

hoked SAHPI1_TL_TYPE_BCDPLUS 8-bit ASCIl, “0°-“9” or space, dash, period,
*x colon, comma, or underscore only.

**

** SAHPI_TL_TYPE_ASCI16 8-bit ASCII, reduced set, 0x20=0x5f only.
**

** SAHPI_TL_TYPE_TEXT 8-bit ASCII+Latin 1

**x

** SAHPI_TL_TYPE_BINARY 8-bit bytes, any values legal

**

** Note: "ASCIlI+Latin 1" is derived from the first 256 characters of

*x Unicode 2.0. The first 256 codes of Unicode follow 1SO 646 (ASCII)
*x and 1SO 8859/1 (Latin 1). The Unicode ''CO Controls and Basic Latin"
*x set defines the first 128 8-bit characters (00h-7Fh) and the

*x "C1l Controls and Latin 1 Supplement” defines the second 128 (80h-FFh).
**x

** Note: The SAHPI_TL_TYPE_BCDPLUS and SAHPI_TL_TYPE_ASCI16 encodings

*x use normal ASCII character encodings, but restrict the allowed

*x characters to a subset of the entire ASCII character set. These

*x encodings are used when the target device contains restrictions

** on which characters it can store or display. SAHPI_TL_TYPE_BCDPLUS
*x data may be stored externally as 4-bit values, and

hoked SAHPI_TL_TYPE_ASCI16 may be stored externally as 6-bit values.

** But, regardless of how the data is stored externally, it is

*x encoded as 8-bit ASCII in the SaHpiTextBufferT structure passed

*x across the HPI.

*/

#define SAHPI_MAX_TEXT_BUFFER_LENGTH 255

typedef enum {

SAHPI1_TL_TYPE_UNICODE = O, /* 2-byte UNICODE characters; Datalength
must be even. */

SAHPI1_TL_TYPE_BCDPLUS, /* String of ASCII characters, “0°-“9”, space,
dash, period, colon, comma or underscore
ONLY */

SAHPI_TL_TYPE_ASCII6, /* Reduced ASCI1 character set: 0x20-0x5F
ONLY */

SAHPI_TL_TYPE_TEXT, /* ASCll+Latin 1 */

164 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Data Type Definitions

SAHPI_TL_TYPE_BINARY /* Binary data, any values legal */

} SaHpiTextTypeT;

typedef struct {

SaHpiTextTypeT DataType;

SaHpilLanguageT Language; /* Language the text is in. */
SaHpilint8T Datalength; /* Bytes used in Data buffer */
SaHpiUint8T Data[SAHPI_MAX_TEXT_BUFFER_LENGTH]; /* Data buffer */

} SaHpiTextBufferT;

/*
**
**
e
*x

**

*/

Instrument I1d

The following data type is used for all management instrument identifiers -
sensor numbers, control numbers, watchdog timer numbers, etc.

typedef SaHpiUint32T SaHpilnstrumentldT;

8.2 Entities
/
E S S s e
E e e o e o o E e e e e e o e
/
/*

**k
**k
**
**
*xk
**k
**
**
*xk
**k
**
**
*xk
**k
**
**
*xk
**k
*/
/*

Entity Types

Entities are used to associate specific hardware components with sensors,
controls, watchdogs, or resources. Entities are defined with an entity
type enumeration, and an entity location number (to identify

the physical location of a particular type of entity).

Entities are uniquely identified in a system with an ordered series of
Entity Type / Entity Location pairs called an “Entity Path”. Each subsequent
Entity Type/Entity Location in the path is the next higher “containing”
entity. The “root” of the Entity Path (the outermost level of containment)

is designated with an Entity Type of SAHPI_ENT_ROOT if the entire Entity Path
is fewer than SAHPI_MAX_ENTITY_PATH entries in length.

Enumerated Entity Types include those types enumerated by the IPMI Consortium
for IPMI-managed entities, as well as additional types defined by the

HPI specification. Room is left in the enumeration for the inclusion of
Entity Types taken from other lists, if needed in the future.

Base values for entity types from various sources. */

#define SAHPI_ENT_IPMI_GROUP O

#define SAHPI_ENT_SAFHPI_GROUP 0x10000
#define SAHPI_ENT_ROOT_VALUE OxFFFF
typedef enum

SAHPI_ENT_UNSPECIFIED = SAHPI_ENT_IPMI_GROUP,
SAHP1_ENT_OTHER,

SAHPI_ENT_UNKNOWN,

SAHPI_ENT_PROCESSOR,

SAHPI_ENT_DISK_BAY, /* Disk or disk bay */
SAHPI_ENT_PERIPHERAL_BAY,

SAHPI1_ENT_SYS MGMNT_MODULE, /* System management module */
SAHPI_ENT_SYSTEM_BOARD, /* Main system board, may also be

processor board and/or internal
expansion board */
SAHP1_ENT_MEMORY_MODULE, /* Board holding memory devices */
SAHP1_ENT_PROCESSOR_MODULE, /* Holds processors, use this
designation when processors are not
mounted on system board */
SAHPI_ENT_POWER_SUPPLY, /* Main power supply (supplies) for the

HPI Specification SAI-HPI-B.01.01 165
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVICE
AVAILABILITY

system */

SAHPI_ENT_ADD_IN_CARD,

SAHPI_ENT_FRONT_PANEL_BOARD, /* Control panel */

SAHPI_ENT_BACK_PANEL_BOARD,

SAHPI_ENT_POWER_SYSTEM_BOARD,

SAHPI_ENT_DRIVE_BACKPLANE,

SAHPI_ENT_SYS_EXPANSION_BOARD, /* System internal expansion board
(contains expansion slots). */

SAHPI_ENT_OTHER_SYSTEM_BOARD, /* Part of board set */

SAHP1_ENT_PROCESSOR_BOARD, /* Holds 1 or more processors. Includes
boards that hold SECC modules) */

SAHPI_ENT_POWER_UNIT, /* Power unit / power domain (typically

used as a pre-defined logical entity
for grouping power supplies)*/

SAHPI1_ENT_POWER_MODULE, /* Power module / DC-to-DC converter.

Use this value for internal
converters. Note: You should use
entity ID (power supply) for the
main power supply even if the main
supply is a DC-to-DC converter */

SAHPI_ENT_POWER_MGMNT, /* Power management/distribution

board */

SAHPI_ENT_CHASSIS_BACK_PANEL_BOARD,

SAHPI1_ENT_SYSTEM_CHASSIS,

SAHP1_ENT_SUB_CHASSIS,

SAHPI_ENT_OTHER_CHASSIS_BOARD,

SAHPI_ENT_DISK_DRIVE_BAY,

SAHP1_ENT_PERIPHERAL_BAY 2,

SAHP1_ENT_DEVICE_BAY,

SAHP1_ENT_COOLING_DEVICE, /* Fan/cooling device */

SAHPI1_ENT_COOLING_UNIT, /* Can be used as a pre-defined logical

entity for grouping fans or other
cooling devices. */

SAHP1_ENT_INTERCONNECT, /* Cable / interconnect */

SAHP1_ENT_MEMORY_DEVICE, /* This Entity 1D should be used for

replaceable memory devices, e.g.
DIMM/SIMM. 1t is recommended that
Entity IDs not be used for
individual non-replaceable memory
devices. Rather, monitoring and
error reporting should be associated
with the FRU [e.g. memory card]
holding the memory. */

SAHPI1_ENT_SYS_MGMNT_SOFTWARE, /* System Management Software */

SAHPI_ENT_BIOS,

SAHP1_ENT_OPERATING_SYSTEM,

SAHPI_ENT_SYSTEM_BUS,

SAHP1_ENT_GROUP, /* This is a logical entity for use with
Entity Association records. It is
provided to allow a sensor data
record to point to an entity-
association record when there is no
appropriate pre-defined logical
entity for the entity grouping.

This Entity should not be used as a
physical entity. */

SAHPI_ENT_REMOTE, /* Out of band management communication
device */

SAHPI_ENT_EXTERNAL_ENVIRONMENT,

SAHPI_ENT_BATTERY,

SAHPI_ENT_CHASSIS_SPECIFIC SAHPI_ENT_IPMI_GROUP + 0x90,

SAHPI_ENT_BOARD_SET_SPECIFIC SAHPI_ENT_IPMI_GROUP + OxBO,

SAHP1_ENT_OEM_SYSINT_SPECIFIC = SAHPI_ENT_IPMI_GROUP + 0xDO,

SAHPI_ENT_ROOT = SAHPI_ENT_ROOT_VALUE,

SAHPI_ENT_RACK = SAHPI_ENT_SAFHPI_GROUP,

SAHPI_ENT_SUBRACK,

SAHP1_ENT_COMPACTPCI_CHASSIS,

SAHPI_ENT_ADVANCEDTCA_CHASSIS,

SAHPI_ENT_RACK_MOUNTED_SERVER,

SAHPI_ENT_SYSTEM_BLADE,

SAHPI_ENT_SWITCH, /* Network switch, such as a

166

SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface

Data Type Definitions

rack-mounted ethernet or fabric
switch. */

SAHPI1_ENT_SWITCH_BLADE, /* Network switch, as above, but in
a bladed system. */

SAHP1_ENT_SBC_BLADE,

SAHPI1_ENT_10_BLADE,

SAHP1_ENT_DISK BLADE,

SAHP1_ENT_DISK DRIVE,

SAHP1_ENT_FAN,

SAHPI1_ENT_POWER_DISTRIBUTION_UNIT,

SAHP1_ENT_SPEC_PROC_BLADE, /* Special Processing Blade,

including DSP */
SAHP1_ENT_10_SUBBOARD, /* 1/0 Sub-Board, including

PMC 1/0 board */
SAHPI1_ENT_SBC_SUBBOARD, /* SBC Sub-Board, including PMC

SBC board */
SAHPI_ENT_ALARM_MANAGER, /* Chassis alarm manager board */
SAHP1_ENT_SHELF_MANAGER, /* Blade-based shelf manager */
SAHPI1_ENT_DISPLAY_PANEL, /* Display panel, such as an

alarm display panel. */
SAHP1_ENT_SUBBOARD_CARRIER_BLADE, /* Includes PMC Carrier Blade --
Use only iFf “carrier"” is only
function of blade. Else use
primary function (SBC_BLADE,
DSP_BLADE, etc.). */
SAHPI1_ENT_PHYSICAL_SLOT /* Indicates the physical slot into
which a blade is inserted. */

} SaHpiEntityTypeT;

typedef SaHpiUint32T SaHpiEntitylLocationT;

typedef struct {

SaHpiEntityTypeT EntityType;
SaHpiEntityLocationT EntityLocation;

} SaHpiEntityT;

#define SAHPI_MAX_ENTITY_PATH 16

typedef struct {

SaHpiEntityT Entry[SAHPI_MAX_ENTITY_PATH];

} SaHpiEntityPathT;

8.3 Events, Part 1

/
E R E R =
KAAAAAAA)X E R e e
/
/*
** Category
**
** Sensor events contain an event category and event state. Depending on the
** event category, the event states take on different meanings for events
** generated by specific sensors.
**
** 1t Is recommended that implementations map their sensor specific
** event categories into the set of categories listed here. When such a mapping
** js impractical or impossible, the SAHPI_EC SENSOR_SPECIFIC category should
** be used.
**
** The SAHPI_EC_GENERIC category can be used for discrete sensors which have
** state meanings other than those identified with other event categories.
*/
typedef SaHpiUint8T SaHpiEventCategoryT;
#define SAHPI_EC UNSPECIFIED (SaHpiEventCategoryT)0Ox00 /* Unspecified */
#define SAHPI_EC_ THRESHOLD (SaHpiEventCategoryT)0x01 /* Threshold
HPI Specification SAI-HPI-B.01.01 167

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties

of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVI
AVAILABI

CE

LTy

events */
#define SAHPI_EC_USAGE (SaHpiEventCategoryT)0x02 /* Usage state
events */
#define SAHPI_EC_STATE (SaHpiEventCategoryT)0x03 /* Generic state
events */
#define SAHPI_EC PRED_FAIL (SaHpiEventCategoryT)0x04 /* Predictive fail
events */
#define SAHPI_EC_LIMIT (SaHpiEventCategoryT)0x05 /* Limit events */
#define SAHPI_EC_PERFORMANCE (SaHpiEventCategoryT)0x06 /* Performance
events */
#define SAHPI_EC SEVERITY (SaHpiEventCategoryT)0x07 /* Severity
indicating
events */
#define SAHPI_EC_PRESENCE (SaHpiEventCategoryT)0x08 /* Device presence
events */
#define SAHPI_EC ENABLE (SaHpiEventCategoryT)0x09 /* Device enabled
events */

#define SAHPI_EC_AVAILABILITY (SaHpiEventCategoryT)Ox0A /* Availability

state events */
#define SAHPI_EC REDUNDANCY (SaHpiEventCategoryT)0Ox0B /* Redundancy

state events */
#define SAHPI_EC_SENSOR_SPECIFIC (SaHpiEventCategoryT)OxX7E /* Sensor-

specific events */
#define SAHPI_EC_GENERIC (SaHpiEventCategoryT)Ox7F /* OEM defined

events */

/*

** Event States

**

** The following event states are specified relative to the categories listed
** above. The event types are only valid for their given category. Each set of
** events is labeled as to which category it belongs to.

** Each event will have only one event state associated with it. When retrieving
** the event status or event enabled status a bit mask of all applicable event
** states is used. Similarly, when setting the event enabled status a bit mask
** of all applicable event states is used.

*/

typedef SaHpiUintl6T SaHpiEventStateT;

/*

** SaHpiEventCategoryT == <any>

*/

#define SAHPI_ES UNSPECIFIED (SaHpiEventStateT)0x0000

/*

** SaHpiEventCategoryT == SAHPI_EC_THRESHOLD

** When using these event states, the event state should match
** the event severity (for example SAHPI_ES LOWER_MINOR should have an
** event severity of SAHPI_MINOR).

*/

#define SAHPI_ES LOWER_MINOR (SaHpiEventStateT)0x0001

#define SAHPI_ES LOWER_MAJOR (SaHpiEventStateT)0x0002

#define SAHPI_ES_LOWER_CRIT (SaHpiEventStateT)0x0004

#define SAHPI_ES_UPPER_MINOR (SaHpiEventStateT)0x0008

#define SAHPI_ES_UPPER_MAJOR (SaHpiEventStateT)0x0010

#define SAHPI_ES_UPPER_CRIT (SaHpiEventStateT)0x0020

/* SaHpiEventCategoryT == SAHPI_EC_USAGE */

#define SAHPI_ES_IDLE (SaHpiEventStateT)0x0001
#define SAHPI_ES ACTIVE (SaHpiEventStateT)0x0002
#define SAHPI_ES BUSY (SaHpiEventStateT)0x0004

/* SaHpiEventCategoryT == SAHPI_EC_STATE */
#define SAHPI_ES_STATE_DEASSERTED (SaHpiEventStateT)0x0001
#define SAHPI_ES_STATE_ASSERTED (SaHpiEventStateT)0x0002

/* SaHpiEventCategoryT == SAHPI_EC_PRED_FAIL */
#define SAHPI_ES_ PRED_FAILURE_DEASSERT (SaHpiEventStateT)0x0001
#define SAHPI_ES_PRED_FAILURE_ASSERT (SaHpiEventStateT)0x0002

/* SaHpiEventCategoryT == SAHPI_EC_LIMIT */

168

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SAI-HPI-B.01.01 HPI Specification

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Data Type Definitions

#define SAHPI_ES LIMIT_NOT_EXCEEDED (SaHpiEventStateT)0x0001
#define SAHPI_ES_LIMIT_EXCEEDED

(SaHpiEventStateT)0x0002

/* SaHpiEventCategoryT == SAHPI_EC_PERFORMANCE */

#define SAHPI_ES_PERFORMANCE_MET
#define SAHPI_ES PERFORMANCE_LAGS (SaHpiEventStateT)0x0002

/*

** SaHpiEventCategoryT == SAHPI_EC_SEVERITY

** When using these event states, the event state should match

** the event severity

*/

#define
#define
#define
#define
#define
#define
#define
#define
#define

SAHPI_ES_OK

SAHPI_ES_MINOR_FROM_OK

SAHPI_ES MAJOR_FROM_LESS
SAHPI_ES_CRITICAL_FROM_LESS (SaHpiEventStateT)0x0008
SAHP1_ES MINOR_FROM_MORE
SAHPI_ES_MAJOR_FROM_CRITICAL (SaHpiEventStateT)0x0020
(SaHpiEventStateT)0x0040
(SaHpiEventStateT)0x0080
(SaHpiEventStateT)0x0100

SAHPI_ES_CRITICAL
SAHPI1_ES_MONITOR

SAHPI_ES_INFORMATIONAL

(SaHpiEventStateT)0x0001
(SaHpiEventStateT)0x0002
(SaHpiEventStateT)0x0004

/* SaHpiEventCategoryT == SAHPI_EC PRESENCE */
#define SAHPI_ES_ABSENT (SaHpiEventStateT)0x0001
#define SAHPI_ES PRESENT (SaHpiEventStateT)0x0002

/* SaHpiEventCategoryT ==

#define
#define

SAHPI1_ES_DISABLED
SAHPI1_ES_ENABLED

/* SaHpiEventCategoryT ==

#define
#define
#define
#define
#define
#define
#define
#define
#define

SAHPI_ES_RUNNING
SAHPI_ES_TEST
SAHPI_ES_POWER_OFF
SAHPI_ES_ON_LINE
SAHPI_ES_OFF_LINE
SAHPI_ES_OFF_DUTY
SAHP1_ES_DEGRADED

SAHPI_ES_POWER_SAVE

SAHPI_EC_ENABLE */
(SaHpiEventStateT)0x0001
(SaHpiEventStateT)0x0002

SAHPI_EC_AVAILABILITY */

(SaHpiEventStateT)0x0001
(SaHpiEventStateT)0x0002
(SaHpiEventStateT)0x0004
(SaHpiEventStateT)0x0008
(SaHpiEventStateT)0x0010
(SaHpiEventStateT)0x0020
(SaHpiEventStateT)0x0040
(SaHpiEventStateT)0x0080

SAHPI1_ES_INSTALL_ERROR (SaHpiEventStateT)0x0100

/* SaHpiEventCategoryT == SAHPI_EC_REDUNDANCY */

#define
#define
#define
#define
#define
#define

#define
#define

/*

** SaHpiEventCategoryT == SAHPI_EC_GENERIC || SAHPI_EC_SENSOR_SPECIFIC

SAHPI_ES_FULLY_REDUNDANT
SAHP1_ES_REDUNDANCY_LOST
SAHPI_ES_REDUNDANCY_DEGRADED

SAHPI_ES_REDUNDANCY_LOST_SUFFICIENT_RESOURCES \
(SaHpiEventStateT)0x0008
SAHPI_ES_NON_REDUNDANT_SUFFICIENT_RESOURCES \
(SaHpiEventStateT)0x0010
SAHPI_ES_NON_REDUNDANT_INSUFFICIENT_RESOURCES \
(SaHpiEventStateT)0x0020

SAHP1_ES_REDUNDANCY_DEGRADED_FROM_FULL
SAHPI_ES_REDUNDANCY_DEGRADED_FROM_NON

** These event states are

*/

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

SAHPI_ES_STATE_00
SAHPI_ES_STATE 01
SAHPI_ES_STATE_02
SAHPI_ES_STATE_03
SAHPI_ES_STATE_04
SAHPI_ES_STATE_05
SAHPI_ES_STATE_06
SAHPI_ES_STATE_07
SAHPI_ES_STATE_08
SAHPI_ES_STATE_09
SAHPI_ES_STATE_10
SAHPI_ES_STATE_11
SAHPI_ES_STATE_12

(SaHpiEventStateT)0x0001

(SaHpiEventStateT)0x0010

implementation-specific.

(SaHpiEventStateT)0x0001
(SaHpiEventStateT)0x0002
(SaHpiEventStateT)0x0004
(SaHpiEventStateT)0x0008
(SaHpiEventStateT)0x0010
(SaHpiEventStateT)0x0020
(SaHpiEventStateT)0x0040
(SaHpiEventStateT)0x0080
(SaHpiEventStateT)0x0100
(SaHpiEventStateT)0x0200
(SaHpiEventStateT)0x0400
(SaHpiEventStateT)0x0800
(SaHpiEventStateT)0x1000

(SaHpiEventStateT)0x0001
(SaHpiEventStateT)0x0002
(SaHpiEventStateT)0x0004

(SaHpiEventStateT)0x0040
(SaHpiEventStateT)0x0080

HPI Specification

SAI-HPI-B.01.01

169

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

Data Type Definitions

SERVICE
AVAILABILITY

#define SAHPI_ES_STATE_13
#define SAHPI_ES_STATE 14

8.4 Sensors

(SaHpiEventStateT)0x2000
(SaHpiEventStateT)0x4000

/

KAAAAAAAAK

KAAAAAAAA*K

*kkkkhkkkkk

Sensors

E R e e

E R e e

R o

/* Sensor Number */

typedef SaHpilnstrumentldT SaHpiSensorNumT;
/* The following specifies the named range for standard sensor numbers. */

#define SAHPI_STANDARD_SENSOR_MIN
#define SAHPI_STANDARD_SENSOR_MAX

/* Type of Sensor */
typedef enum {

SAHPI1_TEMPERATURE = 0x01,

SAHPI_VOLTAGE,
SAHPI_CURRENT,
SAHPI1_FAN,

SAHPI1_PHYSICAL_SECURITY,
SAHPI_PLATFORM_VIOLATION,

SAHP1_PROCESSOR,
SAHPI_POWER_SUPPLY,
SAHPI_POWER_UNIT,
SAHP1_COOLING_DEVICE,

SAHP1_OTHER_UNITS_BASED_SENSOR,

SAHPI_MEMORY,
SAHPI1_DRIVE_SLOT,

SAHPI_POST_MEMORY_RESIZE,
SAHP1_SYSTEM_FW_PROGRESS,
SAHPI_EVENT _LOGGING_DISABLED,

SAHPI1_RESERVED1,
SAHPI1_SYSTEM_EVENT,

SAHPI_CRITICAL_INTERRUPT,

SAHPI_BUTTON,
SAHP1_MODULE_BOARD,

SAHP1_MICROCONTROLLER_COPROCESSOR,

SAHP1_ADDIN_CARD,
SAHPI_CHASSIS,
SAHPI_CHIP_SET,
SAHPI_OTHER_FRU,

SAHPI_CABLE_INTERCONNECT,

SAHPI_TERMINATOR,

SAHP1_SYSTEM_BOOT_INITIATED,

SAHP1_BOOT_ERROR,
SAHPI_0OS_BOOT,

SAHP1_OS_CRITICAL_STOP,

SAHP1_SLOT_CONNECTOR,

SAHP1_SYSTEM_ACPI_POWER_STATE,

SAHPI_RESERVED2,
SAHPI_PLATFORM_ALERT,
SAHPI_ENTITY_PRESENCE
SAHPI_MONITOR_ASIC_IC
SAHPI_LAN,

SAHP1_MANAGEMENT _SUBSYSTEM_HEALTH,

SAHPI1_BATTERY,

SAHP1_OPERATIONAL = OxAO,

SAHP I_OEM_SENSOR=0xCO
} SaHpiSensorTypeT;

/*
** Sensor Reading Type

*k

** These definitions list the available data types that can be

** used for sensor readings.

(SaHpiSensorNumT)0x00000100
(SaHpiSensorNumT)0x000001FF

/

170 SAI-HPI-B.01.01

HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

AVAILABILITY
et Data Type Definitions

e

*/
#define SAHPI_SENSOR_BUFFER_LENGTH 32

typedef enum {

SAHPI_SENSOR_READING_TYPE_INT64,

SAHP1_SENSOR_READING_TYPE_UINT64,

SAHPI_SENSOR_READING_TYPE_FLOAT64,

SAHP1_SENSOR_READING_TYPE_BUFFER /* 32 byte array. The format of
the buffer is implementation-
specific. Sensors that use
this reading type may not have
thresholds that are settable
or readable. */

} SaHpiSensorReadingTypeT;

typedef union {

SaHpi Int64T Sensorint64;

SaHpiUint64T SensorUint64;

SaHpiFloat64T SensorFloat64;

SaHpiuint8T SensorBuffer[SAHP1_SENSOR_BUFFER_LENGTH];

} SaHpiSensorReadingUnionT;

/*

** Sensor Reading

**k

** The sensor reading data structure is returned from a call to get

** sensor reading. The structure is also used when setting and getting sensor
** threshold values and reporting sensor ranges.

**k

** |sSupported is set when a sensor reading/threshold value is available.

** Otherwise, if no reading or threshold is supported, this flag is set to

** False.

*/

typedef struct {
SaHpiBoolT IsSupported;
SaHpiSensorReadingTypeT Type;
SaHpiSensorReadingUnionT Value;

} SaHpiSensorReadingT;

/* Sensor Event Mask Actions — used with saHpiSensorEventMasksSet() */

typedef enum {
SAHPI1_SENS_ADD_EVENTS_TO_MASKS,
SAHP1_SENS_REMOVE_EVENTS_FROM_MASKS
} SaHpiSensorEventMaskActionT;

/* Value to use for AssertEvents or DeassertEvents parameter
in saHpiSensorEventMasksSet() to set or clear all supported
event states for a sensor in the mask */

#define SAHPI_ALL_EVENT STATES (SaHpiEventStateT)OxFFFF

/*

** Threshold Values

** This structure encompasses all of the thresholds that can be set.

** These are set and read with the same units as sensors report in

** saHpiSensorReadingGet(). When hysteresis is not constant over the

** range of sensor values, it is calculated at the nominal sensor reading,
** as given in the Range field of the sensor RDR.

**

** Thresholds are required to be set in-order (such that the setting for

** UpCritical is greater than or equal to the setting for UpMajor, etc.).*/

typedef struct {

SaHpiSensorReadingT LowCritical; /* Lower Critical Threshold */
SaHpiSensorReadingT LowMajor; /* Lower Major Threshold */
HPI Specification SAI-HPI-B.01.01 171

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVICE
AVAILABILITY

SaHpiSensorReadingT LowMinor; /* Lower Minor Threshold */
SaHpiSensorReadingT UpCritical; /* Upper critical Threshold */
SaHpiSensorReadingT UpMajor; /* Upper major Threshold */
SaHpiSensorReadingT UpMinor; /* Upper minor Threshold */

SaHpiSensorReadingT PosThdHysteresis; /* Positive Threshold Hysteresis */
SaHpiSensorReadingT NegThdHysteresis; /* Negative Threshold Hysteresis */
}SaHpiSensorThresholdsT;

8.5 Sensor Resource Data Records

/

E R = S o E R = o
Fekdekkkkkkx Sensor Resource Data Records Fekdekkkekkkk
E R E e e

/
/*

** Sensor Range

** Sensor range values can include minimum, maximum, normal minimum, normal

** maximum, and nominal values.

**k

** Sensor thresholds cannot be set outside of the range defined by SAHPI_SRF_MIN
** through SAHPI_SRF_MAX, i1f these limits are present (as indicated by the

** SaHpiSensorRangeFlagsT). |If the MIN limit is not present, no lower bound

** will be enforced on sensor thresholds. If the MAX limit is not present, no
** upper bound will be enforced on sensor thresholds.

*/

typedef SaHpiUint8T SaHpiSensorRangeFlagsT;

#define SAHPI_SRF_MIN (SaHpiSensorRangeFlagsT)0x10
#define SAHPI_SRF_MAX (SaHpiSensorRangeFlagsT)0x08

#define SAHPI:SRF:NORMAL_MIN (SaHpiSensorRangeFlagsT)0x04
#define SAHPI_SRF_NORMAL_MAX (SaHpiSensorRangeFlagsT)0x02
#define SAHPI_SRF_NOMINAL (SaHpiSensorRangeFlagsT)0x01

typedef struct {
SaHpiSensorRangeFlagsT Flags;

SaHpiSensorReadingT Max;
SaHpiSensorReadingT Min;
SaHpiSensorReadingT Nominal;
SaHpiSensorReadingT NormalMax;
SaHpiSensorReadingT NormalMin;

} SaHpiSensorRangeT;

/*

** Sensor Units

** This is a list of all the sensor units supported by HPI.

*/

typedef enum {
SAHP1_SU_UNSPECIFIED = 0, SAHP1_SU _DEGREES_C, SAHPI_SU DEGREES_F,
SAHPI_SU_DEGREES_K, SAHPI_SU_VOLTS, SAHPI_SU_AMPS,
SAHPI_SU_WATTS, SAHPI_SU_JOULES, SAHPI_SU_COULOMBS,
SAHPI_SU_VA, SAHPI_SU_NITS, SAHPI_SU_LUMEN,
SAHP1_SU_LUX, SAHP1_SU_CANDELA, SAHPI1_SU_KPA,
SAHP1_SU_PSI, SAHPI_SU_NEWTON, SAHPI_SU_CFM,
SAHP1_SU_RPM, SAHPI_SU_HZ, SAHPI_SU_MICROSECOND,
SAHPI_SU_MILLISECOND, SAHPI_SU_SECOND, SAHPI_SU_MINUTE,
SAHPI_SU_HOUR, SAHPI_SU DAY, SAHPI_SU_WEEK,
SAHP1_SU_MIL, SAHP1_SU_INCHES, SAHPI_SU_FEET,
SAHPI_SU_CU_IN, SAHPI_SU_CU_FEET, SAHPI_SU_MM,
SAHPI_SU_CM, SAHPI_SU_M, SAHPI_SU_CU_CM,
SAHPI_SU_CU_M, SAHPI_SU_LITERS, SAHPI_SU_FLUID_OUNCE,
SAHP1_SU_RADIANS, SAHPI_SU_STERADIANS, SAHPI_SU_REVOLUTIONS,
SAHP1_SU_CYCLES, SAHPI_SU GRAVITIES, SAHPI_SU_OUNCE,
SAHPI_SU_POUND, SAHPI_SU_FT_LB, SAHPI_SU OZ_IN,
SAHPI_SU_GAUSS, SAHPI_SU_GILBERTS, SAHPI_SU_HENRY,
SAHP1_SU_MILLIHENRY, SAHPI_SU_FARAD, SAHPI_SU_MICROFARAD,
SAHP1_SU_OHMS, SAHPI_SU_SIEMENS, SAHPI_SU_MOLE,
SAHPI_SU_BECQUEREL, SAHPI_SU_PPM, SAHPI_SU_RESERVED,

172 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Data Type Definitions

SAHPI_SU_DECIBELS, SAHPI_SU_DBA, SAHPI_SU_DBC,
SAHP1_SU_GRAY, SAHPI_SU_SIEVERT, SAHPI_SU_COLOR_TEMP_DEG K,
SAHPI_SU_BIT, SAHPI_SU_KILOBIT, SAHPI_SU_MEGABIT,
SAHPI_SU_GIGABIT, SAHP1_SU BYTE, SAHPI_SU KILOBYTE,
SAHP1_SU_MEGABYTE, SAHPI_SU_GIGABYTE, SAHPI_SU_WORD,
SAHP1_SU_DWORD, SAHPI_SU_QWORD, SAHPI_SU_LINE,
SAHPI_SU_HIT, SAHPI_SU_MISS, SAHPI_SU RETRY,
SAHPI_SU_RESET, SAHPI_SU_OVERRUN, SAHPI_SU_UNDERRUN,
SAHP1_SU_COLLISION, SAHPI_SU_PACKETS, SAHPI_SU_MESSAGES,
SAHP1_SU_CHARACTERS, SAHPI_SU ERRORS, SAHPI_SU_CORRECTABLE_ERRORS,
SAHPI_SU_UNCORRECTABLE_ERRORS

} SaHpiSensorUnitsT;

/*
*x
**
**
e

*k

*/

Modifier Unit Use
This type defines how the modifier unit is used. For example: base unit ==

meter, modifier unit == seconds, and modifier unit use ==
SAHP1_SMUU_BASIC_OVER_MODIFIER. The resulting unit would be meters per
second.

typedef enum {

SAHPI_SMUU_NONE = 0,
SAHPI_SMUU_BASIC_OVER_MODIFIER, /* Basic Unit / Modifier Unit */
SAHPI_SMUU_BASIC_TIMES_MODIFIER /* Basic Unit * Modifier Unit */

} SaHpiSensorModUnitUseT;

/*
**
**
B
*x
**
**
B
B
**
**
**
B
*x

**

*/

Data Format

When IsSupported is False, the sensor does not support data readings
(it only supports event states). A False setting for this flag
indicates that the rest of the structure is not meaningful.

This structure encapsulates all of the various types that make up the
definition of sensor data. For reading type of
SAHP1_SENSOR_READING_TYPE_BUFFER, the rest of the structure

(beyond ReadingType) is not meaningful.

The Accuracy Factor is expressed as a floating point percentage
(e.g. 0.05 = 5%) and represents statistically how close the measured
reading is to the actual value. It is an interpreted value that
figures in all sensor accuracies, resolutions, and tolerances.

typedef struct {

SaHpiBoolT I1sSupported; /* Indicates if sensor data
readings are supported.*/

SaHpiSensorReadingTypeT ReadingType; /* Type of value for sensor
reading. */

SaHpiSensorUnitsT BaseUnits; /* Base units (meters, etc.) */
SaHpiSensorUnitsT ModifierUnits; /* Modifier unit (second, etc.)*/
SaHpiSensorModUnitUseT ModifierUse; /* Modifier use(m/sec, etc.) */
SaHpiBoolT Percentage; /* Is value a percentage */
SaHpiSensorRangeT Range; /* Valid range of sensor */
SaHpiFloat64T AccuracyFactor; /* Accuracy */

} SaHpiSensorDataFormatT;

/*
**
*k
**
**
**

Threshold Support

These types define what threshold values are readable and writable.
Thresholds are read/written in the same ReadingType as is used for sensor
readings.

*/

typedef SaHpiUint8T SaHpiSensorThdMaskT;

#define SAHPI_STM_LOW_MINOR (SaHpiSensorThdMaskT)0x01
#define SAHPI_STM_LOW_MAJOR (SaHpiSensorThdMaskT)0x02
#define SAHPI_STM_LOW_CRIT (SaHpiSensorThdMaskT)0x04
#define SAHPI_STM_UP_MINOR (SaHpiSensorThdMaskT)0x08
#define SAHPI_STM_UP_MAJOR (SaHpiSensorThdMaskT)0x10
#define SAHPI_STM_UP_CRIT (SaHpiSensorThdMaskT)0x20

#define SAHPI_STM_UP_HYSTERESIS (SaHpiSensorThdMaskT)0x40

HPI Specification SAI-HPI-B.01.01 173
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVI
AVAILABI

CE

LTy

#define SAHPI_STM_LOW_HYSTERESIS (SaHpiSensorThdMaskT)0x80

typedef struct {

SaHpiBoolT IsAccessible; /* True if the sensor
supports readable or writable
thresholds. If False,
rest of structure is not
meaningful . Sensors that have the
IsAccessible flag set must also
support the threshold event category.
A sensor of reading type SAHPI_
SENSOR_READING_TYPE_BUFFER cannot
have accessible thresholds.*/

SaHpiSensorThdMaskT ReadThold; /* Readable thresholds */

SaHpiSensorThdMaskT WriteThold; /* Writable thresholds */

SaHpiBoolT Nonlinear; /* If this flag is set, hysteresis
values are calculated at the nominal
sensor value. */

} SaHpiSensorThdDefnT;

/*
** Event Control
**k
** This type defines how sensor event messages can be controlled (can be turned
** off and on for each type of event, etc.).
*/
typedef enum {
SAHPI_SEC_PER_EVENT = 0, /* Event message control per event,
or by entire sensor; sensor event enable
status can be changed, and assert/deassert
masks can be changed */
SAHPI_SEC_READ_ONLY_MASKS, /* Control for entire sensor only; sensor
event enable status can be changed, but
assert/deassert masks cannot be changed */
SAHP1_SEC_READ_ONLY /* Event control not supported; sensor event
enable status cannot be changed and
assert/deassert masks cannot be changed */
} SaHpiSensorEventCtriT;

/*
** Record

**

** This is the sensor resource data record which describes all of the static
** data associated with a sensor.

*/

typedef struct {
SaHpiSensorNumT Numj; /* Sensor Number/Index */
SaHpiSensorTypeT Type; /* General Sensor Type */
SaHpiEventCategoryT Category; /* Event category */
SaHpiBoolT EnableCtrl; /* True if HPI User can enable

or disable sensor via
saHpiSensorEnableSet() */
SaHpiSensorEventCtrlIT EventCtrl; /* How events can be controlled */
SaHpiEventStateT Events; /* Bit mask of event states
supported */
SaHpiSensorDataFormatT DataFormat; /* Format of the data */
SaHpiSensorThdDefnT ThresholdDefn; /* Threshold Definition */
SaHpiUint32T Oem; /* Reserved for OEM use */
} SaHpiSensorRecT;

8.6 Aggregate Status

/
Rk e R e e
*hkkhkkkhkkk R
/
174 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

AVAILABILITY
et Data Type Definitions

/* These are the default sensor numbers for aggregate status. */
#define SAHPI_DEFAGSENS_OPER (SaHpiSensorNumT)0x00000100
#define SAHPI_DEFAGSENS_PWR (SaHpiSensorNumT)0x00000101
#define SAHPI_DEFAGSENS_TEMP (SaHpiSensorNumT)0x00000102

/* The following specifies the named range for aggregate status. */

#define SAHPI_DEFAGSENS_MIN (SaHpiSensorNumT)0x00000100
#define SAHPI_DEFAGSENS_MAX (SaHpiSensorNumT)0x0000010F

8.7 Controls

/

FhkdkhkAh Ak e
Fhkhkhdk Ak ki Controls FkKkhkhdkhk ki
KAAAAAAA AKX E R e e

/

/* Control Number */
typedef SaHpilnstrumentldT SaHpiCtrINumT;

/*

** Type of Control

**

** This enumerated type defines the different types of generic controls.

*

/

typedef enum {
SAHPI_CTRL_TYPE_DIGITAL = 0x00,
SAHPI_CTRL_TYPE_DISCRETE,
SAHPI_CTRL_TYPE_ANALOG,
SAHPI_CTRL_TYPE_STREAM,
SAHPI_CTRL_TYPE_TEXT,
SAHPI_CTRL_TYPE_OEM = 0xCO

} SaHpiCtriTypeT;

/*
** Control State Type Definitions
*/

/*
** Digital Control State Definition
*xk
** Defines the types of digital control states.
** Any of the four states may be set using saHpiControlSet().
** Only ON or OFF are appropriate returns from saHpiControlGet().
** (PULSE_ON and PULSE_OFF are transitory and end in OFF and ON states,
** respectively.)
** OFF — the control is off
** ON - the control is on
** PULSE_OFF — the control is briefly turned off, and then turned back on
** PULSE_ON - the control is briefly turned on, and then turned back off
**
*/
typedef enum {
SAHPI_CTRL_STATE_OFF = 0,
SAHPI_CTRL_STATE_ON,
SAHP1_CTRL_STATE_PULSE_OFF,
SAHPI_CTRL_STATE_PULSE_ON
} SaHpiCtriStateDigitalT;

/*

** Discrete Control State Definition

*

/

typedef SaHpiUint32T SaHpiCtriStateDiscreteT;

/*

** Analog Control State Definition

*/

typedef SaHpilInt32T SaHpiCtriStateAnalogT;

HPI Specification SAI-HPI-B.01.01 175
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVICE
AVAILABILITY

/*

** Stream Control State Definition

*/

#define SAHPI_CTRL_MAX_STREAM_LENGTH 4

typedef struct {
SaHpiBoolT Repeat; /* Repeat flag */
SaHpiUint32T StreamLength; /* Length of the data,

stored in the stream.

SaHpiUint8T Stream[SAHPI_CTRL_MAX_STREAM_LENGTH];

} SaHpiCtriStateStreamT;

/*

** Text Control State Definition

*/

typedef SaHpiUint8T SaHpiTxtLineNumT;

/* Reserved number for sending output to all lines */
#define SAHPI_TLN_ALL_LINES (SaHpiTxtLineNumT)0x00

typedef struct {
SaHpiTxtLineNumT Line; /* Operate on line # */
SaHpiTextBufferT Text; /* Text to display */

} SaHpiCtriStateTextT;

/*
** OEM Control State Definition
*/
#define SAHPI_CTRL_MAX_OEM_BODY_LENGTH 255
typedef struct {
SaHpiManufacturerldT MId;
SaHpiUint8T BodylLength;

in bytes,
*/

SaHpiUint8T Body[SAHPI_CTRL_MAX_OEM_BODY_LENGTH]; /* OEM Specific */

} SaHpiCtriStateOemT;

typedef union {
SaHpiCtriStateDigitalT Digital;
SaHpiCtriStateDiscreteT Discrete;
SaHpiCtriStateAnalogT Analog;
SaHpiCtriStateStreamT Stream;
SaHpiCtriStateTextT Text;
SaHpiCtriStateOemT Oem;

} SaHpiCtriStateUnionT;

typedef struct {

SaHpiCtriTypeT Type; /* Type of control */

SaHpiCtriStateUnionT StateUnion; /* Data for control type */

} SaHpiCtriStateT;
/*

** Control Mode Type Definition

B

** Controls may be in either AUTO mode or MANUAL mode.
**
*/
typedef enum {
SAHP1_CTRL_MODE_AUTO,
SAHPI_CTRL_MODE_MANUAL
} SaHpiCtriModeT;

8.8 Control Resource Data Records

/

FhkdhkhkAh Ak

FdeAkdK KK KK Control Resource Data Records

KAAAAAAA AKX

O

FhKhkhdkhkhk

E R e e

/*

/

176

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SAI-HPI-B.01.01 HPI Specification

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Data Type Definitions

** Qutput Type

*

**

*/

typedef enum {
SAHPI_CTRL_GENERIC = O,
SAHPI1_CTRL_LED,
SAHPI_CTRL_FAN_SPEED,
SAHPI1_CTRL_DRY_CONTACT_CLOSURE,
SAHPI_CTRL_POWER_SUPPLY_INHIBIT,
SAHP1_CTRL_AUDIBLE,
SAHPI_CTRL_FRONT_PANEL_LOCKOUT,
SAHPI_CTRL_POWER_INTERLOCK,
SAHPI1_CTRL_POWER_STATE,
SAHPI_CTRL_LCD_DISPLAY,
SAHP1_CTRL_OEM

} SaHpiCtrlOutputTypeT;

/*
** Specific Record Types
**
*/
typedef struct {
SaHpiCtriStateDigitalT Default;

} SaHpiCtriRecDigitalT;

typedef struct {
SaHpiCtriStateDiscreteT Default;
} SaHpiCtrlRecDiscreteT;

typedef struct {
SaHpiCtriStateAnalogT Min;
SaHpiCtriStateAnalogT Max;
SaHpiCtriStateAnalogT Default;
} SaHpiCtriRecAnalogT;

typedef struct {
SaHpiCtriStateStreamT Default;
} SaHpiCtrlRecStreamT;

typedef struct {

SaHpiUint8T MaxChars; /*
SaHpiUint8T MaxLines; /*
SaHpilLanguageT Language; /*
SaHpiTextTypeT DataType; /*
SaHpiCtriStateTextT Default;

} SaHpiCtrlRecTextT;

#define SAHPI_CTRL_OEM_CONFIG_LENGTH 10

typedef struct {
SaHpiManufacturerldT
SaHpiUint8T
SaHpiCtriStateOemT

} SaHpiCtrlRecOemT;

Mid;
Default;
typedef union {

SaHpiCtrlRecDigitalT Digital;
SaHpiCtrlRecDiscreteT Discrete;

SaHpiCtriRecAnalogT Analog;
SaHpiCtrlRecStreamT Stream;
SaHpiCtrlRecTextT Text;
SaHpiCtrlIRecOemT Oem;

This enumeration defines the what the control’s output will be.

These types represent the specific types of control resource data records.

/* Minimum Value */
/* Maximum Value */

Maximum chars per line.

IT the control DataType is
SAHPI_TL_TYPE_UNICODE, there will

be two bytes required for each
character. This field reports the
number of characters per line- not the
number of bytes. MaxChars must not be
larger than the number of characters
that can be placed in a single
SaHpiTextBufferT structure. */

Maximum # of lines */

Language Code */

Permitted Data */

ConfigData[SAHPI_CTRL_OEM_CONFIG_LENGTH];

HPI Specification SAI-HPI-B.01.01 177

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVICE
AVAILABILITY

} SaHpiCtrlRecUnionT;

/*
** Default Control Mode Structure

** This structure tells an HPI User if the control comes up in Auto mode or
** in Manual mode, by default. It also indicates if the mode can be

** changed (using saHpiControlSet()).

When ReadOnly is False, the mode

** can be changed from its default setting; otherwise attempting to
** change the mode will result in an error.

*/
typedef struct {
SaHpiCtriIModeT Mode; /* Auto or Manual */
SaHpiBoolT ReadOnly; /* Indicates if mode is read-only */

} SaHpicCtriDefaultModeT;

/*
** Record Definition

** Definition of the control resource data record.

*/

typedef struct {
SaHpiCtrINumT Numj;
SaHpiCtriOutputTypeT OutputType;
SaHpiCtriTypeT Type;

SaHpiCtrlIRecUnionT TypeUnion;

SaHpiCtriDefaul tModeT DefaultMode;

SaHpiBoolT WriteOnly;

SaHpiUint32T Oem;
} SaHpiCtrlRecT;

/* Control Number/Index */

/* Type of control */

/* Specific control record */

/*Indicates if the control comes up
in Auto or Manual mode. */

/* Indicates if the control is
write-only. */

/* Reserved for OEM use */

8.9 Inventory Data Repositories

/

KAAAAAAA AKX

E R e e

ilalaiaiadaiaiotaiel Inventory Data Repositories ilalaiaiotaiaiotalel

FhkdkhkAh Ak

O

/

*/

These structures are used to read and write inventory data to entity
inventory data repositories within a resource.

Inventory Data Repository ID
Identifier for an inventory data repository.

typedef SaHpilnstrumentldT SaHpildridT;
#define SAHPI_DEFAULT_INVENTORY_ID (SaHpildridT)0x00000000

/*

Inventory Data Area type definitions */

typedef enum {

SAHPI_IDR_AREATYPE_INTERNAL_USE = OxBO,
SAHPI_IDR_AREATYPE_CHASSIS_INFO,
SAHP1_IDR_AREATYPE_BOARD_INFO,
SAHPI_IDR_AREATYPE_PRODUCT_INFO,
SAHPI_IDR_AREATYPE_OEM = OxCO,
SAHP1_IDR_AREATYPE_UNSPECIFIED = OXFF

} SaHpildrAreaTypeT;

/*

Inventory Data Field type definitions */

typedef enum {

SAHP1_IDR_FIELDTYPE_CHASSIS_TYPE,
SAHPI_IDR_FIELDTYPE_MFG_DATETIME,
SAHPI_IDR_FIELDTYPE_MANUFACTURER,
SAHPI_IDR_FIELDTYPE_PRODUCT NAME,
SAHPI_IDR_FIELDTYPE_PRODUCT_VERSION,
SAHPI_IDR_FIELDTYPE_SERIAL_NUMBER,

178

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SAI-HPI-B.01.01 HPI Specification

Service Availability™ Hardware Platform Interface

AVATLABILITY
et Data Type Definitions

SAHP1_IDR_FIELDTYPE_PART_NUMBER,

SAHPI1_IDR_FIELDTYPE_FILE_ID,

SAHPI_IDR_FIELDTYPE_ASSET TAG,

SAHPI_IDR_FIELDTYPE_CUSTOM,

SAHP1_IDR_FIELDTYPE_UNSPECIFIED = OxFF
} SaHpildrFieldTypeT;

/* Inventory Data Field structure definition */
typedef struct {

SaHpiEntryldT Areald; /* Areald for the IDA to which */
/* the Field belongs */
SaHpiEntryldT Fieldld; /* Field ldentifier */
SaHpildrFieldTypeT Type; /* Field Type */
SaHpiBoolT ReadOnly; /* Describes if a field is read-only. */

/* All fTields in a read-only area are */
/* flagged as read-only as well.*/
SaHpiTextBufferT Field; /* Field Data */
} SaHpildrFieldT;

/* Inventory Data Area header structure definition */
typedef struct {

SaHpiEntryldT Areald; /* Area ldentifier */
SaHpildrAreaTypeT Type; /* Type of area */
SaHpiBoolT ReadOnly; /* Describes if an area is read-only. */

/* All area headers in a read-only IDR */
/* are flagged as read-only as well.*/
SaHpiUint32T NumFields; /* Number of Fields contained in Area */
} SaHpildrAreaHeaderT;

/* Inventory Data Repository Information structure definition */
typedef struct {
SaHpi ldridT Idrid; /* Repository ldentifier */
SaHpiUint32T UpdateCount; /* The count is incremented any time the */
/* IDR is changed. It rolls over to zero */
/* when the maximum value is reached */
SaHpiBoolT ReadOnly; /* Describes if the IDR is read-only. */
/* All area headers and fields in a */
/* read-only IDR are flagged as */
/* read-only as well.*/
SaHpiUint32T NumAreas; /* Number of Area contained in IDR */
} SaHpildrinfoT;

8.10 Inventory Data Repository Resource Data Records

/

E Rk B

faloleiolaiolaiolaiel Inventory Data Repository Resource Data Records lalolaiolaioloielolel

ECE ko Bk
/

/*

** All inventory data contained in an inventory data repository
** must be represented in the RDR repository
** with an SaHpilnventoryRecT.
*/
typedef struct {
SaHpildridT Idrid;
SaHpiBoolT Persistent; /* True indicates that updates to IDR are
automatically and immediately persisted.
False indicates that updates are not
immediately persisted; but optionally may be
persisted via saHpiParmControl() function, as
defined in implementation documentation.*/
SaHpiUint32T Oem;
} SaHpilnventoryRecT;

HPI Specification SAI-HPI-B.01.01 179
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availapil_it_yTM Hardware Platform Interface Avsfuﬂ'utrﬁw
Data Type Definitions i

8.11 Watchdogs

/

Rk e e R e e

KAAAAAAAAK E R e
/

/*

** This section defines all of the data types associated with watchdog timers.

*/

/* Watchdog Number - ldentifier for a watchdog timer. */
typedef SaHpilnstrumentldT SaHpiWatchdogNumT;
#define SAHPI_DEFAULT_WATCHDOG_NUM (SaHpiWatchdogNumT)0x00000000

/*
** Watchdog Timer Action
*x
** These enumerations represent the possible actions to be taken upon watchdog
** timer timeout and the events that are generated for watchdog actions.
*/
typedef enum {
SAHP1_WA_NO_ACTION = 0,
SAHPI_WA_RESET,
SAHPI_WA_POWER_DOWN,
SAHP1_WA_POWER_CYCLE
} SaHpiWatchdogActionT;

typedef enum {

SAHPI_WAE_NO_ACTION = 0,

SAHPI_WAE_RESET,

SAHP1_WAE_POWER_DOWN,

SAHP1_WAE_POWER_CYCLE,

SAHPI_WAE_TIMER_INT=0x08 /* Used if Timer Preinterrupt only */
} SaHpiWatchdogActionEventT;

/*
** Watchdog Pre-timer Interrupt
**x
** These enumerations represent the possible types of interrupts that may be
** triggered by a watchdog pre-timer event. The actual meaning of these
** operations may differ depending on the hardware architecture.
*/
typedef enum {
SAHPI_WPI_NONE = O,
SAHP1_WP1_SMI,
SAHPI_WPI_NMI,
SAHPI_WPI_MESSAGE_ INTERRUPT,
SAHPI_WPI_OEM = OxOF
} SaHpiWatchdogPretimerinterruptT;

/*
** Watchdog Timer Use
**
** These enumerations represent the possible watchdog users that may have caused
** the watchdog to expire. For instance, if watchdog is being used during power
** on self test (POST), and it expires, the SAHPI_WTU_BIOS_POST expiration type
** will be set. Most specific uses for Watchdog timer by users of HPI1 should
** indicate SAHPI_WTU_SMS OS if the use is to provide an OS-healthy heartbeat,
** or SAHPI_WTU_OEM iFf it is used for some other purpose.
*/
typedef enum {

SAHPI_WTU_NONE = O,

SAHPI_WTU_BIOS_FRB2,

SAHPI_WTU_BIOS_POST,

SAHP1_WTU_OS_LOAD,

180 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Data Type Definitions

SAHPI_WTU_SMS_OS,

SAHPI1_WTU_OEM,

SAHPI_WTU_UNSPECIFIED
} SaHpiWatchdogTimerUseT;

/*

/* System Management System providing
heartbeat for 0S */

= OxOF

** Timer Use Expiration Flags
** These values are used for the Watchdog Timer Use Expiration flags in the
** SaHpiWatchdogT structure.

*/

typedef SaHpiUint8T SaHpiWatchdogExpFlagsT;
#define SAHPI_WATCHDOG_EXP_BI0OS_FRB2 (SaHpiWatchdogExpFlagsT)0x02
#define SAHPI_WATCHDOG_EXP_BIOS_POST (SaHpiWatchdogExpFlagsT)0x04

#define SAHPI_WATCHDOG_EXP_OS_ LOAD (SaHpiWatchdogExpFlagsT)0x08
#define SAHPI_WATCHDOG_EXP_SMS_0S (SaHpiWatchdogExpFlagsT)0x10
#define SAHPI_WATCHDOG_EXP_OEM (SaHpiWatchdogExpFlagsT)0x20
/*

** Watchdog Structure

**

** This structure is used

by the saHpiWatchdogTimerGet() and

** saHpiWatchdogTimerSet() functions. The use of the structure varies slightly

** py each function.

**

** For saHpiWatchdogTimerGet() :

*x

** Log —

**

*x Running —

**
** TimerUse —
*x
**
**
*x

*x TimerAction —
*k

*x Pretimerinterrupt —
**x

*k

holad PreTimeoutinterval —
**x

**x

Kk

*k

**x

**x

Kk

** TimerUseExpFlags —
**x

**x

*k

*xk

*x

kel InitialCount —
Kk

*xk

**x

*%

*x

Kk

*k

holed PresentCount —
*k

Kk

*k

**x

*x

Kk

*xk

indicates whether or not the Watchdog is configured to
issue events. True=events will be generated.

indicates whether or not the Watchdog is currently
running or stopped. True=Watchdog is running.
indicates the current use of the timer; one of the
enumerated preset uses which was included on the last
saHpiWatchdogTimerSet() function call, or through some
other implementation-dependent means to start the
Watchdog timer.

indicates what action will be taken when the Watchdog
times out.

indicates which action will be taken
“PreTimeoutinterval” milliseconds prior to Watchdog
timer expiration.

indicates how many milliseconds prior to timer time
out the Pretimerinterrupt action will be taken. If
“PreTimeoutinterval” = 0, the Pretimerlinterrupt action
will occur concurrently with “TimerAction.” HPI
implementations may not be able to support millisecond
resolution, and because of this may have rounded the
set value to whatever resolution could be supported.
The HPI implementation will return this rounded value.
set of five bit flags which indicate that a Watchdog
timer timeout has occurred while the corresponding
TimerUse value was set. Once set, these flags stay
set until specifically cleared with a
saHpiWatchdogTimerSet() call, or by some other
implementation-dependent means.

The time, in milliseconds, before the timer will time
out after the watchdog is started/restarted, or some
other implementation-dependent strobe is

sent to the Watchdog. HPI implementations may not be
able to support millisecond resolution, and because
of this may have rounded the set value to whatever
resolution could be supported. The HPI implementation
will return this rounded value.

The remaining time in milliseconds before the timer
will time out unless a saHpiWatchdogTimerReset()
function call is made, or some other implementation-
dependent strobe is sent to the Watchdog.

HPI implementations may not be able to support
millisecond resolution on watchdog timers, but will
return the number of clock ticks remaining times the
number of milliseconds between each tick.

HPI Specification SAI-HPI-B.01.01 181

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

Data Type Definitions

SERVI
AVAILABI

CE

LTy

e

** For saHpiWatchdogTimerSet():

*k

** Log —

*x

*x Running —
*k

E

*x

**x

Kk

*xk

*xk

*x

**x

*k

*k

**x

**x

Kk

holad TimerUse —

B

*x TimerAction —
Kk

*x Pretimerinterrupt —
*xk

**k

** PreTimeoutlnterval —
**

*xk

**k

**

**

*xk

**k

** TimerUseExpFlags —
**

**

*xk

**k

**

**

*xk

**k

** InitialCount —

**

*xk

**k

**

**

*xk

*x PresentCount —
*k

indicates whether or not the Watchdog should issue

events. True=event will be generated.

indicates whether or not the Watchdog should be

stopped before updating.

True = Watchdog is not stopped. If it is
already stopped, it will remain stopped,
but if it is running, it will continue
to run, with the countown timer reset
to the new InitialCount. Note that
there is a race condition possible
with this setting, so it should be used
with care.

False = Watchdog is stopped. After
saHpiWatchdogTimerSet() is called, a
subsequent call to
saHpiWatchdogTimerReset() is required
to start the timer.

indicates the current use of the timer. Will control

which TimerUseExpFlag is set if the timer expires.

indicates what action will be taken when the Watchdog
times out.

indicates which action will be taken

“PreTimeoutinterval” milliseconds prior to Watchdog

timer expiration.

indicates how many milliseconds prior to timer time

out the Pretimerinterrupt action will be taken. If

“PreTimeoutinterval” = 0, the Pretimerlnterrupt action

will occur concurrently with “TimerAction.” HPI

implementations may not be able to support millisecond
resolution and may have a maximum value restriction.

These restrictions should be documented by the

provider of the HPIl interface.

Set of five bit flags corresponding to the five

TimerUse values. For each bit set, the corresponding

Timer Use Expiration Flag will be CLEARED. Generally,

a program should only clear the Timer Use Expiration

Flag corresponding to its own TimerUse, so that other

software, which may have used the timer for another

purpose in the past can still read its TimerUseExpFlag
to determine whether or not the timer expired during
that use.

The time, in milliseconds, before the timer will time

out after a saHpiWatchdogTimerReset() function call is

made, or some other implementation-dependent strobe is
sent to the Watchdog. HPI implementations may not be

able to support millisecond resolution and may have a

maximum value restriction. These restrictions should

be documented by the provider of the HPIl interface.

Not used on saHpiWatchdogTimerSet() function. Ignored.

*/

typedef struct {
SaHpiBoolT Log;
SaHpiBoolT Running;
SaHpiWatchdogTimerUseT TimerUse;
SaHpiWatchdogActionT TimerAction;

SaHpiWatchdogPretimerinterruptT Pretimerinterrupt;

SaHpiUint32T PreTimeoutinterval;
SaHpiWatchdogExpFlagsT TimerUseExpFlags;
SaHpiUint32T InitialCount;
SaHpiUint32T PresentCount;

} SaHpiWatchdogT;

182 SAI-HPI-B.01.01

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

HPI Specification

Service Availability™ Hardware Platform Interface

AVAILABILITY
et Data Type Definitions

8.12 Watchdog Resource Data Records

/
E Rk E R
iiididaadiaiaiaiaie Watchdog Resource Data Records iliiaiaiaiaiaiaiaie
KAAAAAAAAK E R e e e
/

/*
** When the “Watchdog” capability is set in a resource, a watchdog with an
** jdentifier of SAHPI_DEFAULT_WATCHDOG_NUM is required. All watchdogs must be
** represented in the RDR repository with an SaHpiWatchdogRecT, including the
** watchdog with an identifier of SAHPI_DEFAULT_WATCHDOG_NUM.
*/
typedef struct {

SaHpiWatchdogNumT WatchdogNum;

SaHpiUint32T Oem;
} SaHpiWatchdogRecT;

HPI Specification SAI-HPI-B.01.01 183

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service AvaiIapiI_it_yT'VI Hardware Platform Interface “ﬁﬂﬁﬁ o
Data Type Definitions i

8.13 Hot Swap

/

FhkhhkhkAh Ak O
Fhkhkh kA kA Hot SWap Fhdhkhhkhkhk
KAAAAAAAAK E R e e e

/* Hot Swap Indicator State */

typedef enum {
SAHPI_HS_INDICATOR_OFF = O,
SAHP1_HS_INDICATOR_ON

} SaHpiHsIndicatorStateT;

/* Hot Swap Action */

typedef enum {
SAHPI_HS_ACTION_INSERTION = O,
SAHP1_HS_ACTION_EXTRACTION

} SaHpiHsActionT;

/* Hot Swap State */

typedef enum {
SAHP1_HS STATE_INACTIVE = O,
SAHPI_HS_STATE_INSERTION_PENDING,
SAHPI_HS_STATE_ACTIVE,
SAHPI_HS_STATE_EXTRACTION_PENDING,
SAHP1_HS STATE_NOT_PRESENT

} SaHpiHsStateT;

8.14 Events, Part 2

/

E S s S S E S s e S e

E E e
Events, Part 2

E R s E R =

/* Event Data Structures */

typedef enum {
SAHPI_CRITICAL = O,
SAHP1_MAJOR,
SAHPI_MINOR,
SAHPI_INFORMATIONAL,
SAHPI_OK,
SAHP1_DEBUG = OxFO,
SAHPI_ALL_SEVERITIES = OxFF /* Only used with DAT and Annunciator */
/* functions. This is not a valid */
/* severity for events or alarms */
} SaHpiSeverityT;

typedef enum {
SAHPI_RESE_RESOURCE_FAILURE,
SAHP1_RESE_RESOURCE_RESTORED,
SAHPI_RESE_RESOURCE_ADDED

} SaHpiResourceEventTypeT;

typedef struct {
SaHpiResourceEventTypeT ResourceEventType;
} SaHpiResourceEventT;

/*
** Domain events are used to announce the addition of domain references

184 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface

Data Type Definitions

** and the removal of domain references to the DRT.
*
/
typedef enum {
SAHP1_DOMAIN_REF_ADDED,
SAHP1_DOMAIN_REF_REMOVED
} SaHpiDomainEventTypeT;

typedef struct {
SaHpiDomainEventTypeT Type;
SaHpiDomainldT Domainld;

/* Type of domain event */
/* Domain Id of domain added

to or removed from DRT. */
} SaHpiDomainEventT;

/*

** Sensor Optional Data

**

** Sensor events may contain optional data items passed and stored with the
** event.
** the event data returned in response to a saHpiEventGet() or

** saHpiEventLogEntryGet() function call. Also, the optional data items may be
** included with the event data passed to the saHpiEventLogEntryAdd() function.

*x

** Specific implementations of HPI may have restrictions on how much data may
** pbe passed to saHpiEventLogEntryAdd(). These restrictions should be documented

** py the provider of the HPI interface.
*/

typedef SaHpiUint8T SaHpiSensorOptionalDataT;

#define SAHPI_SOD_TRIGGER_READING (SaHpiSensorOptionalDataT)0x01
#define SAHPI_SOD_TRIGGER_THRESHOLD (SaHpiSensorOptionalDataT)0x02
#define SAHPI_SOD_OEM (SaHpiSensorOptionalDataT)0x04
#define SAHPI_SOD_PREVIOUS_STATE (SaHpiSensorOptionalDataT)0x08
#define SAHPI_SOD_CURRENT_STATE (SaHpiSensorOptionalDataT)0x10
#define SAHPI_SOD_SENSOR_SPECIFIC (SaHpiSensorOptionalDataT)0x20

IT these optional data items are present, they will be included with

typedef struct {

SaHpiSensorNumT SensorNum;
SaHpiSensorTypeT SensorType;
SaHpiEventCategoryT EventCategory;
SaHpiBoolT Assertion; /* True = Event State
asserted
False = deasserted */
SaHpiEventStateT EventState; /* single state being asserted

SaHpiSensorOptionalDataT OptionalDataPresent;
/* the following fields are only valid if the corresponding flag is set

in the OptionalDataPresent field */
SaHpiSensorReadingT TriggerReading;

SaHpiSensorReadingT

SaHpiEventStateT PreviousState;

SaHpiEventStateT CurrentState;

/*

or deasserted*/

Reading that triggered
the event */

TriggerThreshold; /* Value of the threshold

that was crossed. Will not
be present if threshold is
not readable. */

/* Previous set of asserted

/*

event states. If multiple
event states change at once,
multiple events may be
generated for each changing
event state. This field
should indicate the status of
the sensor event states prior
to any of the simultaneous
changes.

Thus, it will be the same in
each event generated due to
multiple simultaneous event
state changes. */

Current set of asserted
event states. */

HPI Specification

SAI-HPI-B.01.01 185

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVICE
AVAILABILITY

SaHpiUint32T Oem;
SaHpiUint32T SensorSpecific;
} SaHpiSensorEventT;

typedef SaHpiUint8T SaHpiSensorEnableOptDataT;

#define SAHPI_SEOD_CURRENT_STATE (SaHpiSensorEnableOptDataT)0x10
typedef struct {
SaHpiSensorNumT SensorNum;
SaHpiSensorTypeT SensorType;
SaHpiEventCategoryT EventCategory;
SaHpiBoolT SensorEnable; /* current sensor enable status
SaHpiBoolT SensorEventEnable; /* current evt enable status
SaHpiEventStateT AssertEventMask; /* current assert event mask
SaHpiEventStateT DeassertEventMask; /* current deassert evt mask

SaHpiSensorEnableOptDataT OptionalDataPresent;
/* the following fields are only valid if the corresponding flag is set
in the OptionalDataPresent field */
SaHpiEventStateT CurrentState; /* Current set of asserted
Event states. */
} SaHpiSensorEnableChangeEventT;

typedef struct {
SaHpiHsStateT HotSwapState;
SaHpiHsStateT PreviousHotSwapState;
} SaHpiHotSwapEventT;

typedef struct {

SaHpiWatchdogNumT WatchdogNum;
SaHpiWatchdogActionEventT WatchdogAction;
SaHpiWatchdogPretimerinterruptT WatchdogPreTimerAction;
SaHpiWatchdogTimerUseT WatchdogUse;

} SaHpiWatchdogEventT;

/*
** The following type defines the types of events that can be reported
** py the HPI software implementation.
**x
** Audit events report a discrepancy in the audit process. Audits are typical
** performed by HA software to detect problems. Audits may look for such thin
** as corrupted data stores, inconsistent RPT information, or improperly manag
** queues.
**x
** Startup events report a failure to start-up properly, or inconsistencies in
** persisted data.
*/
typedef enum {
SAHP1_HPIE_AUDIT,
SAHP1_HPIE_STARTUP,
SAHPI_HPIE_OTHER
} SaHpiSwEventTypeT;

typedef struct {
SaHpiManufacturerldT MId;
SaHpiSwEventTypeT Type;
SaHpiTextBufferT EventData;
} SaHpiHpiSwEventT;

typedef struct {
SaHpiManufacturerldT MId;
SaHpiTextBufferT OemEventData;
} SaHpiOemEventT;

/*
** User events may be used for storing custom events created by an HPl User
** when injecting events into the Event Log using saHpiEventLogEntryAdd() .
*
/
typedef struct {
SaHpiTextBufferT UserEventData;
} SaHpiUserEventT;

*/
*/
*/

ly
gs
ed

186

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SAI-HPI-B.01.01 HPI Specification

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface

Data Type Definitions

typedef enum {

SAHP1_ET_RESOURCE,
SAHPI_ET_DOMAIN,
SAHPI_ET_SENSOR,
SAHPI_ET_SENSOR_ENABLE_CHANGE,
SAHPI_ET_HOTSWAP,
SAHPI_ET_WATCHDOG,
SAHPI_ET_HPI_SW,

SAHPI_ET_OEM,

SAHPI_ET_USER

} SaHpiEventTypeT;

typedef union {

SaHpiResourceEventT ResourceEvent;
SaHpiDomainEventT DomainEvent;
SaHpiSensorEventT SensorEvent;
SaHpiSensorEnableChangeEventT SensorEnableChangeEvent;
SaHpiHotSwapEventT HotSwapEvent;
SaHpiWatchdogEventT WatchdogEvent;
SaHpiHpiSwEventT HpiSwEvent;
SaHpiOemEventT OemEvent;
SaHpiUserEventT UserEvent;

} SaHpiEventUnionT;

typedef struct {

SaHpiResourceldT Source;

SaHpiEventTypeT EventType;

SaHpiTimeT Timestamp; /*Equal to SAHPI_TIME_UNSPECIFED if time is
not available; Absolute time if greater
than SAHPI_TIME_MAX_RELATIVE, Relative
time if less than or equal to
SAHPI_TIME_MAX_RELATIVE */

SaHpiSeverityT Severity;

SaHpiEventUnionT EventDataUnion;

} SaHpiEventT;

/*
B
*x
**
**

B

Event Queue Status

This status word is returned to HPI Users that request it
when saHpiEventGet() is called.

*/
typedef SaHpiUint32T SaHpiEvtQueueStatusT;
#define SAHPI_EVT QUEUE_OVERFLOW (SaHpiEvtQueueStatusT)0x0001

8.15 Annunciators

/
*khkkkkkhkkk R
E s S S E s e e S e
/
/*
** Annunciator Number
**]dentifier for an Annunciator management instrument.
*/
typedef SaHpilnstrumentldT SaHpiAnnunciatorNumT;
/*
** The following data type is equivalent to the AIS data type SaNameT.
** jt is defined in this header file, so that inclusion of the AIS
** header file is not required. This data type is based on version 1.0
** of the AIS specification
HPI Specification SAI-HPI-B.01.01 187

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVICE
AVAILABILITY

*/
#define SA_HPI_MAX_NAME_LENGTH 256

typedef struct {

SaHpiUintl6T Length;

unsigned char Value[SA_HP1_MAX_NAME_LENGTH];
} SaHpiNameT;

/*

** Enumeration of Announcement Types

*/

typedef enum {
SAHPI_STATUS_COND_TYPE_SENSOR,
SAHP1_STATUS_COND_TYPE_RESOURCE,
SAHP1_STATUS_COND_TYPE_OEM,
SAHPI_STATUS_COND_TYPE_USER

} SaHpiStatusCondTypeT;

/* Condition structure definition */
typedef struct {

SaHpiStatusCondTypeT Type; /* Status Condition Type */
SaHpiEntityPathT Entity; /* Entity assoc. with status condition */
SaHpiDomainldT Domainld; /* Domain associated with status.

May be SAHPI_UNSPECIFIED_DOMAIND_ID

meaning current domain, or domain

not meaningful for status condition*/
SaHpiResourceldT Resourceld; /* Resource associated with status.

May be SAHPI_UNSPECIFIED_RESOURCE_ID

if Type is SAHPI_STATUS_COND_USER.

Must be set to valid Resourceld in

domain specified by Domainld,

or in current domain, if Domainld

is SAHPI_UNSPECIFIED_DOMAIN_ID */
SaHpiSensorNumT SensorNum; /* Sensor associated with status

Only valid if Type is

SAHPI_STATUS_COND_TYPE_SENSOR */
SaHpiEventStateT EventState; /* Sensor event state.

Only valid if Type is

SAHPI_STATUS_COND_TYPE_SENSOR. */

SaHpiNameT Name; /* AIS compatible identifier associated
with Status condition */
SaHpiManufacturerldT Mid; /* Manufacturer Id associated with

status condition, required when type
is SAHPI_STATUS_COND_TYPE_OEM. */
SaHpiTextBufferT Data; /* Optional Data associated with
Status condition */
} SaHpiConditionT;

/* Announcement structure definition */
typedef struct {

SaHpiEntryldT Entryld; /* Announcment Entry Id */
SaHpiTimeT Timestamp; /* Time when announcement added to set */
SaHpiBoolT AddedByUser; /* True if added to set by HPI User,

False if added automatically by
HPI implementation */

SaHpiSeverityT Severity; /* Severity of announcement */
SaHpiBoolT Acknowledged; /* Acknowledged flag */
SaHpiConditionT StatusCond; /* Detailed status condition */

} SaHpiAnnouncementT;

/* Annunciator Mode — defines who may add or delete entries in set. */

typedef enum {
SAHP1_ANNUNCIATOR_MODE_AUTO,
SAHP I_ANNUNCIATOR_MODE_USER,
SAHP1_ANNUNCIATOR_MODE_SHARED
} SaHpiAnnunciatorModeT;

188 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface

Data Type Definitions

8.16 Annunciator Resource Data Records

/
Rk e e R e e
falaiokaioialolaloll Annunciator Resource Data Records falaiokaialaiolalolal
KAAAAAAA AKX E R e e e
/
/*
** The following enumerated type defines the possible output types
** which can be associated with an Annunciator Management Instrument
*
/
typedef enum {
SAHPI_ANNUNCIATOR_TYPE_LED = O,
SAHP1_ANNUNCIATOR_TYPE_DRY_CONTACT_CLOSURE,
SAHPI1_ANNUNCIATOR_TYPE_AUDIBLE,
SAHP1_ANNUNCIATOR_TYPE_LCD_DISPLAY,
SAHPI_ANNUNCIATOR_TYPE_MESSAGE,
SAHPI_ANNUNCIATOR_TYPE_COMPOSITE,
SAHPI_ANNUNCIATOR_TYPE_OEM
} SaHpiAnnunciatorTypeT;
/*
** All annunciator management instruments
** must be represented in the RDR repository
** with an SaHpiAnnunciatorRecT.
*
/
typedef struct {
SaHpiAnnunciatorNumT AnnunciatorNum;
SaHpiAnnunciatorTypeT AnnunciatorType; /* Annunciator Output Type */
SaHpiBoolT ModeReadOnly; /* if True, Mode may
not be changed by HPl User */
SaHpiUint32T MaxConditions; /* maximum number of conditions
that can be held in current
set. O means no fixed
limit. */
SaHpiUint32T Oem;
} SaHpiAnnunciatorRecT;
8.17 Resource Data Records
/
Rk e e R e e
*hkkkkkhkkk R
/
/*
** The following describes the different types of records that exist within a
** RDR repository and the RDR super-structure to all of the specific RDR types
** (sensor, inventory data, watchdog, etc.).
*/
typedef enum {
SAHP1_NO_RECORD,
SAHPI_CTRL_RDR,
SAHP1_SENSOR_RDR,
SAHPI_INVENTORY_RDR,
SAHP1_WATCHDOG_RDR,
SAHPI_ANNUNCIATOR_RDR
} SaHpiRdrTypeT;
typedef union {
SaHpiCtriRecT CtrlRec;
HPI Specification SAI-HPI-B.01.01 189

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface R
Data Type Definitions i

SaHpiSensorRecT SensorRec;

SaHpi InventoryRecT InventoryRec;

SaHpiWatchdogRecT WatchdogRec;

SaHpiAnnunciatorRecT AnnunciatorRec;
} SaHpiRdrTypeUnionT;

typedef struct {

SaHpiEntryldT Recordld;

SaHpiRdrTypeT RdrType;

SaHpiEntityPathT Entity; /* Entity to which this RDR relates. */
SaHpiBoolT IsFru; /* Entity is a FRU. This field is

Only valid if the Entity path given
in the “Entity” field is different
from the Entity path in the RPT
entry for the resource. */
SaHpiRdrTypeUnionT RdrTypeUnion;
SaHpiTextBufferT 1dString;
} SaHpiRdrT;

190 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY
T

Service Availability™ Hardware Platform Interface
Data Type Definitions

8.18 Parameter Control

/

FhkhhkhkAh Ak
Fhkhkh kA kA

KAAAAAAAAK

Parameter Control

O

FhKhkhdhk ki

E R e e e

typedef enum {
SAHP1_DEFAULT_PARM = O,
SAHPI_SAVE_PARM,
SAHP1_RESTORE_PARM

} SaHpiParmActionT;

8.19 Reset

/

/

*hkkkkkhkkk
FhkdhkhkAh Ak Reset

Fhkhkhk kA hkk

R

O

Fhdhkhdhkhkk

typedef enum {
SAHPI_COLD_RESET = O,
SAHPI_WARM_RESET,
SAHP1_RESET_ASSERT,
SAHPI_RESET_DEASSERT
} SaHpiResetActionT;

8.20 Power

/

/

*hkkkkkhkkk
FhkdhkhkAh Ak Power

Fhkhkhdk kA hkk

R o

O

Fhdhkhdhkhkk

typedef enum {
SAHPI_POWER_OFF = 0,
SAHPI_POWER_ON,
SAHPI_POWER_CYCLE

} SaHpiPowerStateT;

/

HPI Specification

SAI-HPI-B.01.01

191

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVI
AVAILABI

CE

LTy

8.21 Resource Presence Table

/
E Rk E R
iiididaadiaiaiaiaie Resource Presence Table iiidiaiaiaiaiaiaiaie
KAAAAAAAAK E R e e e
/
/* This section defines the types associated with the RPT. */
/-k
** GUID — Globally Unique ldentifier
**k
** The format if the ID follows that specified by the Wired for Management
** Baseline, Version 2.0 specification. HPI uses version 1 of the GUID
** format, with a 3-bit variant field of 10x (where x indicates “don’t care”)
*/
typedef SaHpiUint8T SaHpiGuidT[16];
/*
** Resource Info Type Definitions
**
**
** SaHpiResourcelnfoT contains static configuration data concerning the
** management controller associated with the resource, or the resource itself.
** Note this information is used to describe the resource; that is, the piece of
** infrastructure which manages an entity (or multiple entities) — NOT the
** entities for which the resource provides management. The purpose of the
** SaHpiResourcelnfoT structure is to provide information that an HP1 User may
** need in order to interact correctly with the resource (e.g., recognize a
** gpecific management controller which may have defined OEM fields in sensors,
** OEM controls, etc.).
*xk
** The GUID is used to uniquely identify a Resource. A GUID value of zero is not
** valid and indicates that the Resource does not have an associated GUID.
**
** All of the Ffields in the following structure may or may not be used by a
** given resource.
*/
typedef struct {
SaHpiuint8T ResourceRev;
SaHpiUint8T SpecificVer;
SaHpiUint8T DeviceSupport;
SaHpiManufacturerldT Manufacturerld;
SaHpiUintl6eT Productld;
SaHpiUint8T FirmwareMajorRev;
SaHpiUint8T FirmwareMinorRev;
SaHpiUint8T AuxFirmwareRev;
SaHpiGuidT Guid;
} SaHpiResourcelnfoT;
/*
** Resource Capabilities
*xk
** This definition defines the capabilities of a given resource. One resource
** may support any number of capabilities using the bit mask. Because each entry
** in an RPT will have the SAHPI_CAPABILITY_RESOURCE bit set, zero is not a
** valid value for the capability flag, and is thus used to indicate “no RPT
** entry present” in some function calls.
**
** SAHPI_CAPABILITY_RESOURCE
** SAHPI_CAPABILITY_EVT_DEASSERTS
*x Indicates that all sensors on the resource have the property that their
** Assertion and Deassertion event enable flags are the same. That is,
** for all event states whose assertion triggers an event, it is
** guaranteed that the deassertion of that event will also
** trigger an event. Thus, an HPI User may track the state of sensors on the
*x resource by monitoring events rather than polling for state changes.
192 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface

Data Type Definitions

** SAHPI_CAPABILITY_AGGREGATE_STATUS
** SAHPI_CAPABILITY_CONFIGURATION
** SAHPI_CAPABILITY_MANAGED_HOTSWAP

*x Indicates that the resource supports the full managed hot swap model.

** Since hot swap only makes sense for field-replaceable units, the

** SAHPI_CAPABILITY_FRU capability bit must also be set for this resource.

** SAHPI_CAPABILITY_WATCHDOG
** SAHPI_CAPABILITY_CONTROL
** SAHPI_CAPABILITY_FRU

*x Indicates that the resource is a field-replaceable unit; i.e., it is

*x capable of being removed and replaced in a live system. If
*x SAHPI1_CAPABILITY_MANAGED_HOTSWAP is also set, the resource supports

** the full hot swap model.

1T SAHPI_CAPABILITY_MANAGED_HOTSWAP is not

** set, the resource supports the simplified hot swap model.
** SAHPI_CAPABILITY_ANNUNCIATOR

** SAHPI_CAPABILITY_POWER

** SAHPI_CAPABILITY_RESET

** SAHPI_CAPABILITY_INVENTORY_DATA
** SAHPI_CAPABILITY_EVENT_LOG

** SAHPI_CAPABILITY_RDR

*x Indicates that a resource data record (RDR) repository is supplied
xx by the resource. Since the existence of an RDR is mandatory for all
*x management instruments, this
*x capability must be asserted if the resource

*x contains any sensors, controls, watchdog timers, or inventory
** data repositories.

** SAHPI_CAPABILITY_SENSOR

*/

typedef
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

** Resource Managed Hot Swap Capabilities

**

SaHpiUint32T SaHpiCapabilitiesT;

SAHPI_CAPABILITY_RESOURCE
SAHPI1_CAPABILITY_EVT_DEASSERTS

SAHP1_CAPABILITY_AGGREGATE_STATUS

SAHPI_CAPABILITY_CONFIGURATION

SAHPI_CAPABILITY_MANAGED_HOTSWAP

SAHP1_CAPABILITY_WATCHDOG
SAHPI1_CAPABILITY_CONTROL
SAHP1_CAPABILITY_FRU
SAHPI_CAPABILITY_ANNUNCIATOR
SAHPI_CAPABILITY_POWER
SAHPI1_CAPABILITY_RESET

SAHP1_CAPABILITY_INVENTORY_DATA

SAHPI_CAPABILITY_EVENT_LOG
SAHP1_CAPABILITY_RDR
SAHPI_CAPABILITY_SENSOR

(SaHpiCapabilitiesT)0X40000000
(SaHpiCapabilitiesT)0x00008000
(SaHpiCapabilitiesT)0x00002000
(SaHpiCapabilitiesT)0x00001000
(SaHpiCapabilitiesT)0x00000800
(SaHpiCapabilitiesT)0x00000400
(SaHpiCapabilitiesT)0x00000200
(SaHpiCapabilitiesT)0x00000100
(SaHpiCapabilitiesT)0x00000040
(SaHpiCapabilitiesT)0x00000020
(SaHpiCapabilitiesT)0x00000010
(SaHpiCapabilitiesT)0x00000008
(SaHpiCapabi litiesT)0x00000004
(SaHpiCapabilitiesT)0x00000002
(SaHpiCapabilitiesT)0x00000001

** This definition defines the managed hot swap capabilities of a given
** resource.

*x

** SAHPI_HS_CAPABILITY_AUTOEXTRACT_READ_ONLY

** This capability indicates if the hot swap autoextract timer is read-only.
** SAHPI_HS_CAPABILITY_INDICATOR_SUPPORTED

** Indicates whether or not the resource has a hot swap indicator.

*/

typedef SaHpiUint32T SaHpiHsCapabilitiesT;

#define SAHPI_HS CAPABILITY_AUTOEXTRACT_READ_ONLY \
(SaHpiHsCapabi litiesT)0x80000000
#define SAHPI_HS_CAPABILITY_INDICATOR_SUPPORTED \
(SaHpiHsCapabilitiesT)0X40000000

/*

** RPT Entry

**

** This structure is used to store the RPT entry information.

*k

** The ResourceCapabilities field definies the capabilities of the resource.

** This field must be non-zero for all valid resources.

**

HPI Specification

SAI-HPI-B.01.01 193

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVI
AVAILABI

CE

LTy

e
*x
**
**
*k
*k
**
**
*k
E

**

*/

The HotSwapCapabilities field denotes the capabilities of the resource,
specifically related to hot swap. This field is only valid if the
resource supports managed hot swap, as indicated by the
SAHPI1_CAPABILITY_MANAGED_HOT_SWAP resource capability.

The ResourceTag is a data field within an RPT entry available to the HPI
User for associating application specific data with a resource. The HPI
User supplied data is purely informational and is not used by the HPI
implementation, domain, or associated resource. For example, an HPI User
can set the resource tag to a “descriptive” value, which can be used to
identify the resource in messages to a human operator.

typedef struct {
SaHpiEntryldT Entryld;
SaHpiResourceldT Resourceld;
SaHpiResourcelnfoT Resourcelnfo;
SaHpiEntityPathT ResourceEntity; /* If resource manages a FRU, entity

path of the FRU */

/* 1If resource manages a single
entity, entity path of that
entity. */

/* 1T resource manages multiple
entities, the entity path of the
“primary” entity managed by the
resource */

/* Must be set to the same value in
every domain which contains this
resource */

SaHpiCapabilitiesT ResourceCapabilities; /* Must be non-0. */
SaHpiHsCapabilitiesT HotSwapCapabilities; /* Indicates the hot swap
capabilities of the resource */
SaHpiSeverityT ResourceSeverity; /* Indicates the criticality that
should be raised when the resource
is not responding */
SaHpiBoolT ResourceFailed; /* Indicates that the resource is not
currently functional */
SaHpiTextBufferT ResourceTag;

} SaHpiRptEntryT;

8.22 Domains

/

Rk e e R e e

*hkkkkkhkkk R
/

/* This section defines the types associated with the domain controller. */

/*

** Domain Capabilities

**

** This definition defines the capabilities of a given domain. A domain

** may support any number of capabilities using the bit mask.

**k

** SAHPI_DOMAIN_CAP_AUTOINSERT_READ_ONLY

*x Indicates that the domain auto insert timeout value is read-only

** and may not be modified using the saHpiHotSwapAutolnsertTimeoutSet()

** function.

*/

typedef SaHpiUint32T SaHpiDomainCapabilitiesT;
#define SAHPI_DOMAIN_CAP_AUTOINSERT_READ_ONLY \

/*
*x

**

(SaHpiDomainCapabilitiesT)0X00000001

Domain Info

194

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

SAI-HPI-B.01.01 HPI Specification

SERVICE
AVAILABILITY

Service Availability™ Hardware Platform Interface
Data Type Definitions

e
*x
**
**
*k
*k
**
**
*k
E
**
**
**
e
*x

**

*/

This structure is used to store the information regarding the domain
including information regarding the domain reference table (DRT) and
the resource presence table (RPT).

The DomainTag field is an informational value that supplies an HPI User
with naming information for the domain.

NOTE: Regarding timestamps - If the implementation cannot supply an absolute
timestamp, then it may supply a timestamp relative to some system-defined
epoch, such as system boot. The value SAHPI_TIME_UNSPECIFIED indicates that
the time of the update cannot be determined. Otherwise, If the value is less
than or equal to SAHPI_TIME_MAX_RELATIVE, then it is relative; if it is
greater than SAHPI_TIME_MAX_RELATIVE, then it is absolute.

The GUID is used to uniquely identify a domain. A GUID value of zero is not
valid and indicates that the domain does not have an associated GUID.

typedef struct {

SaHpiDomainldT Domainld; /* Unique Domain Id associated with
domain */

SaHpiDomainCapabilitiesT DomainCapabilities; /* Domain Capabilities */

SaHpiBoolT IsPeer; /* Indicates that this domain

participates in a peer
relationship. */

SaHpiTextBufferT DomainTag; /* Information tag associated with
domain */
SaHpiUint32T DrtUpdateCount; /* This count is incremented any time the

table is changed. It rolls over to
zero when the maximum value is
reached */

SaHpiTimeT DrtUpdateTimestamp; /* This timestamp is set any time the
DRT table is changed. */
SaHpiUint32T RptUpdateCount; /* This count is incremented any time

the RPT is changed. It rolls over
to zero when the maximum value is
reached */

SaHpiTimeT RptUpdateTimestamp; /* This timestamp is set any time the
RPT table is changed. */
SaHpiUint32T DatUpdateCount; /* This count is incremented any time

the DAT is changed. It rolls over to
zero when the maximum value is
reached */

SaHpiTimeT DatUpdateTimestamp; /* This timestamp is set any time the
DAT is changed. */

SaHpiUint32T ActiveAlarms; /* Count of active alarms in the DAT */

SaHpiUint32T CriticalAlarms; /* Count of active critical alarms in
the DAT */

SaHpiUint32T MajorAlarms; /* Count of active major alarms in the
DAT */

SaHpiUint32T MinorAlarms; /* Count of active minor alarms in the
DAT */

SaHpiUint32T DatUserAlarmLimit; /* Maximum User Alarms that can be
added to DAT. O0=no fixed limit */

SaHpiBoolT DatOverflow; /* Set to True if there are one

or more non-User Alarms that

are missing from the DAT because

of space limitations */
SaHpiGuidT Guid; /* GUID associated with domain.*/

} SaHpiDomaininfoT;

/*
**
*k
**
**

*/

DRT Entry

This structure is used to store the DRT entry information.

typedef struct {

SaHpiEntryldT Entryld;
SaHpiDomainldT Domainld; /* The Domain ID referenced by this entry */
SaHpiBoolT IsPeer; /* Indicates if this domain reference

HPI Specification SAI-HPI-B.01.01 195
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface
Data Type Definitions

SERVI
AVAILABI

CE

LTy

is a peer. If not, the domain reference
is a tier. */
} SaHpiDrtEntryT;

/*
** DAT Entry

**

** This structure is used to store alarm informatin in the DAT

E

*/

typedef SaHpiEntryldT SaHpiAlarmldT;

typedef struct {

SaHpiAlarmldT Alarmld; /* Alarm 1d */

SaHpiTimeT Timestamp; /* Time when alarm added to DAT */
SaHpiSeverityT Severity; /* Severity of alarm */

SaHpiBoolT Acknowledged; /* Acknowledged flag */
SaHpiConditionT AlarmCond; /* Detailed alarm condition */

} SaHpiAlarmT;

8.23 Event Log

/
Fhkhkhk Ak Fkdkhdkhk ki
*hkkkkkkkk R

/
/* This section defines the types associated with the Event Log. */

/*

** Event Log Information

*k

** The Entries entry denotes the number of active entries contained in the Event

*x Log.
** The Size entry denotes the total number of entries the Event Log is able to
** hold.

** The UserEventMaxSize entry indicates the maximum size of the text buffer
** data field in an HPI User event that is supported by the Event Log
*x implementation. |If the implementation does not enforce a more restrictive
holed data length, it should be set to SAHPI_MAX_TEXT_BUFFER_LENGTH.
** The UpdateTimestamp entry denotes the time of the last update to the Event
*x Log.
** The CurrentTime entry denotes the Event Log’s idea of the current time; i.e
** the timestamp that would be placed on an entry if it was added now.
** The Enabled entry indicates whether the Event Log is enabled. If the Event
** Log is “disabled” no events generated within the HPI implementation will be
** added to the Event Log. Events may still be added to the Event Log with
** the saHpiEventLogEntryAdd() function. When the Event Log is “enabled”
** events may be automatically added to the Event Log as they are generated
*x in a resource or a domain, however, it is implementation-specific which
** events are automatically added to any Event Log.
** The OverflowFlag entry indicates the Event Log has overflowed. Events have
*x been dropped or overwritten due to a table overflow.
** The OverflowAction entry indicates the behavior of the Event Log when an
** overflow occurs.
** The OverflowResetable entry indicates if the overflow flag can be
*x cleared by an HPI User with the saHpiEventLogOverflowReset() function.
*/
typedef enum {

SAHPI_EL_OVERFLOW_DROP, /* New entries are dropped when Event Log is

full*/
SAHPI1_EL_OVERFLOW_OVERWRITE /* Event Log overwrites existing entries
when Event Log is full */

} SaHpiEventLogOverflowActionT;

typedef struct {
SaHpiUint32T Entries;

196 SAI-HPI-B.01.01 HPI Specification

Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

AVAILABILITY
et Data Type Definitions

SaHpiUint32T Size;

SaHpiUint32T UserEventMaxSize;
SaHpiTimeT UpdateTimestamp;
SaHpiTimeT CurrentTime;
SaHpiBoolT Enabled;
SaHpiBoolT OverflowFlag;
SaHpiBoolT OverflowResetable;

SaHpiEventLogOverflowActionT OverflowAction;
} SaHpiEventLogInfoT;
/*
** Event Log Entry
** These types define the Event Log entry.
*/
typedef SaHpiUint32T SaHpiEventLogEntryldT;
/* Reserved values for Event Log entry IDs */
#define SAHPI_OLDEST_ENTRY (SaHpiEventLogEntry1dT)0x00000000
#define SAHPI_NEWEST_ENTRY (SaHpiEventLogEntryldT)OXFFFFFFFF
#define SAHPI_NO_MORE_ENTRIES (SaHpiEventLogEntryldT)OxXFFFFFFFE

typedef struct {
SaHpiEventLogEntryldT Entryld; /* Entry 1D for record */
SaHpiTimeT Timestamp; /* Time at which the event was placed
in the Event Log. If less than or equal to
SAHPI_TIME_MAX_RELATIVE, then it is
relative; if it is greater than SAHPI_TIME_
MAX_RELATIVE, then it is absolute. */
SaHpiEventT Event; /* Logged Event */
} SaHpiEventLogEntryT;

HPI Specification SAI-HPI-B.01.01 197
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availf';lb.ilityTM Hardware Platform Interface ‘vﬁﬁfxll n:“EJ o
Usage Descriptions paicns

A. Usage Descriptions

A.1 Watchdog Timer Example Usage

The following time line shows an example of the operation of the watchdog. The case shown hereillustrates a
watchdog timer that supports pre-timeout, with the Message Interrupt action set; other use cases exit, but are not
illustrated here:

TO: saHpiWatchdogTimerSet() called.

Log = SAHPI_TRUE;

Running = SAHPI_FALSE;

TimerUse = SAHPI_WTU_SMS_OS;

TimerAction = SAHPI_WA RESET;

Pretimerinterrupt = SAHPI_WPI_MESSAGE_INTERRUPT;
PreTimeoutinterval = 3000; (3 seconds)
TimerUseExpFlags = SAHPI_WATCHDOG_EXP_SMS_OS;
InitialCount = 25000; (25 seconds)

Watchdog timer is configured to reset resource after timeout of 25 seconds,

with a 3 second pre-timeout interrupt. Event will be generated at the pre-timer interval
prior to timeout and on timeout. SAHPI_WATCHDOG_EXP_SMS_OS Expiration flag has been cleared.
Watchdog timer is currently stopped.

TO+10 seconds: saHpiWatchdogTimerGet() called. Values returned:

Log = SAHPI_TRUE;

Running = SAHPI_FALSE;

TimerUse = SAHPI_WTU_SMS_O0S;

TimerAction = SAHPI_WATCHDOG_RESET;

Pretimerinterrupt = SAHPI_WPI_MESSAGE_INTERRUPT;

PreTimeoutinterval = 3000;

TimerUseExpFlags = SAHPI_WATCHDOG_EXP_SMS_OS bit will be CLEARED. Other bits
may be set or cleared, as they were before initial saHpiWatchdogTimerSet() call.
InitialCount = 25000;

PresentCount = undefined

TO+30 seconds: saHpiWatchDogTimerReset() called.
Timer starts to run.

TO+45 seconds: saHpiWatchdogTimerGet() called. Values returned:

Log = SAHPI_TRUE;

Running = SAHPI_TRUE;

TimerUse = SAHPI_WTU_SMS_OS;

TimerAction = SAHPI_WA RESET;

Pretimerinterrupt = SAHPI_WPI_MESSAGE_INTERRUPT;

PreTimeoutinterval = 3000;

TimerUseExpFlags = SAHPI_WATCHDOG_EXP_SMS_OS bit will be CLEARED. Other bits
may be set or cleared, as they were before initial saHpiWatchdogTimerSet() call.
InitialCount = 25000;

PresentCount = 10000; (It is 15 seconds since last reset, so there are 10
Seconds before timeout)

TO+50 seconds: saHpiWatchdogTimerReset() called.

TO+55 seconds: saHpiWatchdogTimerGet() called. Values returned:

Log = SAHPI_TRUE;

Running = SAHPI_TRUE;

TimerUse = SAHPI_WTU_SMS_OS;

TimerAction = SAHPI_WA_RESET;

Pretimerinterrupt = SAHPI_WPI_MESSAGE_INTERRUPT;

PreTimeoutinterval = 3000;

TimerUseExpFlags = SAHPI_WATCHDOG_EXP_SMS_OS bit will be CLEARED. Other bits
may be set or cleared, as they were before initial saHpiWatchdogTimerSet() call.
InitialCount = 25000;

PresentCount = 20000; (It is 5 seconds since last reset, so there are 20
seconds before timeout)

198 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availability™ Hardware Platform Interface

SERVICE
AVAILABILITY e
e Usage Descriptions

TO+72 seconds: Three seconds prior to timeout - Watchdog timer initiates
“Message Interrupt” on resource.
Event is issued:
Source = Resourceld of resource hosting watchdog;
Event Type = SAHPI_ES_WATCHDOG;
Severity = SAHPI_MAJOR;
EventDataUnion.WatchdogEvent.WatchdogNum = Watchdog number for watchdog that
reached pre-timer interval;
EventDataUnion.WatchdogEvent.WatchdogAction = SAHPI_WAE_TIMER_INT;
EventDataUnion.WatchdogEvent.WatchdogPreTimerAction = SAHPI_WPI_MESSAGE_INTERRUPT;
EventDataUnion.WatchdogEvent.WatchdogUse = SAHPI_WTU_SMS_OS;

TO+73.5 seconds: saHpiWatchdogTimerGet() called. Values returned:

Log = SAHPI_TRUE;

Running = SAHPI_TRUE;

TimerUse = SAHPI_WTU_SMS_O0S;

TimerAction = SAHPI_WA_RESET;

Pretimerinterrupt = SAHPI_WPI_MESSAGE_INTERRUPT;

PreTimeoutlinterval = 3000;

TimerUseExpFlags = SAHPI_WATCHDOG_EXP_SMS_OS bit will be CLEARED. Other bits
may be set or cleared, as they were before initial saHpiWatchdogTimerSet() call.
InitialCount = 25000;

PresentCount = 1500; (It is 23.5 seconds since last reset, so there are 1.5
seconds before timeout)

TO+74 seconds: saHpiWatchdogTimerReset() called.
Because the pre-timeout interrupt has already occurred, this function call has
no effect, and will return the error SA_ERR_HPI_INVALID_REQUEST.

TO+75 seconds: Timer expires, and:
Resource is reset;
Event is issued:
Source = Resourceld of resource hosting watchdog;
Event Type = SAHPI_ES_WATCHDOG;
Severity = SAHPI_MAJOR;
EventDataUnion.WatchdogEvent.WatchdogNum = Watchdog number for watchdog that
fired;
EventDataUnion.WatchdogEvent.WatchdogAction = SAHPI_WAE_RESET;
EventDataUnion.WatchdogEvent.WatchdogUse = SAHPI_WTU_SMS_OS;

TO+80 seconds: saHpiWatchdogTimerGet() called. Values returned:
Log = SAHPI_FALSE;
Running = SAHPI_FALSE;
TimerUse = SAHPI_WTU_SMS 0S;
TimerAction = SAHPI_WA_RESET;
Pretimerinterrupt = SAHPI_WPI_MESSAGE_INTERRUPT;
PreTimeoutlinterval = 3000;
TimerUseExpFlags = SAHPI_WATCHDOG_EXP_SMS_OS bit will be set. Other bits may be
set or cleared, as they were before initial saHpiWatchdogTimerSet() call.
InitialCount = 25000;
PresentCount = undefined

A.2 Managing a Fantray FRU from an AlarmCard Resource

Generally, al sensors, contrals, etc., associated with a single entity are associated with asingle resource. Thereisone
case, however, where this may not be appropriate. If a management controller in the system (e.g., an darm card) is
responsible for managing entities on other FRU's (e.g., fans on a non-intelligent removable fantray), there are two
different occurrences which can impact the manageability of those entities. If a FRU containing managed entities (i.e.,
fantray) is removed from the system, those entities become unmanageable. But, aso, if the managing FRU (i.e., darm
card) fails, then al entities it manages become unmanageable. To correctly model this, each of these “remotely
managed” FRU entities needs to be associated with two different resources: one associated with its own local FRU
(i.e., fantray), and one associated with the managing FRU (i.e., alarm card). An acceptable method to reflect this
situation in the HPI isto create a resource for the managed entities FRU (i.e., fantray) which contains no sensors,
controls, etc., but provides only the “hot swap” capability for the FRU. Each of the sensors, controls, etc., for the FRU
would beincluded in the RDR table for the resource associated with the managing FRU (i.e., alarm card). When a
management instrument (sensor, control, etc.) located in one resource is associated with a different FRU in thisway,
the IsFru flag is set in the Resource Data Record for that management instrument to indicate that fact.

HPI Specification SAI-HPI-B.01.01 199
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

Service Availfab.ilityTM Hardware Platform Interface aBERVICE
Usage Descriptions paicns

As afurther example, it is permissible for two alarm card FRU's to manage a single fan (or multiple fans) on a fantray
FRU. In this case the two alarm cards would typically be represented viatwo distinct resources, while the fantray FRU
would also be represented as aresource. Note that in this example if each alarm card included a "fan speed” sensor for
the same fan on the fantray FRU, those would be two different sensorsin the system. There is nothing that
automatically tells an HPI User that those two sensors are measuring the same (physical) thing. An HPI User would
have to use its own intelligence to know that it doesn't make sense for the same fan to be reporting two different
speeds, for example. By the same token if each alarm card included a "fan speed" control for the same fan, it would be
up to an HPI User to establish rules for access to the control (i.e., an HPI User should probably control the fan through
an "active" but not a"standby" alarm card).

The following rules apply to resources:

1. Theentity pathsin the RPT of each resource, throughout an HPI implementation, must be unique -- thus the entity
paths in the RPT's of two distinct resources cannot be identical. The RPT entity path is the unambiguous identifier
of aresource wherever it appears.

2. The same resource can show up in separate domains, possibly with differing resource numbersin each of these
domains. If the entity pathsin RPT's of resourcesin separate domains are identical, than it can be concluded that
these resources are really the same resource showing up in those domains.

Note. Where the same resource shows up in separate domains, all representations of that resource shall be identical in
all respects except for a possibly differing resource number. It is therefore acceptable for an implementation to
use one physical copy of aresource and present it in the separate domains.

3. A given resource may only show up once in any given domain. Therefore, the entity pathsin RPT's of resourcesin
the same domain can never beidentical, since identical entity paths would imply that the same resource is showing
up multiple times in the same domain. For example:

Not allowed: The following implies that the same resource is showing up twice in the same domain (the domain
numbers and entity paths are identical):

Domain 0, resource 1, RPT entity path: /SBC Blade 3/chassis 2

Domain 0, resource 5, RPT entity path: /SBC Blade 3/chassis 2
Permitted: The following implies that the same resource is showing up in different domains with two different
resource numbers (note the differing domain numbers). The representations of the resource in domains 0 and 2 are
identical in all respects, except for the differing resource numbers.

Domain 0, resource 1, RPT entity path: /SBC Blade 3/chassis 2

Domain 2, resource 5, RPT entity path: /SBC Blade 3/chassis 2

200 SAI-HPI-B.01.01 HPI Specification
Copyright© 2004 Service Availability™ Forum, Inc. - Other names and brands are properties of their respective owners.

	Contents
	Figures
	Tables
	Revision History
	Terms and Definitions
	Document Introduction
	Document Overview
	Summary of Changes in SAI-HPI-B.01.01
	References
	How to Provide Feedback on this Specification
	How to Join the Service Availability™ Forum
	Membership Application
	Member Companies
	Press Materials

	Hardware Platform Interface Overview
	Overview
	Market Context
	Building Block Integration and Portability

	HPI’s Legacy in IPMI

	The HPI Model
	Sessions
	Domains
	Domain Controller
	Domain Architectures
	Domain Identifier

	Resources
	Entities
	Entity Paths

	Discovery
	Synchronization
	Synchronization Responsibilities
	Multiple HPI implementations

	Remote Access to the Platform Interface
	Resource Failures
	Failure of a Non-FRU Resource
	Failure of a FRU Resource

	Implementation Requirements

	API Conventions
	Return Codes
	Generic Return Codes
	Interface Behavior when a Function Returns an Error
	Pointer Conventions

	General Functions
	Implementation Version Checking
	saHpiVersionGet()

	Domain Functions
	Session Management
	saHpiSessionOpen()
	saHpiSessionClose()
	saHpiDiscover()

	Domain Discovery
	saHpiDomainInfoGet()
	saHpiDrtEntryGet()
	saHpiDomainTagSet()

	Resource Presence Table
	saHpiRptEntryGet()
	saHpiRptEntryGetByResourceId()
	saHpiResourceSeveritySet()
	saHpiResourceTagSet()
	saHpiResourceIdGet()

	Event Log Management
	saHpiEventLogInfoGet()
	saHpiEventLogEntryGet()
	saHpiEventLogEntryAdd()
	saHpiEventLogClear()
	saHpiEventLogTimeGet()
	saHpiEventLogTimeSet()
	saHpiEventLogStateGet()
	saHpiEventLogStateSet()
	saHpiEventLogOverflowReset()

	Events
	saHpiSubscribe()
	saHpiUnsubscribe()
	saHpiEventGet()
	saHpiEventAdd()

	Domain Alarm Table
	saHpiAlarmGetNext()
	saHpiAlarmGet()
	saHpiAlarmAcknowledge()
	saHpiAlarmAdd()
	saHpiAlarmDelete()

	Resource Functions
	Resource Data Record (RDR) Repository Management
	saHpiRdrGet()
	saHpiRdrGetByInstrumentId()

	Sensors
	Sensor Events and Sensor Event States
	Sensor Configuration
	Aggregate Sensors
	Sensor Ranges
	saHpiSensorReadingGet()
	saHpiSensorThresholdsGet()
	saHpiSensorThresholdsSet()
	saHpiSensorTypeGet()
	saHpiSensorEnableGet()
	saHpiSensorEnableSet()
	saHpiSensorEventEnableGet()
	saHpiSensorEventEnableSet()
	saHpiSensorEventMasksGet()
	saHpiSensorEventMasksSet()

	Controls
	saHpiControlTypeGet()
	saHpiControlGet()
	saHpiControlSet()

	Inventory Data Repositories
	saHpiIdrInfoGet()
	saHpiIdrAreaHeaderGet()
	saHpiIdrAreaAdd()
	saHpiIdrAreaDelete()
	saHpiIdrFieldGet()
	saHpiIdrFieldAdd()
	saHpiIdrFieldSet()
	saHpiIdrFieldDelete()

	Watchdog Timers
	saHpiWatchdogTimerGet()
	saHpiWatchdogTimerSet()
	saHpiWatchdogTimerReset()

	Annunciators
	saHpiAnnunciatorGetNext()
	saHpiAnnunciatorGet()
	saHpiAnnunciatorAcknowledge()
	saHpiAnnunciatorAdd()
	saHpiAnnunciatorDelete()
	saHpiAnnunciatorModeGet()
	saHpiAnnunciatorModeSet()

	Managed Hot Swap
	Hot Swap States
	Hot Swap Auto Insertion and Auto Extraction Capabilities
	Using Hot Swap
	Hot Swap Functions
	saHpiHotSwapPolicyCancel()
	saHpiResourceActiveSet()
	saHpiResourceInactiveSet()
	saHpiAutoInsertTimeoutGet()
	saHpiAutoInsertTimeoutSet()
	saHpiAutoExtractTimeoutGet()
	saHpiAutoExtractTimeoutSet()
	saHpiHotSwapStateGet()
	saHpiHotSwapActionRequest()
	saHpiHotSwapIndicatorStateGet()
	saHpiHotSwapIndicatorStateSet()

	Configuration
	saHpiParmControl()

	Reset Management
	saHpiResourceResetStateGet()
	saHpiResourceResetStateSet()

	Power Management
	saHpiResourcePowerStateGet()
	saHpiResourcePowerStateSet()

	Data Type Definitions
	Basic Data Types and Values
	Entities
	Events, Part 1
	Sensors
	Sensor Resource Data Records
	Aggregate Status
	Controls
	Control Resource Data Records
	Inventory Data Repositories
	Inventory Data Repository Resource Data Records
	Watchdogs
	Watchdog Resource Data Records
	Hot Swap
	Events, Part 2
	Annunciators
	Annunciator Resource Data Records
	Resource Data Records
	Parameter Control
	Reset
	Power
	Resource Presence Table
	Domains
	Event Log

