
Service AvailabilityTM Forum
Application Interface Specification

Volume 5: Event Service SAI-AIS-EVT-B.01.01

The Service AvailabilityTM solution is high availability and more; it is the delivery of ultra-dependable
communication services on demand and without interruption.

This Service AvailabilityTM Forum Application Interface Specification document might contain
design defects or errors known as errata, which might cause the product to deviate from
published specifications. Current characterized errata are available on request.

.

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40
 SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT

The Service Availability™ Specification(s) (the "Specification") found at the URL http://www.saforum.org (the
"Site") is generally made available by the Service Availability Forum (the "Licensor") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions, which govern the
use of the Specification are set forth in this agreement (this "Agreement").

IMPORTANT – PLEASE READ THE TERMS AND CONDITIONS PROVIDED IN THIS AGREEMENT BEFORE DOWN-
LOADING OR COPYING THE SPECIFICATION. IF YOU AGREE TO THE TERMS AND CONDITIONS OF THIS AGREE-
MENT, CLICK ON THE "ACCEPT" BUTTON. BY DOING SO, YOU AGREE TO BE BOUND BY THE TERMS AND
CONDITIONS STATED IN THIS AGREEMENT. IF YOU DO NOT WISH TO AGREE TO THESE TERMS AND CONDITIONS,
YOU SHOULD PRESS THE "CANCEL"BUTTON AND THE DOWNLOAD PROCESS WILL NOT PROCEED.

1. LICENSE GRANT. Subject to the terms and conditions of this Agreement, Licensor hereby grants you a non-
exclusive, worldwide, non-transferable, revocable, but only for breach of a material term of the license granted in
this section 1, fully paid-up, and royalty free license to:

a. reproduce copies of the Specification to the extent necessary to study and understand the
Specification and to use the Specification to create products that are intended to be compatible
with the Specification;
b. distribute copies of the Specification to your fellow employees who are working on a project or
product development for which this Specification is useful; and
c. distribute portions of the Specification as part of your own documentation for a product you have
built, which is intended to comply with the Specification.

2. DISTRIBUTION. If you are distributing any portion of the Specification in accordance with Section 1(c), your
documentation must clearly and conspicuously include the following statements:

a. Title to and ownership of the Specification (and any portion thereof) remain with Service Avail-
ability Forum ("SA Forum").
b. The Specification is provided "As Is." SAF makes no warranties, including any implied warran-
ties, regarding the Specification (and any portion thereof) by Licensor.
c. SAF shall not be liable for any direct, consequential, special, or indirect damages (including,
without limitation, lost profits) arising from or relating to the Specification (or any portion thereof).
d. The terms and conditions for use of the Specification are provided on the SA Forum website.

3. RESTRICTION. Except as expressly permitted under Section 1, you may not (a) modify, adapt, alter, translate,
or create derivative works of the Specification, (b) combine the Specification (or any portion thereof) with another
document, (c) sublicense, lease, rent, loan, distribute, or otherwise transfer the Specification to any third party, or
(d) copy the Specification for any purpose.

4. NO OTHER LICENSE. Except as expressly set forth in this Agreement, no license or right is granted to you, by
implication, estoppel, or otherwise, under any patents, copyrights, trade secrets, or other intellectual property by
virtue of your entering into this Agreement, downloading the Specification, using the Specification, or building prod-
ucts complying with the Specification.

5. OWNERSHIP OF SPECIFICATION AND COPYRIGHTS. The Specification and all worldwide copyrights therein
are the exclusive property of Licensor. You may not remove, obscure, or alter any copyright or other proprietary
rights notices that are in or on the copy of the Specification you download. You must reproduce all such notices on
all copies of the Specification you make. Licensor may make changes to the Specification, or to items referenced
therein, at any time without notice. Licensor is not obligated to support or update the Specification.
AIS Specification SAI-AIS-EVT-B.01.01 3

Service AvailabilityTM Application Interface Specification

Legal Notice

1

5

10

15

20

25

30

35

40
6. WARRANTY DISCLAIMER. THE SPECIFICATION IS PROVIDED "AS IS." LICENSOR DISCLAIMS ALL
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY, NONINFRINGEMENT OF THIRD-PARTY RIGHTS, FITNESS FOR ANY PARTICULAR PUR-
POSE, OR TITLE. Without limiting the generality of the foregoing, nothing in this Agreement will be construed as
giving rise to a warranty or representation by Licensor that implementation of the Specification will not infringe the
intellectual property rights of others.

7. PATENTS. Members of the Service Availability Forum and other third parties [may] have patents relating to the
Specification or a particular implementation of the Specification. You may need to obtain a license to some or all of
these patents in order to implement the Specification. You are responsible for determining whether any such
license is necessary for your implementation of the Specification and for obtaining such license, if necessary.
[Licensor does not have the authority to grant any such license.] No such license is granted under this Agreement.

8. LIMITATION OF LIABILITY. To the maximum extent allowed under applicable law, LICENSOR DISCLAIMS
ALL LIABILITY AND DAMAGES, INCLUDING DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, AND INCI-
DENTAL DAMAGES, ARISING FROM OR RELATING TO THIS AGREEMENT, THE USE OF THE SPECIFICA-
TION OR ANY PRODUCT MANUFACTURED IN ACCORDANCE WITH THE SPECIFICATION, WHETHER
BASED ON CONTRACT, ESTOPPEL, TORT, NEGLIGENCE, STRICT LIABILITY, OR OTHER THEORY. NOT-
WITHSTANDING ANYTHING TO THE CONTRARY, LICENSOR’S TOTAL LIABILITY TO YOU ARISING FROM
OR RELATING TO THIS AGREEMENT OR THE USE OF THE SPECIFICATION OR ANY PRODUCT MANU-
FACTURED IN ACCORDANCE WITH THE SPECIFICATION WILL NOT EXCEED ONE HUNDRED DOLLARS
($100). YOU UNDERSTAND AND AGREE THAT LICENSOR IS PROVIDING THE SPECIFICATION TO YOU AT
NO CHARGE AND, ACCORDINGLY, THIS LIMITATION OF LICENSOR’S LIABILITY IS FAIR, REASONABLE,
AND AN ESSENTIAL TERM OF THIS AGREEMENT.

9. TERMINATION OF THIS AGREEMENT. Licensor may terminate this Agreement, effective immediately upon
written notice to you, if you commit a material breach of this Agreement and do not cure the breach within ten (30)
days after receiving written notice thereof from Licensor. Upon termination, you will immediately cease all use of
the Specification and, at Licensor’s option, destroy or return to Licensor all copies of the Specification and certify in
writing that all copies of the Specification have been returned or destroyed. Parts of the Specification that are
included in your product documentation pursuant to Section 1 prior to the termination date will be exempt from this
return or destruction requirement.

10. ASSIGNMENT. You may not assign, delegate, or otherwise transfer any right or obligation under this Agree-
ment to any third party without the prior written consent of Licensor. Any purported assignment, delegation, or
transfer without such consent will be null and void.

11. GENERAL. This Agreement will be construed in accordance with, and governed in all respects by, the laws of
the State of Delaware (without giving effect to principles of conflicts of law that would require the application of the
laws of any other state). You acknowledge that the Specification comprises proprietary information of Licensor and
that any actual or threatened breach of Section 1 or 3 will constitute immediate, irreparable harm to Licensor for
which monetary damages would be an inadequate remedy, and that injunctive relief is an appropriate remedy for
such breach. All waivers must be in writing and signed by an authorized representative of the party to be charged.
Any waiver or failure to enforce any provision of this Agreement on one occasion will not be deemed a waiver of
any other provision or of such provision on any other occasion. This Agreement may be amended only by binding
written instrument signed by both parties. This Agreement sets forth the entire understanding of the parties relating
to the subject matter hereof and thereof and supersede all prior and contemporaneous agreements, communica-
tions, and understandings between the parties relating to such subject matter
4 SAI-AIS-EVT-B.01.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
Table of Contents Volume 5, Event Service

1 Document Introduction . 7
 1.1 Document Purpose . 7
 1.2 AIS Documents Organization . 7
 1.3 How to Provide Feedback on the Specification . 8
 1.4 How to Join the Service Availability™ Forum . 8
 1.5 Additional Information . 8
 1.5.1 Member Companies . 8
 1.5.2 Press Materials . 8

2 Overview . 11

 2.1 Event Service . 11

3 SA Event Service API . 13
 3.1 Event Service Model . 13
 3.1.1 Events . 13
 3.1.2 Event Channels . 13
 3.1.3 Event Filtering . 15
 3.2 Include File and Library Name . 16
 3.3 Type Definitions . 16
 3.3.1 Handles . 16
 3.3.1.1 SaEvtHandleT . 16
 3.3.1.2 SaEvtEventHandleT . 16
 3.3.1.3 SaEvtChannelHandleT . 16
 3.3.2 SaEvtSubscriptionIdT . 17
 3.3.3 SaEvtCallbacksT . 17
 3.3.4 SaEvtChannelOpenFlagsT . 17
 3.3.5 Event Patterns and Attributes . 17
 3.3.5.1 SaEvtEventPatternT . 18
 3.3.5.2 SaEvtEventPatternArrayT . 18
 3.3.5.3 SaEvtEventPriorityT . 19
 3.3.5.4 SaEvtEventIdT . 19
 3.3.5.5 Event Attributes . 19
 3.3.6 Event Filters . 20
 3.3.6.1 SaEvtEventFilterTypeT . 20
 3.3.6.2 SaEvtEventFilterT . 21
 3.3.6.3 SaEvtEventFilterArrayT . 21
 3.3.7 “Lost Event” Event . 23
 3.4 Library Life Cycle . 24
 3.4.1 saEvtInitialize() . 24
 3.4.2 saEvtSelectionObjectGet() . 26
 3.4.3 saEvtDispatch() . 27
 3.4.4 saEvtFinalize() . 28
AIS Specification SAI-AIS-EVT-B.01.01 5

Service AvailabilityTM Application Interface Specification

Table of Contents

1

5

10

15

20

25

30

35

40
 3.5 Event Channel Operations . 30
 3.5.1 saEvtChannelOpen() and saEvtChannelOpenAsync() . 30
 3.5.2 SaEvtChannelOpenCallbackT . 33
 3.5.3 saEvtChannelClose() . 34
 3.5.4 saEvtChannelUnlink() . 36
 3.6 Event Operations . 37
 3.6.1 saEvtEventAllocate() . 37
 3.6.2 saEvtEventFree() . 39
 3.6.3 saEvtEventAttributesSet() . 40
 3.6.4 saEvtEventAttributesGet() . 42
 3.6.5 saEvtEventDataGet() . 45
 3.6.6 SaEvtEventDeliverCallbackT . 47
 3.6.7 saEvtEventPublish() . 48
 3.6.8 saEvtEventSubscribe() . 50
 3.6.9 saEvtEventUnsubscribe() . 52
 3.6.10 saEvtEventRetentionTimeClear() . 54
6 SAI-AIS-EVT-B.01.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document defines the Event Service of the Application Interface Specification
(AIS) of the Service AvailabilityTM Forum. It is intended for use by implementors of the
Application Interface Specification and by application developers who would use the
Application Interface Specification to develop applications that must be highly
available. The AIS is defined in the C programming language, and requires
substantial knowledge of the C programming language.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be
used in conjunction with the Service AvailabilityTM Forum Hardware Interface
Specification (HPI) and with the Service AvailabilityTM Forum System Management
Specification, which is still under development.

1.2 AIS Documents Organization
The Application Interface Specification is organized into the following volumes:

Volume 1, the Overview document, provides a brief guide to the remainder of the
Application Interface Specification. It describes the objectives of the AIS specification
as well as programming models and definitions that are common to all specifications.
Additionally, it contains an overview of the Availability Management Framework and
of the other services as well as the system description and conceptual models,
including the physical and logical entities that make up the system. Volume 1 also
contains a chapter that describes the main abbreviations, concepts and terms used in
the AIS documents.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisOverview.B0101.pdf

Volume 2 describes the Availability Management Framework API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisAmf.B0101.pdf

Volume 3 describes the Cluster Membership Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisClm.B0101.pdf

Volume 4 describes the Checkpoint Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisCkpt.B0101.pdf
AIS Specification SAI-AIS-EVT-B.01.01 Section 1 7

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
Volume 5 (this volume) describes the Event Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisEvt.B0101.pdf

Volume 6 describes the Message Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisMsg.B0101.pdf

Volume 7 describes the Lock Service API.
The name of the pdf file containing this document for the AIS version B.01.01 is:
aisLck.B0101.pdf

1.3 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum website (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.4 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to
participate in the Forum complete a membership application. Once completed, a
representative of the Service Availability™ Forum will contact you to discuss your
membership in the Forum. The Service Availability™ Forum Membership Application
can be completed online by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.5 Additional Information

1.5.1 Member Companies

A list of the Service Availability™ Forum member companies can also be viewed
online by using the links provided on the Forum’s website
(http://www.saforum.org).

1.5.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
8 SAI-AIS-EVT-B.01.01 Section 1.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).
AIS Specification SAI-AIS-EVT-B.01.01 Section 1.5.2 9

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
10 SAI-AIS-EVT-B.01.01 Section 1.5.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
 2 Overview
This specification defines the Event Service within the Application Interface Specifica-
tion (AIS).

2.1 Event Service
The Event Service is a publish/subscribe multipoint-to-multipoint communication
mechanism that is based on the concept of event channels, where a publisher com-
municates asynchronously via events with one or more subscribers over an event
channel.

Events consist of a standard header and zero or more bytes of publisher event data.

Multiple publishers and multiple subscribers can communicate over the same event
channel. Individual publishers and individual subscribers can communicate over mul-
tiple event channels. Subscribers are anonymous, which means that they may join
and leave an event channel at any time without involving the publisher(s).
AIS Specification SAI-AIS-EVT-B.01.01 Section 2 11

Service AvailabilityTM Application Interface Specification

Overview

1

5

10

15

20

25

30

35

40
12 SAI-AIS-EVT-B.01.01 Section 2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
3 SA Event Service API

3.1 Event Service Model

3.1.1 Events

An event consists of a standard set of event attributes (also referred to as the event
header) and zero or more bytes of event data.

An event header is allocated using the saEvtEventAllocate() function and is released
using the saEvtEventFree() function. The saEvtEventAllocate() function returns a
handle that can be used in subsequent invocations of the functions of the Event Ser-
vice API.

The event attributes are written and read using set and get functions of the Event
Service API, rather than directly.

An event is published by invoking the saEvtEventPublish() function and specifying as
parameters the event handle and optional additional information, the event data, con-
tained in a separate free-form data buffer. Thus, a published event consists of the
event header, containing the set of attributes, and optional additional information con-
tained in the data buffer.

3.1.2 Event Channels

An event channel enables multiple publishers to communicate with multiple subscrib-
ers. It is global to a cluster and is identified by a unique name. To use the Event Ser-
vice, a process must open an event channel via the saEvtEventChannelOpen()
function or the saEvtEventChannelOpenAsync() function. The process can specify in
the open call whether it wants only to access an existing event channel or whether
the event channel is first to be created if it does not yet exist.

A process can open an event channel to publish events and to subscribe to receive
events. Publishers can also be subscribers on the same event channel. Event chan-
nels can be deleted via the saEvtChannelUnlink() function.

Once an event has been allocated for an event channel via the saEvtEventAllocate()
call, it can be published several times on the same event channel, possibly by chang-
ing its attributes prior to each publication.

An event channel is required to satisfy the following properties:
AIS Specification SAI-AIS-EVT-B.01.01 Section 3 13

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
• Best effort delivery - The Event Service provides best effort delivery of
events to an anonymous set of subscribers. A published event might be lost
or might be delivered to a proper subset of the subscribers, that is, some
subscribers might get the event while others do not. For example, there is
no guarantee that an event is delivered to all existing subscribers, if the pub-
lisher fails while publishing the event. Moreover, a subscriber might lose
events, if the subscriber node is overwhelmed with events or if the sub-
scriber is slow to process events.

• At most once delivery - The Event Service must not deliver the same
event for a particular subscription of a particular subscriber multiple times.

• Event priority - Events are published with a certain priority. High priority
events are delivered to subscribers ahead of low priority events. In case of
overflow, low priority events are discarded from the subscriber queues to
make room for high priority events.

• Event ordering - At a given priority level, events sent by a given publisher
are received by subscribers in the order in which the publisher published the
events.

• Event completeness - Only complete events are published and delivered
to subscribers.

• Retention time - Events published with a non-zero retention time are kept
for the specified duration. This gives the opportunity for new subscribers to
obtain events that had been published before their subscription on the event
channel. Processes may use the functions of the Event Service API to
remove events explicitly before the retention time expires.

An event channel may optionally support the following property:

• Persistence - Published events may be persisted to disk and may survive
node failure or shutting down the entire cluster, but that is not required by
this specification.

The Event Service API does not impose a specific layout for the published event
data. Publishers and subscribers on an event channel must agree on the structure of
the data for events published on that event channel and may use data marshalling if
heterogeneity support is desired. Conventions on the structure of the event data may
vary from one event channel to another.

To support heterogeneity of data representation between publishers and subscribers,
an implementation of the Event Service should use data marshalling for event
attributes contained in the event header.
14 SAI-AIS-EVT-B.01.01 Section 3.1.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
A process subscribes to receive events on an event channel by invoking the
saEvtEventSubscribe() function of the Event Service API. The Event Service delivers
events to a subscribing process using the saEvtEventDeliverCallback() function of
that process. To stop receiving events for which it has registered, a subscriber can
invoke the saEvtEventUnsubscribe() function to unsubscribe for those events.

If a process terminates abnormally, the Event Service automatically closes all of its
open event channels.

Some API functions return an error if limits imposed by the configuration of the Event
Service are exceeded. For instance, the saEvtEventPublish() function returns:
"SA_AIS_ERR_TOO_BIG - The eventDataSize or the total size of the event is larger
than the maximum permitted value.".

The interfaces of the Event Service configuration are outside the scope of this speci-
fication.

3.1.3 Event Filtering

The standard set of event attributes includes an array of event patterns. The values of
these patterns are set by the event publisher and are typically used to organize
events into various categories. All users (publishers and subscribers) of an event
channel must share the same conventions regarding the number of patterns being
used, their ordering and contents, as well as meaning.

For example, an event channel used to notify changes made to a relational database
could define events where only three patterns are being used, as follows:

• The first pattern contains the name of the database being modified.
• The second pattern contains the name of the table being modified.
• The third pattern contains the primary key of the record being modified.

The event data can be used to provide a description of the modified fields and the
old/new values.

Event patterns play an important role in the Event Service, as they are the basis for
filtering which events must be delivered to a particular subscriber.

When subscribing on an event channel, a process must specify which filters to apply
on published events. Only events which satisfy the provided filters are delivered to
the process. Refer to Section 3.3.6.3 on page 21 for a description of the filtering pro-
cess.
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.1.3 15

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
Using the previous example of the database notifications published on an event
channel, a subscriber can provide a filter array indicating:

• The name of a database the subscriber is interested in.
• The name of a table the subscriber is interested in.
• No filter for the primary key.

In this case, the process will receive all notification events related to the specified
table in the specified database for any primary key.

3.2 Include File and Library Name
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the Event Service API:

#include <saEvt.h>

To use the Event Service API, an application must be bound with the following library:

libSaEvt.so

3.3 Type Definitions
The Event Service uses the types described in the following sections.

3.3.1 Handles

3.3.1.1 SaEvtHandleT

typedef SaUint64T SaEvtHandleT;

The type of the handle supplied by the Event Service to a process during initialization
of the Event Service library and used by a process when it invokes functions of the
Event Service API so that the Event Service can recognize the process.

3.3.1.2 SaEvtEventHandleT

typedef SaUint64T SaEvtEventHandleT;

The type of a handle to an event.

3.3.1.3 SaEvtChannelHandleT

typedef SaUint64T SaEvtChannelHandleT;

The type of a handle to an open event channel.
16 SAI-AIS-EVT-B.01.01 Section 3.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
3.3.2 SaEvtSubscriptionIdT

typedef SaUint32T SaEvtSubscriptionIdT;

The type of an identifier for a particular subscription by a particular process on a
particular event channel. This identifier is used to associate delivery of events for that
subscription to the process.

3.3.3 SaEvtCallbacksT

The SaEvtCallbacksT structure is defined as follows:

 typedef struct {

SaEvtChannelOpenCallbackT saEvtChannelOpenCallback;

 SaEvtEventDeliverCallbackT saEvtEventDeliverCallback;

} SaEvtCallbacksT;

The callbacks structure supplied by a process to the Event Service that contains the
callback functions that the Event Service can invoke.

3.3.4 SaEvtChannelOpenFlagsT

#define SA_EVT_CHANNEL_PUBLISHER 0X1

#define SA_EVT_CHANNEL_SUBSCRIBER 0X2

#define SA_EVT_CHANNEL_CREATE 0X4

typedef SaUint8T SaEvtChannelOpenFlagsT;

The SaEvtChannelOpenFlagsT type has the following interpretation:
• SA_EVT_CHANNEL_PUBLISHER - Open the event channel for publishing

events.
• SA_EVT_CHANNEL_SUBSCRIBER - Open the event channel for subscribing

for events.
• SA_EVT_CHANNEL_CREATE - Create an event channel if one does not

already exist.

When an event channel is opened using the saEvtChannelOpen() or
saEvtChannelOpenAsync() functions, some combination of these flags are bitwise
ORed together to provide the value of the channelOpenFlags.

3.3.5 Event Patterns and Attributes

The SaEvtEventPatternT structure is defined below. An event pattern may contain a
name (e.g., process name, checkpoint name, service instance name, and so on).
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.3.2 17

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
Alternatively, an event pattern may characterize an event (e.g., timedOut,
newComponent, overload, and so on).

3.3.5.1 SaEvtEventPatternT

typedef struct {

SaSizeT allocatedSize;

SaSizeT patternSize;

SaUint8T *pattern;

} SaEvtEventPatternT;

In the context of the saEvtEventAttributesGet() function, these fields are used as fol-
low:

• allocatedSize (in): size of the buffer allocated to receive the pattern value
• patternSize (out): actual size of the pattern of the received event
• pattern (out): pointer to a buffer the pattern value will be copied to

In the context of the saEvtEventAttributesSet() or saEvtEventSubscribe() functions,
these fields are used as follow:

• allocatedSize: ignored
• patternSize (in): actual size of the pattern
• pattern (in): pointer to a buffer the pattern value is taken from

3.3.5.2 SaEvtEventPatternArrayT

typedef struct {

SaSizeT allocatedNumber;

SaSizeT patternsNumber;

SaEvtEventPatternT *patterns;

} SaEvtEventPatternArrayT;

In the context of the saEvtEventAttributesGet() function, these fields are used as fol-
low:

• allocatedNumber (in): number of entries allocated in the patterns buffer
• patternsNumber (out): actual number of patterns in the event
• patterns (out): pointer to a buffer the array of patterns will be copied to
18 SAI-AIS-EVT-B.01.01 Section 3.3.5.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
In the context of the saEvtEventAttributesSet() function, these fields are used as fol-
low:

• allocatedNumber: ignored
• patternsNumber (in): number of patterns in the patterns array
• patterns (in): pointer to the array of patterns

3.3.5.3 SaEvtEventPriorityT

#define SA_EVT_HIGHEST_PRIORITY 0

#define SA_EVT_LOWEST_PRIORITY 3

typedef SaUint8T SaEvtEventPriorityT;

3.3.5.4 SaEvtEventIdT

typedef SaUint64T SaEvtEventIdT;

The type of an event identifier. Values ranging from 0 to 1000 have special meanings
and cannot be used by the Event Service to identify regular events.'

#define SA_EVT_EVENTID_NONE 0

Event identifier for an allocated but not yet published event.

#define SA_EVT_EVENTID_LOST 1

Event identifier for a “lost event”.

3.3.5.5 Event Attributes

A process has read access to all attributes of an event allocated through the
saEvtEventAllocate() or saEvtEventDeliverCallback() functions. A process has no
access to the event attributes of a published event. The only exception is to discard a
published event with non-zero retention time by clearing its retention time through the
saEvtEventRetentionTimeClear() function. For each attribute in the following list, it is
specified whether the process in which the event resides has write access or not.
Some attributes are only writable by the Event Service. Additionally, the default val-
ues for an event allocated through the saEvtEventAllocate() function are given.

• Event Pattern Array - An array defined above by the
SaEvtEventPatternArrayT structure.
Write access is permitted.
Default: no patterns

• Event Priority - An event priority is of the type SaEvtEventPriorityT. Event pri-
orities range from SA_EVT_HIGHEST_PRIORITY to
SA_EVT_LOWEST_PRIORITY.
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.3.5.3 19

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
Write access is permitted.
Default: SA_EVT_EVENT_LOWEST_PRIORITY

• Event Publish Time - The time when the event is published, which can be any
time between the start and the end of the event publish API call. The Event
Service fills in this time when the event is published.
This is a read-only attribute.
Default: SA_TIME_UNKNOWN

• Event Retention Time - The retention time is the duration for which the event
is retained.
Write access is permitted.
Default: 0

• Event Publisher Name - The name of the entity that publishes an event on
the event channel. Depending on the conventions associated with the event
channel, this name may refer to the publishing process, the publishing compo-
nent, and so on.
Write access is permitted.
Default: empty string (SaNameT.length = 0)

• Event Id - The cluster-wide unique identifier of the event on the event channel.
It should not be assumed that event ids are consecutive or increasing. The
event id attribute is set automatically by the Event Service when the event is
published.
This is a read-only attribute.
Default: SA_EVT_EVENTID_NONE

3.3.6 Event Filters

The Event Service supports several different types of filters and pattern matching
algorithms, as defined by the following enumeration type.

3.3.6.1 SaEvtEventFilterTypeT

typedef enum {

SA_EVT_PREFIX_FILTER = 1,

SA_EVT_SUFFIX_FILTER = 2,

SA_EVT_EXACT_FILTER = 3,

SA_EVT_PASS_ALL_FILTER = 4

} SaEvtEventFilterTypeT;

The values of the saEvtEventFilterTypeT enumeration type.
The corresponding pattern matching algorithms are explained later in Table 1 on
page 22.
20 SAI-AIS-EVT-B.01.01 Section 3.3.6 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
3.3.6.2 SaEvtEventFilterT

typedef struct {

SaEvtEventFilterTypeT filterType;

SaEvtEventPatternT filter;

} SaEvtEventFilterT;

The event filter structure defines the filter type and the filter pattern to be applied on
an event pattern when filtering events on an event channel.

3.3.6.3 SaEvtEventFilterArrayT

typedef struct {

SaSizeT filtersNumber;

SaEvtEventFilterT *filters;

} SaEvtEventFilterArrayT;

The event filter array structure defines one or more filters.

Filters are passed to the Event Service by a subscriber process via the
saEvtEventSubscribe() call. The Event Service does the filtering to decide whether a
published event is delivered to a subscriber for a given subscription by matching the
first filter (contents and type) against the first pattern in the event pattern array, the
second filter against the second pattern in the event pattern array, and so on up to
the last filter. An event matches a given subscription if all patterns of the event match
all filters provided in an invocation of the saEvtEventSubscribe() call.
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.3.6.2 21

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
Table 1 Filter Types and Pattern Matching Algorithms

If less patterns than filters are defined, the extra filters will be matched to an empty
pattern. Only a filter of size zero (patternSize == 0) or of type
SA_EVT_PASS_ALL_FILTER matches an empty pattern.

If less filters than patterns are defined, the filter for all remaining patterns defaults to
SA_EVT_PASS_ALL_FILTER. For example, if there are 10 patterns in an event and
filterCount is 2, the first two patterns are matched against the two filters. The remain-
ing eight patterns are automatically considered a “match”.

If the patterns of an event match the filters of several different subscriptions of a given
subscriber on a single event channel, the Event Service invokes
saEvtEventDeliverCallback() (see Section 3.6.6 on page 47) only once for that event
and that subscriber. However, if a subscriber opens an event channel twice, and the
patterns of an event match the filters of the subscriptions on both open event chan-
nels, the Event Service invokes saEvtEventDeliverCallback() twice (one for each
opened channel).

Filter Type Matching Algorithm

SA_EVT_PREFIX_FILTER The entire filter must match the first filterSize characters of the event pattern.
Match example: Filter=”abcd”, Event Pattern=”abcdxyz”
Match example: Filter=”abcd”, Event Pattern=”abcd”
Match example: Filter=”XYz”, Event Pattern=”XYzaB”
Non-Match example: Filter=”xyz”, Event Pattern=”abcdxyz”
Non-Match example: Filter=”Xyz”, Event Pattern=”xyzab”
Non-Match example: Filter=”xyz”, Event Pattern=”xy” (The entire filter does
not match the first part of the pattern; only the first two characters match.)

SA_EVT_SUFFIX_FILTER The entire filter must match the last filterSize characters of the event pattern.
Match example: Filter=”xyz”, Event Pattern=”abcdxyz”
Match example: Filter=”abCd”, Event Pattern=”abCd”
Non-Match example: Filter=”abcd”, Event Pattern=”abcdxyz”
Non-Match example: Filter=”xyz”, Event Pattern=”yz” (The entire filter does
not match the last part of the event pattern;only the last two characters match.)

SA_EVT_EXACT_FILTER The entire filter must exactly match the entire event pattern.
Match example: Filter=”abc”, Event Pattern=”abc”
Non-Match example: Filter=”ab”, Event Pattern=”abc” (The entire filter does
not match the entire event pattern.)

SA_EVT_PASS_ALL_FILTER Always matches, regardless of the filter or event pattern.
This filter type may be used, for example, to specify a filter for event patterns
1 and 4 and a pass through for event patterns 2 and 3.
22 SAI-AIS-EVT-B.01.01 Section 3.3.6.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
3.3.7 “Lost Event” Event

A subscriber can lose events in any of the following situations:
• The subscriber handles incoming events too slowly.
• A communication failure between the subscriber and the publisher occurs.
• Communication between the subscriber and the publisher is slow.
• A node on which the subscriber or publisher is running is overloaded.

When a subscriber loses events on an event channel, the Event Service sends a lost
event event to the subscriber on the corresponding event channel. A “lost event” noti-
fies the subscriber that one or more events might have been lost. There is the possi-
bility that a subscriber receives a lost event when actually the events being lost would
not have matched the filters of the subscriber. The “lost event” event is delivered to
the subscriber, regardless of the filters that the subscriber has set.

As soon as a process consumes a “lost event” event, the Event Service should
deliver another one if one of the situations described above happens again.

The Event Service sets the attributes of the “lost event” event as follows:
• The first element of the event pattern array points to the character string

defined by SA_EVT_LOST_EVENT:

#define SA_EVT_LOST_EVENT “SA_EVT_LOST_EVENT_PATTERN”

• The event priority is set to SA_EVT_HIGHEST_PRIORITY.
• The event publish time is set to the time at which the Event Service noticed

that this subscriber might have lost some events.
• The event publisher name is set to the NULL string.
• The event retention time is set to 0.
• The event identifier is set to SA_EVT_EVENTID_LOST
• The event data is empty, that is, its size is zero.
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.3.7 23

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
3.4 Library Life Cycle

3.4.1 saEvtInitialize()

Prototype

SaAisErrorT saEvtInitialize(

SaEvtHandleT *evtHandle,

const SaEvtCallbacksT *evtCallbacks,

SaVersionT *version

);

Parameters

evtHandle - [out] A pointer to the handle designating this particular initialization of the
Event Service that is to be returned by the Event Service.

evtCallbacks - [in] If evtCallbacks is set to NULL, no callback is registered; otherwise,
it is a pointer to a SaEvtCallbacksT structure, containing the callback functions of the
process that the Event Service may invoke. Only non-NULL callback functions in this
structure will be registered.

version - [in/out] As an input parameter, version is a pointer to the required Event Ser-
vice version. In this case, minorVersion is ignored and should be set to 0x00.
As an output parameter, the version actually supported by the Event Service is deliv-
ered.

Description
This function initializes the Event Service for the invoking process and registers the
various callback functions. This function must be invoked prior to the invocation of
any other Event Service functionality. The handle evtHandle is returned as the refer-
ence to this association between the process and the Event Service. The process
uses this handle in subsequent communication with the Event Service.

If the implementation supports the required releaseCode, and a major version >= the
required majorVersion, SA_AIS_OK is returned. In this case, the version parameter is
set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation can

support for the required releaseCode
24 SAI-AIS-EVT-B.01.01 Section 3.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
• minorVersion = highest value of the minor version that this implementation can
support for the required value of releaseCode and the returned value of
majorVersion

If the above mentioned condition cannot be met, SA_AIS_ERR_VERSION is
returned, and the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the least value of the supported release codes that is
higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that is
less than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.4.1 25

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_VERSION - The version parameter is not compatible with the version
of the Event Service implementation.

See Also
saEvtSelectionObjectGet(), saEvtDispatch(), saEvtFinalize()

3.4.2 saEvtSelectionObjectGet()

Prototype

SaAisErrorT saEvtSelectionObjectGet(

 SaEvtHandleT evtHandle,

 SaSelectionObjectT *selectionObject

);

Parameters

evtHandle - [in] The handle, obtained through the saEvtInitialize() function, designat-
ing this particular initialization of the Event Service.

selectionObject - [out] A pointer to the operating system handle that the invoking pro-
cess can use to detect pending callbacks.

Description
This function returns the operating system handle, selectionObject, associated with
the handle evtHandle. The invoking process can use this handle to detect pending
callbacks, instead of repeatedly invoking saEvtDispatch() for this purpose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.

The selectionObject returned by saEvtSelectionObjectGet() is valid until
saEvtFinalize() is invoked on the same handle evtHandle.

Return Values
SA_AIS_OK - The function completed successfully.
26 SAI-AIS-EVT-B.01.01 Section 3.4.2 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle evtHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

See Also
saEvtInitialize(), saEvtDispatch(), saEvtFinalize()

3.4.3 saEvtDispatch()

Prototype

SaAisErrorT saEvtDispatch(

 SaEvtHandleT evtHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

evtHandle - [in] The handle, obtained through the saEvtInitialize() function, designat-
ing this particular initialization of the Event Service.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saEvtDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING, as defined in volume 1 of the
AIS specification.
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.4.3 27

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
Description
This function invokes, in the context of the calling thread, pending callbacks for the
handle evtHandle in a way that is specified by the dispatchFlags parameter.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle evtHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.

See Also
saEvtInitialize(), saEvtFinalize()

3.4.4 saEvtFinalize()

Prototype

 SaAisErrorT saEvtFinalize(

 SaEvtHandleT evtHandle

);

Parameters

evtHandle - [in] The handle, obtained through the saEvtInitialize() function, designat-
ing this particular initialization of the Event Service.

Description
The saEvtFinalize() function closes the association, represented by the evtHandle
parameter, between the invoking process and the Event Service. The process must
28 SAI-AIS-EVT-B.01.01 Section 3.4.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
have invoked saEvtInitialize() before it invokes this function. A process must invoke
this function once for each handle it acquired by invoking saEvtInitialize().

If the saEvtFinalize() function returns successfully, the saEvtFinalize() function
releases all resources acquired when saEvtInitialize() was called. Moreover, it closes
all event channels that are open for the particular handle. Furthermore, it cancels all
pending callbacks related to the particular handle. Note that because the callback
invocation is asynchronous, it is still possible that some callback calls are processed
after this call returns successfully.

After saEvtFinalize() is called, the selection object is no longer valid.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle evtHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

See Also
saEvtInitialize()
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.4.4 29

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
3.5 Event Channel Operations

3.5.1 saEvtChannelOpen() and saEvtChannelOpenAsync()

Prototype

SaAisErrorT saEvtChannelOpen(

SaEvtHandleT evtHandle,

const SaNameT *channelName,

SaEvtChannelOpenFlagsT channelOpenFlags,

SaTimeT timeout,

SaEvtChannelHandleT *channelHandle

);

SaAisErrorT saEvtChannelOpenAsync(

SaEvtHandleT evtHandle,

SaInvocationT invocation,

const SaNameT *channelName,

SaEvtChannelOpenFlagsT channelOpenFlags

);

Parameters

evtHandle - [in] The handle, obtained through the saEvtInitialize() function, designat-
ing this particular initialization of the Event Service.

invocation - [in] This parameter allows the invoking component to match this invoca-
tion of saEvtChannelOpenAsync() with the corresponding callback call.

channelName - [in] A pointer to the name of the event channel that identifies an event
channel globally in a cluster.

channelOpenFlags - [in] The requested access modes of the event channel. The
value of this parameter is obtained by a bitwise OR of the
SA_EVT_CHANNEL_PUBLISHER, SA_EVT_CHANNEL_SUBSCRIBER, and
SA_EVT_CHANNEL_CREATE flags defined by SaEvtChannelOpenFlagsT in Sec-
tion 3.3.4 on page 17. If SA_EVT_CHANNEL_PUBLISHER is set, the process may
30 SAI-AIS-EVT-B.01.01 Section 3.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
use the returned event channel handle with saEvtEventPublish().
If SA_EVT_CHANNEL_SUBSCRIBER is set, the process may use the returned
event channel handle with saEvtEventSubscribe(). If the intent is only to open an
existing event channel, the SA_EVT_CHANNEL_CREATE flag may not be set. If the
intent is to open and create an event channel if it does not exist, the
SA_EVT_CHANNEL_CREATE flag must be set.

timeout - [in] The saEvtChannelOpen() invocation is considered to have failed if it
does not complete by the time specified. An event channel may still be created.

channelHandle - [out] A pointer to the handle of the event channel, provided by the
invoking process in the address space of the process. If the event channel is opened
successfully, the Event Service stores, in channelHandle, the handle that the process
uses to access the channel in subsequent invocations of the functions of the Event
Service API. In the case of saEvtChannelOpenAsync((), this handle is returned in the
corresponding callback.

Description
The saEvtChannelOpen() and saEvtChannelOpenAsync() functions open an event
channel. If the event channel does not exist and the SA_EVT_CHANNEL_CREATE
flag is set in the channelOpenFlags parameter, the event channel is created first.

The saEvtChannelOpen() function is a blocking operation and returns a new event
channel handle.

Completion of the saEvtChannelOpenAsync() function is signaled by an invocation of
the associated saEvtChannelOpenCallback() callback function, which must have
been supplied when the process invoked the saEvtInitialize() call. The process sup-
plies the value of invocation when it invokes the saEvtChannelOpenAsync() function
and the Event Service gives that value of invocation back to the application when it
invokes the corresponding saEvtChannelOpenCallback() function. The invocation
parameter is a mechanism that enables the process to determine which call triggered
which callback.

An event channel may be opened multiple times by the same or different processes
for publishing, and subscribing to, events. If a process opens an event channel multi-
ple times, it is possible to receive the same event multiple times. However, a process
shall never receive an event more than once on a particular event channel handle.

If a process opens a channel twice and an event is matched on both open channels,
the Event Service performs two callbacks -- one for each opened channel.
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.5.1 31

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout, specified by the timeout parameter, occurred before the call could complete.
It is unspecified whether the call succeeded or whether it didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle evtHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saEvtInitialize() was incomplete,
since the saEvtChannelOpenCallback() callback function is missing. This applies
only to the saEvtChannelOpenAsync() function.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The event channel, identified by channelName, does
not exist, and the value of the SA_EVT_CHANNEL_CREATE flag is not set.

SA_AIS_ERR_BAD_FLAGS - The channelOpenFlags parameter is invalid.

See Also

SaEvtChannelOpenCallbackT, saEvtInitialize(), saEvtChannelClose()
32 SAI-AIS-EVT-B.01.01 Section 3.5.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
3.5.2 SaEvtChannelOpenCallbackT

Prototype

typedef void (*SaEvtChannelOpenCallbackT)(

SaInvocationT invocation,

SaEvtChannelHandleT channelHandle,

SaAisErrorT error

);

Parameters

invocation - [in] This parameter was supplied by a process in the corresponding invo-
cation of the saEvtChannelOpenAsync() function and is used by the Event Service in
this callback. This invocation parameter allows the process to match the invocation of
that function with this callback.

channelHandle - [in] The handle that designates the event channel.

error - [in] This parameter indicates whether the saEvtChannelOpenAsync() function
was successful. The values that can be returned are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it didn’t.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may try again.

• SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider
of the service is out of memory and cannot provide the service.

• SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other
than memory).

• SA_AIS_ERR_NOT_EXIST - The event channel, identified by channelName,
does not exist, and the value of the SA_EVT_CHANNEL_CREATE flag is not
set.

• SA_AIS_ERR_BAD_FLAGS - The channelOpenFlags parameter is invalid.
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.5.2 33

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
Description
The Event Service invokes this callback function when the operation requested by the
invocation of saEvtChannelOpenAsync() completes. This callback is invoked in the
context of a thread issuing an saEvtDispatch() call on the handle evtHandle, which
was specified in the saEvtChannelOpenAsync() call.

If successful, the handle to the opened/created event channel is returned in
channelHandle; otherwise, an error is returned in the error parameter.

Return Values
None.

See Also
saEvtChannelOpenAsync(), saEvtDispatch()

3.5.3 saEvtChannelClose()

Prototype

SaAisErrorT saEvtChannelClose(

SaEvtChannelHandleT channelHandle

);

Parameters

channelHandle - [in] The handle of the event channel to close. The channelHandle
parameter must have been obtained previously by the invocation of one of the
saEvtChannelOpen() or saEvtChannelOpenCallback() functions.

Description
This API function closes the event channel, designated by channelHandle, which was
opened by an earlier invocation of the saEvtChannelOpen() or
saEvtChannelOpenAsync() function.

After this invocation, the handle channelHandle is no longer valid.

When the invocation of the saEvtChannelClose() function completes successfully, if
no process has the event channel open any longer, the event channel is deleted
immediately if its deletion was pending as a result of a saEvtChannelUnlink() func-
tion.
34 SAI-AIS-EVT-B.01.01 Section 3.5.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
Closing an event channel frees all resources allocated by the Event Service for this
process, such as events allocated by the saEvtEventAllocate() or the
saEvtEventDeliverCallback() functions.

The deletion of an event channel frees all resources allocated by the Event Service
for it, such as published events with non-zero retention time.

If a process terminates, the Event Service implicitly closes all event channels that are
open for this process.

This call cancels all pending callbacks that refer directly or indirectly to the handle
channelHandle. Note that because the callback invocation is asynchronous, it is still
possible that some callback calls are processed after this call returns successfully.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle channelHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained via the saEvtChannelOpen() or
saEvtChannelOpenCallback() functions, or the corresponding event channel has
already been closed.

• The handle evtHandle that was passed to the saEvtChannelOpen() or
saEvtChannelOpenAsync() functions has already been finalized.

See Also
saEvtChannelOpen(), saEvtChannelOpenAsync(), SaEvtChannelOpenCallbackT,
saEvtChannelUnlink()
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.5.3 35

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
3.5.4 saEvtChannelUnlink()

Prototype

SaAisErrorT saEvtChannelUnlink(

SaEvtHandleT evtHandle,

const SaNameT *channelName

);

Parameters

evtHandle - [in] The handle, obtained through the saEvtInitialize() function, designat-
ing this particular initialization of the Event Service.

channelName - [in] A pointer to the name of the event channel that is to be unlinked.

Description
This function deletes an existing event channel, identified by channelName, from the
cluster.

After completion of the invocation:
• The name channelName is no longer valid, that is, any invocation of a function of

the Event Service API that uses the event channel name returns an error, unless
an event channel is re-created with this name. The event channel is re-created
by specifying the same name of the event channel to be unlinked in an open call
with the SA_EVT_CHANNEL_CREATE flag set. This way, a new instance of the
event channel is created while the old instance of the event channel is possibly
not yet finally deleted.
Note that this is similar to the way POSIX treats files.

• If no process has the event channel open when saEvtChannelUnlink() is invoked,
the event channel is immediately deleted.

• Any process that has the event channel open can still continue to access it. Dele-
tion of the event channel will occur when the last saEvtChannelClose() operation
is performed.

Note that an event channel is only deleted from the cluster namespace when
saEvtChannelUnlink() is invoked on it.

The deletion of an event channel frees all resources allocated by the Event Service
for it, such as published events with non-zero retention time.
36 SAI-AIS-EVT-B.01.01 Section 3.5.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
This API can be invoked by any process, and the invoking process need not be the
creator or opener of the event channel.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle evtHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - The event channel, identified by channelName, does
not exist.

See Also
saEvtInitialize(), saEvtChannelClose()

3.6 Event Operations

3.6.1 saEvtEventAllocate()

Prototype

SaAisErrorT saEvtEventAllocate(

SaEvtChannelHandleT channelHandle,

SaEvtEventHandleT *eventHandle

);

Parameters

channelHandle - [in] The handle of the event channel on which the event is to be pub-
lished. The channelHandle parameter must have been obtained previously by the
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.6 37

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
invocation of one of the saEvtChannelOpen() or saEvtChannelOpenCallback() func-
tions.

eventHandle - [out] A pointer to the handle for the newly allocated event. It is the
responsibility of the invoking process to allocate memory for the eventHandle before
invoking this function. The Event Service will assign the value of the eventHandle
when this function is invoked.

Description
The saEvtEventAllocate() function allocates memory for the event header, and it ini-
tializes all event attributes to default values, as described in Section 3.3.5.5 on page
19. The event allocated by saEvtEventAllocate() must be freed by invoking
saEvtEventFree().

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle channelHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained via the saEvtChannelOpen() or
saEvtChannelOpenCallback() functions, or the corresponding event channel has
already been closed.

• The handle evtHandle that was passed to the saEvtChannelOpen() or
saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).
38 SAI-AIS-EVT-B.01.01 Section 3.6.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
See Also
saEvtEventFree(), saEvtEventPublish()

3.6.2 saEvtEventFree()

Prototype

SaAisErrorT saEvtEventFree(

SaEvtEventHandleT eventHandle

);

Parameters

eventHandle - [in] The handle of the event whose memory can now be freed by the
Event Service.

Description
The saEvtEventFree() function gives the Event Service permission to deallocate the
memory that contains the attributes and the event data, if present, of the event that is
associated with eventHandle. The function is used to free events allocated by
saEvtEventAllocate() or by saEvtEventDeliverCallback().

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle eventHandle is invalid, due to one or
more of the reasons below:

• It is corrupted, was not obtained via the saEvtEventAllocate() or
saEvtEventDeliverCallback() functions, or saEvtEventFree() has already been
invoked for eventHandle.
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.6.2 39

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
• The corresponding event channel has already been closed.
• The handle evtHandle that was passed to the saEvtChannelOpen() or

saEvtChannelOpenAsync() functions has already been finalized.

See Also
SaEvtEventDeliverCallbackT, saEvtEventAllocate(), saEvtChannelOpen(),
saEvtChannelOpenAsync()

3.6.3 saEvtEventAttributesSet()

Prototype

SaAisErrorT saEvtEventAttributesSet(

SaEvtEventHandleT eventHandle,

const SaEvtEventPatternArrayT *patternArray,

SaEvtEventPriorityT priority,

SaTimeT retentionTime,

const SaNameT *publisherName

);

Parameters

eventHandle - [in] The handle of the event whose attributes are to be set.

patternArray - [in] A pointer to a structure that contains the array of patterns to be
copied into the event pattern array and the number of such patterns.

priority - [in] The priority of the event.

retentionTime - [in] The duration for which the event will be retained.

publisherName - [in] A pointer to the name of the publisher of the event.

Description
This function is used to set all the writeable event attributes, that is, patternArray,
priority, retentionTime, and publisherName, in the header of the event, designated by
the eventHandle handle. If patternArray or publisherName are NULL, the correspond-
ing attributes are not changed.
40 SAI-AIS-EVT-B.01.01 Section 3.6.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
Once the call to saEvtEventAttributesSet() returns, patternArray can be freed.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle eventHandle is invalid, due to one or
more of the reasons below:

• It is corrupted, was not obtained via the saEvtEventAllocate() or
saEvtEventDeliverCallback() functions, or saEvtEventFree() has already been
invoked for eventHandle.

• The corresponding event channel has already been closed.
• The handle evtHandle that was passed to the saEvtChannelOpen() or

saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_ACCESS - The access to this event is denied. In particular, a sub-
scriber is not allowed to modify an event delivered by the
saEvtEventDeliverCallback() callback function.

SA_AIS_ERR_TOO_BIG - the value patternSize of one or more patterns or the value
patternsNumber specified in the patternArray parameter is larger than the maximum
value permitted.

See Also
saEvtEventAllocate(), saEvtEventFree(), SaEvtEventDeliverCallbackT,
saEvtEventAttributesGet(), saEvtChannelOpen(), saEvtChannelOpenAsync()
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.6.3 41

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
3.6.4 saEvtEventAttributesGet()

Prototype

SaAisErrorT saEvtEventAttributesGet(

SaEvtEventHandleT eventHandle,

SaEvtEventPatternArrayT *patternArray,

SaEvtEventPriorityT *priority,

SaTimeT *retentionTime,

SaNameT *publisherName,

SaTimeT *publishTime,

SaEvtEventIdT *eventId

);

Parameters

eventHandle - [in] The handle of the event whose attributes are to be retrieved.

patternArray - [in/out] A pointer to a structure that describes the event pattern array
and the number of patterns to be retrieved.

If the caller sets patternArray->patterns to NULL, the Event Service ignores the
patternArray->allocatedNumber field, and it will allocate memory for the pattern array
and the individual patterns and will set the fields patternArray->patternsNumber,
patternArray->patterns, patternArray->patterns[i].pattern, and
patternArray->patterns[i].patternSize accordingly. The invoking process is then
responsible for de-allocating the corresponding memory, that is,
patternArray->patterns and each patternArray->patterns[i].pattern.

Alternatively, the invoking process can allocate the memory to retrieve all event pat-
terns and set the fields patternArray->allocatedNumber, patternArray->patterns,
patternArray->patterns[i].allocatedSize, and patternArray->patterns[i].pattern accord-
ingly. In this case, these fields are in parameters and will not be modified by the Event
Service.
The Event Service copies the patterns into the successive entries of
patternArray->patterns, starting with the first entry and continuing until all event pat-
terns are copied. If patternArray->allocatedNumber is smaller than the number of
event patterns or if the size of the buffer allocated for one of the patterns is smaller
42 SAI-AIS-EVT-B.01.01 Section 3.6.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
than the actual size of the pattern, the invocation fails and the
SA_AIS_ERR_NO_SPACE error is returned. If such an error happens, it is unspeci-
fied whether some buffers pointed to by patternArray->patterns[i].pattern were
changed or not by the Event Service. Regardless of whether such an error occurs,
the Event Service sets the patternArray->patternsNumber and
patternArray->patterns[i].patternSize fields for all patternArray->allocatedNumber
individual patterns, to indicate the number of event patterns and the size of each pat-
tern.

priority - [out] A pointer to the priority of the event.

retentionTime - [out] A pointer to the duration for which the publisher will retain the
event.

publisherName - [out] A pointer to the name of the publisher of the event.

publishTime - [out] A pointer to the time at which the publisher published the event.

eventId - [out] A pointer to the event identifier.

Description
This function retrieves the value of the attributes of the event designated by
eventHandle.

For each of the out or in/out parameters, if the invoking process provides a NULL ref-
erence, the Event Service does not return the out value.

It is possible to invoke this API function on any event allocated by the
saEvtEventAllocate() function or received via the saEvtEventDeliverCallback() func-
tion, and possibly modified by the saEvtEventAttributesSet() function. Only if this API
is invoked on a received event, the attributes

• "publish time" and
• "event id"

have the values set by the Event Service at event publishing time. In all other cases,
the attributes will either have the initial values set by the Event Service when allocat-
ing the event or the attributes set by a prior invocation of the
saEvtEventAttributesSet() function.

Return Values
SA_AIS_OK - The function completed successfully.
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.6.4 43

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle eventHandle is invalid, due to one or
more of the reasons below:

• It is corrupted, was not obtained via the saEvtEventAllocate() or
saEvtEventDeliverCallback() functions, or saEvtEventFree() has already been
invoked for eventHandle.

• The corresponding event channel has already been closed.
• The handle evtHandle that was passed to the saEvtChannelOpen() or

saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_SPACE - The field allocatedNumber in patternArray is smaller
than the number of event patterns or the size of the buffer allocated for one of the pat-
terns is smaller than the actual size of the pattern. This return value applies only if the
patterns field in patternArray as an in parameter is not NULL.

See Also
SaEvtEventDeliverCallbackT, saEvtEventAllocate(), saEvtEventFree(),
saEvtChannelOpen(), saEvtChannelOpenAsync(), saEvtEventAttributesSet()
44 SAI-AIS-EVT-B.01.01 Section 3.6.4 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
3.6.5 saEvtEventDataGet()

Prototype

SaAisErrorT saEvtEventDataGet(

SaEvtEventHandleT eventHandle,

void *eventData,

SaSizeT *eventDataSize

);

Parameters

eventHandle - [in] The handle to the event previously delivered by
saEvtEventDeliverCallback().

eventData - [in/out] A pointer to a buffer provided by the process in which the Event
Service stores the data associated with the delivered event.
If eventData is NULL, the value of eventDataSize provided by the invoking process is
ignored, and the buffer is provided by the Event Service library. The buffer must be
deallocated by the calling process after returning from the saEvtEventDataGet() call.

eventDataSize - [in/out] If eventData is not NULL, the in value of eventDataSize is the
size of the eventData buffer provided by the invoking process. If this buffer is not
large enough to hold all of the data associated with this event, then no data will be
copied into the buffer, and the error code SA_AIS_ERR_NO_SPACE is returned.
If eventData is NULL, the in value of eventDataSize is ignored.
The out value of eventDataSize is set when the function returns either SA_AIS_OK or
SA_AIS_ERR_NO_SPACE, and it is the size of the data associated with this event,
which may be less than, equal to, or greater than the in value of eventDataSize.

Description
The saEvtEventDataGet() function allows a process to retrieve the data associated
with an event previously delivered by saEvtEventDeliverCallback().

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.6.5 45

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle eventHandle is invalid, due to one or
more of the reasons below:

• It is corrupted, was not obtained via the saEvtEventDeliverCallback() function, or
saEvtEventFree() has already been invoked for eventHandle.

• The corresponding event channel has already been closed.
• The handle evtHandle that was passed to the saEvtChannelOpen() or

saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NO_SPACE - The buffer provided by the process is too small to hold
the data associated with the delivered event.

See Also
SaEvtEventDeliverCallbackT, saEvtEventFree(), saEvtChannelOpen(),
saEvtChannelOpenAsync()
46 SAI-AIS-EVT-B.01.01 Section 3.6.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
3.6.6 SaEvtEventDeliverCallbackT

Prototype

typedef void(*SaEvtEventDeliverCallbackT)(

 SaEvtSubscriptionIdT subscriptionId,

SaEvtEventHandleT eventHandle,

SaSizeT eventDataSize

);

Parameters

subscriptionId - [in] An identifier that a process supplied in an saEvtEventSubscribe()
invocation that enables it to determine which subscription resulted in the delivery of
the event.

eventHandle - [in] The handle to the event delivered by this callback.

eventDataSize - [in] The size of the data associated with the event.

Description
The Event Service invokes this callback function to notify a subscribing process that
an event has been received. This callback is invoked in the context of a thread issu-
ing an saEvtDispatch() call on the handle evtHandle, which was specified in the
saEvtChannelOpen() or saEvtChannelOpenAsync() calls, leading to the handle
eventHandle.

A published event is received when it has an event pattern matching the filter of a
subscription of this process, established by the saEvtEventSubscribe() call. For
details on filtering, refer to Section 3.3.6 on page 20. After successful completion of
this call, the process may invoke the saEvtEventAttributesGet() function to obtain the
attributes associated with the event and the saEvtEventDataGet() function to obtain
the data associated with the event.

It is the responsibility of the process to free the event by invoking the
saEvtEventFree() function.

The validity of the eventHandle parameter is not limited to the scope of this callback
function.
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.6.6 47

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
Return Values
None.

See Also
saEvtEventAttributesGet(), saEvtEventDataGet(), saEvtEventSubscribe(),
saEvtChannelOpen(), saEvtChannelOpenAsync(), saEvtEventFree(),
saEvtDispatch()

3.6.7 saEvtEventPublish()

Prototype

SaAisErrorT saEvtEventPublish(

SaEvtEventHandleT eventHandle,

const void *eventData,

SaSizeT eventDataSize,

SaEvtEventIdT *eventId

);

Parameters

eventHandle - [in] The handle of the event that is to be published. The event must
have been allocated by the saEvtEventAllocate() function or obtained via the
saEvtEventDeliverCallback() function, and the patterns must have been set by
saEvtEventAttributesSet(), if changes are required.

eventData - [in] A pointer to a buffer that contains additional event information for the
event being published. This parameter is set to NULL if no additional information is
associated with the event. The process may deallocate the memory for eventData
when saEvtEventPublish() returns.

eventDataSize - [in] The number of bytes in the buffer pointed to by eventData. This
parameter is ignored if eventData is NULL.

eventId - [out] A pointer to an identifier of the event.
48 SAI-AIS-EVT-B.01.01 Section 3.6.7 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
Description
The saEvtEventPublish() function publishes an event on the channel for which the
event specified by eventHandle has been allocated or obtained via the
saEvtEventDeliverCallback() function, and returns the event identifier in eventId. The
event to be published consists of a standard set of attributes (the event header) and
an optional data part.

The process must have opened the event channel on which this event is published
with the SA_EVT_CHANNEL_PUBLISHER flag set for an invocation of this function
to be successful.

Before an event can be published, the publisher process can invoke the
saEvtEventAttributesSet() function to set the writeable event attributes. The pub-
lished event is delivered to subscribers whose subscription filters match the event
patterns.

When the Event Service publishes an event, it automatically sets the following read-
only event attributes into the published event:

• Event publish time
• Event identifier

In addition to the event attributes, a process can supply values for the eventData and
eventDataSize parameters for publication as part of the event.

The event attributes and the event data of the event identified by eventHandle are not
affected by this API function.

The invocation of saEvtEventPublish() copies the event attributes and the event data
into internal memory of the Event Service. The invoking process can free the event
using saEvtEventFree() after saEvtEventPublish() returns.

Return Values
SA_AIS_OK - The function call completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle eventHandle is invalid, due to one or
more of the reasons below:
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.6.7 49

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
• It is corrupted, was not obtained via the saEvtEventAllocate() or
saEvtEventDeliverCallback() functions, or saEvtEventFree() has already been
invoked for eventHandle.

• The corresponding event channel has already been closed.
• The handle evtHandle that was passed to the saEvtChannelOpen() or

saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_ACCESS - The SA_EVT_CHANNEL_PUBLISHER flag was not set
for the event channel on which the event to be published was allocated, i.e., the event
channel was not opened for publisher access.

SA_AIS_ERR_TOO_BIG - The eventDataSize or the total size of the event is larger
than the maximum permitted value.

See Also
saEvtEventAttributesSet(), saEvtEventSubscribe(), saEvtEventAllocate(),
saEvtEventFree(), SaEvtEventDeliverCallbackT

3.6.8 saEvtEventSubscribe()

Prototype

SaAisErrorT saEvtEventSubscribe(

SaEvtChannelHandleT channelHandle,

const SaEvtEventFilterArrayT *filters,

SaEvtSubscriptionIdT subscriptionId

);

Parameters

channelHandle - [in] The handle of the event channel on which the process is sub-
scribing to receive events. The parameter channelHandle must have been obtained
previously by the invocation of one of the saEvtChannelOpen() or
saEvtChannelOpenCallback() functions.
50 SAI-AIS-EVT-B.01.01 Section 3.6.8 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
filters - [in] A pointer to a SaEvtEventFilterArrayT structure, allocated by the process,
that defines filter patterns to use to filter events received on the event channel. The
process may deallocate the memory for the filters when saEvtEventSubscribe()
returns.

subscriptionId - [in] An identifier that uniquely identifies a specific subscription on this
instance of the opened event channel corresponding to the channelHandle and that
is used as a parameter of saEvtEventDeliverCallback().

Description
The saEvtEventSubscribe() function enables a process to subscribe for events on an
event channel by registering one or more filters on that event channel.

Events are delivered via the invocation of the saEvtEventDeliverCallback() callback
function, which must have been supplied when the process called the saEvtInitialize()
function.
The process must have opened the event channel, designated by channelHandle,
with the SA_EVT_CHANNEL_SUBSCRIBER flag set for an invocation of this function
to be successful.

The memory associated with the filters is not deallocated by the
saEvtEventSubscribe() function. It is the responsibility of the invoking process to de-
allocate the memory when the saEvtEventSubscribe() function returns.

For a given subscription, the filters parameter cannot be modified. To change the fil-
ters parameter without losing events, a process must establish a new subscription
with the new filters parameter. After the new subscription is established, the old sub-
scription can be removed by invoking the saEvtEventUnsubscribe() function.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle channelHandle is invalid, due to one or
both of the reasons below:
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.6.8 51

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
• It is corrupted, was not obtained via the saEvtChannelOpen() or
saEvtChannelOpenCallback() functions, or the corresponding event channel has
already been closed.

• The handle evtHandle that was passed to the saEvtChannelOpen() or
saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saEvtInitialize() was incomplete,
since the saEvtEventDeliverCallback() callback function is missing.

SA_AIS_ERR_INVALID_PARAM - The filters parameter is invalid.

SA_AIS_ERR_NO_MEMORY - Either the Event Service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_EXIST - A subscription using the same subscriptionId already exists.

SA_AIS_ERR_ACCESS - The channel, identified by channelHandle, was not opened
with the SA_EVT_CHANNEL_SUBSCRIBER flag set, i.e., the channel was not
opened for subscriber access.

SA_AIS_ERR_TOO_BIG - The field filtersNumber in filters or the length of one or
more filter strings exceeds the maximum permitted size.

See Also
SaEvtEventDeliverCallbackT, saEvtEventUnsubscribe(), saEvtEventDataGet(),
saEvtEventAttributesGet()

3.6.9 saEvtEventUnsubscribe()

Prototype

SaAisErrorT saEvtEventUnsubscribe(

SaEvtChannelHandleT channelHandle,

SaEvtSubscriptionIdT subscriptionId

);

Parameters

channelHandle - [in] The event channel for which the subscriber is requesting the
Event Service to delete the subscription. The parameter channelHandle must have
52 SAI-AIS-EVT-B.01.01 Section 3.6.9 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
been obtained previously by the invocation of one of the saEvtChannelOpen() or
saEvtChannelOpenCallback() functions.

subscriptionId - [in] The identifier of the subscription that the subscriber is requesting
the Event Service to delete.

Description
The saEvtEventUnsubscribe() function allows a process to stop receiving events for a
particular subscription on an event channel by removing the subscription.

The saEvtEventUnsubscribe() operation is successful if the subscriptionId parameter
matches a previously registered subscription. Events queued to be delivered to the
process, and that no longer match any subscription, because the
saEvtEventUnsubscribe() operation has been invoked, are purged. A process that
wishes to modify a subscription without losing any events must establish the new
subscription before removing the existing subscription.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle channelHandle is invalid, due to one or
both of the reasons below:

• It is corrupted, was not obtained via the saEvtChannelOpen() or
saEvtChannelOpenCallback() functions, or the corresponding event channel has
already been closed.

• The handle evtHandle that was passed to the saEvtChannelOpen() or
saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_NOT_EXIST - The subscriptionId parameter does not match any cur-
rently registered subscription for the calling process.

See Also
saEvtEventSubscribe()
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.6.9 53

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
3.6.10 saEvtEventRetentionTimeClear()

Prototype

SaAisErrorT saEvtEventRetentionTimeClear(

SaEvtChannelHandleT channelHandle,

const SaEvtEventIdT eventId

);

Parameters

channelHandle - [in] The handle of the event channel on which the event has been
published. The handle channelHandle must have been obtained previously by the
invocation of one of the saEvtChannelOpen() or saEvtChannelOpenCallback() func-
tions.

eventId - [in] The identifier of the event.

Description
The saEvtEventRetentionTimeClear() function is used to clear the retention time of a
published event, designated by eventId. This function indicates to the Event Service
that the Event Service does not need to keep the event any longer for potential new
subscribers. Once the value of the retention time is reset to 0, the event is no longer
available for new subscribers.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it
didn’t.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle channelHandle is invalid, due to one or
both of the reasons below:
54 SAI-AIS-EVT-B.01.01 Section 3.6.10 AIS Specification

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
• It is corrupted, was not obtained via the saEvtChannelOpen() or
saEvtChannelOpenCallback() functions, or the corresponding event channel has
already been closed.

• The handle evtHandle that was passed to the saEvtChannelOpen() or
saEvtChannelOpenAsync() functions has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
error is returned if eventId is not a valid event identifier.

SA_AIS_ERR_NOT_EXIST - The event specified by eventId does not exist.

See Also
saEvtEventPublish(), SaEvtEventDeliverCallbackT
AIS Specification SAI-AIS-EVT-B.01.01 Section 3.6.10 55

Service AvailabilityTM Application Interface Specification
Event Service

1

5

10

15

20

25

30

35

40
56 SAI-AIS-EVT-B.01.01 Section 3.6.10 AIS Specification

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 How to Provide Feedback on the Specification
	1.4 How to Join the Service Availability™ Forum
	1.5 Additional Information
	1.5.1 Member Companies
	1.5.2 Press Materials

	2 Overview
	2.1 Event Service

	3 SA Event Service API
	3.1 Event Service Model
	3.1.1 Events
	3.1.2 Event Channels
	3.1.3 Event Filtering

	3.2 Include File and Library Name
	3.3 Type Definitions
	3.3.1 Handles
	3.3.1.1 SaEvtHandleT
	3.3.1.2 SaEvtEventHandleT
	3.3.1.3 SaEvtChannelHandleT

	3.3.2 SaEvtSubscriptionIdT
	3.3.3 SaEvtCallbacksT
	3.3.4 SaEvtChannelOpenFlagsT
	3.3.5 Event Patterns and Attributes
	3.3.5.1 SaEvtEventPatternT
	3.3.5.2 SaEvtEventPatternArrayT
	3.3.5.3 SaEvtEventPriorityT
	3.3.5.4 SaEvtEventIdT
	3.3.5.5 Event Attributes

	3.3.6 Event Filters
	3.3.6.1 SaEvtEventFilterTypeT
	3.3.6.2 SaEvtEventFilterT
	3.3.6.3 SaEvtEventFilterArrayT

	3.3.7 “Lost Event” Event

	3.4 Library Life Cycle
	3.4.1 saEvtInitialize()
	3.4.2 saEvtSelectionObjectGet()
	3.4.3 saEvtDispatch()
	3.4.4 saEvtFinalize()

	3.5 Event Channel Operations
	3.5.1 saEvtChannelOpen() and saEvtChannelOpenAsync()
	3.5.2 SaEvtChannelOpenCallbackT
	3.5.3 saEvtChannelClose()
	3.5.4 saEvtChannelUnlink()

	3.6 Event Operations
	3.6.1 saEvtEventAllocate()
	3.6.2 saEvtEventFree()
	3.6.3 saEvtEventAttributesSet()
	3.6.4 saEvtEventAttributesGet()
	3.6.5 saEvtEventDataGet()
	3.6.6 SaEvtEventDeliverCallbackT
	3.6.7 saEvtEventPublish()
	3.6.8 saEvtEventSubscribe()
	3.6.9 saEvtEventUnsubscribe()
	3.6.10 saEvtEventRetentionTimeClear()

