
Service AvailabilityTM Forum
Application Interface Specification

Information Model Management Service     SAI-AIS-IMM-A.01.01

The Service AvailabilityTM solution is high availability and more; it is the delivery of ultra-dependable     
communication services on demand and without interruption.

This Service AvailabilityTM Forum Application Interface Specification document might contain 
design defects or errors known as errata, which might cause the product to deviate from        
published specifications. Current characterized errata are available on request.



.



Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40
 SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT 

The Service Availability™ Specification(s) (the "Specification") found at the URL http://www.saforum.org (the 
"Site") is generally made available by the Service Availability Forum (the "Licensor") for use in developing products 
that are compatible with the standards provided in the Specification. The terms and conditions, which govern the 
use of the Specification are set forth in this agreement (this "Agreement"). 

IMPORTANT – PLEASE READ THE TERMS AND CONDITIONS PROVIDED IN THIS AGREEMENT BEFORE DOWN-
LOADING OR COPYING THE SPECIFICATION. IF YOU AGREE TO THE TERMS AND CONDITIONS OF THIS AGREE-
MENT, CLICK ON THE "ACCEPT" BUTTON. BY DOING SO, YOU AGREE TO BE BOUND BY THE TERMS AND 
CONDITIONS STATED IN THIS AGREEMENT. IF YOU DO NOT WISH TO AGREE TO THESE TERMS AND CONDITIONS, 
YOU SHOULD PRESS THE "CANCEL"BUTTON AND THE DOWNLOAD PROCESS WILL NOT PROCEED. 

1. LICENSE GRANT. Subject to the terms and conditions of this Agreement, Licensor hereby grants you a non-
exclusive, worldwide, non-transferable, revocable, but only for breach of a material term of the license granted in 
this section 1, fully paid-up, and royalty free license to: 

a. reproduce copies of the Specification to the extent necessary to study and understand the 
Specification and to use the Specification to create products that are intended to be compatible 
with the Specification;
b. distribute copies of the Specification to your fellow employees who are working on a project or 
product development for which this Specification is useful; and 
c. distribute portions of the Specification as part of your own documentation for a product you have 
built, which is intended to comply with the Specification. 

2. DISTRIBUTION. If you are distributing any portion of the Specification in accordance with Section 1(c), your 
documentation must clearly and conspicuously include the following statements: 

a. Title to and ownership of the Specification (and any portion thereof) remain with Service Avail-
ability Forum ("SA Forum"). 
b. The Specification is provided "As Is." SA Forum makes no warranties, including any implied 
warranties, regarding the Specification (and any portion thereof) by Licensor. 
c. SA Forum shall not be liable for any direct, consequential, special, or indirect damages (includ-
ing, without limitation, lost profits) arising from or relating to the Specification (or any portion 
thereof). 
d. The terms and conditions for use of the Specification are provided on the SA Forum website. 

3. RESTRICTION. Except as expressly permitted under Section 1, you may not (a) modify, adapt, alter, translate, 
or create derivative works of the Specification, (b) combine the Specification (or any portion thereof) with another 
document, (c) sublicense, lease, rent, loan, distribute, or otherwise transfer the Specification to any third party, or 
(d) copy the Specification for any purpose. 

4. NO OTHER LICENSE. Except as expressly set forth in this Agreement, no license or right is granted to you, by 
implication, estoppel, or otherwise, under any patents, copyrights, trade secrets, or other intellectual property by 
virtue of your entering into this Agreement, downloading the Specification, using the Specification, or building prod-
ucts complying with the Specification. 

5. OWNERSHIP OF SPECIFICATION AND COPYRIGHTS. The Specification and all worldwide copyrights therein 
are the exclusive property of Licensor. You may not remove, obscure, or alter any copyright or other proprietary 
rights notices that are in or on the copy of the Specification you download. You must reproduce all such notices on 
all copies of the Specification you make. Licensor may make changes to the Specification, or to items referenced 
AIS Specification SAI-AIS-IMM-A.01.01 3



Service AvailabilityTM Application Interface Specification

Legal Notice

1

5

10

15

20

25

30

35

40
therein, at any time without notice. Licensor is not obligated to support or update the Specification. 

6. WARRANTY DISCLAIMER. THE SPECIFICATION IS PROVIDED "AS IS." LICENSOR DISCLAIMS ALL 
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY, NONINFRINGEMENT OF THIRD-PARTY RIGHTS, FITNESS FOR ANY PARTICULAR PUR-
POSE, OR TITLE. Without limiting the generality of the foregoing, nothing in this Agreement will be construed as 
giving rise to a warranty or representation by Licensor that implementation of the Specification will not infringe the 
intellectual property rights of others. 

7. PATENTS. Members of the Service Availability Forum and other third parties [may] have patents relating to the 
Specification or a particular implementation of the Specification. You may need to obtain a license to some or all of 
these patents in order to implement the Specification. You are responsible for determining whether any such 
license is necessary for your implementation of the Specification and for obtaining such license, if necessary. 
[Licensor does not have the authority to grant any such license.] No such license is granted under this Agreement. 

8. LIMITATION OF LIABILITY. To the maximum extent allowed under applicable law, LICENSOR DISCLAIMS 
ALL LIABILITY AND DAMAGES, INCLUDING DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, AND INCI-
DENTAL DAMAGES, ARISING FROM OR RELATING TO THIS AGREEMENT, THE USE OF THE SPECIFICA-
TION OR ANY PRODUCT MANUFACTURED IN ACCORDANCE WITH THE SPECIFICATION, WHETHER 
BASED ON CONTRACT, ESTOPPEL, TORT, NEGLIGENCE, STRICT LIABILITY, OR OTHER THEORY. NOT-
WITHSTANDING ANYTHING TO THE CONTRARY, LICENSOR’S TOTAL LIABILITY TO YOU ARISING FROM 
OR RELATING TO THIS AGREEMENT OR THE USE OF THE SPECIFICATION OR ANY PRODUCT MANU-
FACTURED IN ACCORDANCE WITH THE SPECIFICATION WILL NOT EXCEED ONE HUNDRED DOLLARS 
($100). YOU UNDERSTAND AND AGREE THAT LICENSOR IS PROVIDING THE SPECIFICATION TO YOU AT 
NO CHARGE AND, ACCORDINGLY, THIS LIMITATION OF LICENSOR’S LIABILITY IS FAIR, REASONABLE, 
AND AN ESSENTIAL TERM OF THIS AGREEMENT. 

9. TERMINATION OF THIS AGREEMENT. Licensor may terminate this Agreement, effective immediately upon 
written notice to you, if you commit a material breach of this Agreement and do not cure the breach within ten (30) 
days after receiving written notice thereof from Licensor. Upon termination, you will immediately cease all use of 
the Specification and, at Licensor’s option, destroy or return to Licensor all copies of the Specification and certify in 
writing that all copies of the Specification have been returned or destroyed. Parts of the Specification that are 
included in your product documentation pursuant to Section 1 prior to the termination date will be exempt from this 
return or destruction requirement. 

10. ASSIGNMENT. You may not assign, delegate, or otherwise transfer any right or obligation under this Agree-
ment to any third party without the prior written consent of Licensor. Any purported assignment, delegation, or 
transfer without such consent will be null and void. 

11. GENERAL. This Agreement will be construed in accordance with, and governed in all respects by, the laws of 
the State of Delaware (without giving effect to principles of conflicts of law that would require the application of the 
laws of any other state). You acknowledge that the Specification comprises proprietary information of Licensor and 
that any actual or threatened breach of Section 1 or 3 will constitute immediate, irreparable harm to Licensor for 
which monetary damages would be an inadequate remedy, and that injunctive relief is an appropriate remedy for 
such breach. All waivers must be in writing and signed by an authorized representative of the party to be charged. 
Any waiver or failure to enforce any provision of this Agreement on one occasion will not be deemed a waiver of 
any other provision or of such provision on any other occasion. This Agreement may be amended only by binding 
written instrument signed by both parties. This Agreement sets forth the entire understanding of the parties relating 
to the subject matter hereof and thereof and supersede all prior and contemporaneous agreements, communica-
tions, and understandings between the parties relating to such subject matter.
4 SAI-AIS-IMM-A.01.01 AIS Specification



Service AvailabilityTM Application Interface Specification
Table of Contents 

1

5

10

15

20

25

30

35

40
Table of Contents         Information Model Management Service
1 Document Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
   1.1 Document Purpose  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
   1.2 AIS Documents Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
   1.3 History  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
   1.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
   1.5 How to Provide Feedback on the Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
   1.6 How to Join the Service Availability™ Forum  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
   1.7 Additional Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
          1.7.1 Member Companies  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
          1.7.2 Press Materials  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
   2.1 Information Model Management Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Information Model Management Service API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.0 IMM Service - Object Management API Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . 17
   4.1 Include File and Library Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
   4.2 Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
          4.2.1 Handles Used by the IMM Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
          4.2.2 Various IMM Service Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
          4.2.3 SaImmValueTypeT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
          4.2.4 SaImmClassCategoryT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
          4.2.5 SaImmAttrFlagsT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
          4.2.6 SaImmAttrValueT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
          4.2.7 SaImmAttrDefinitionT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
          4.2.8 SaImmAttrValuesT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
          4.2.9 SaImmAttrModificationTypeT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
          4.2.10 SaImmAttrModificationT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
          4.2.11 SaImmScopeT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
          4.2.12 SaImmSearchOptionsT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
          4.2.13 SaImmSearchParametersT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
          4.2.14 SaImmCcbFlagsT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
          4.2.15 SaImmAdminOperationIdT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
          4.2.16 SaImmAdminOperationParamsT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
          4.2.17 SaImmCallbacksT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
          4.2.18 IMM Service Object Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
   4.3 Library Life Cycle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
          4.3.1 saImmOmInitialize() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
          4.3.2 saImmOmSelectionObjectGet()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
          4.3.3 saImmOmDispatch() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
AIS Specification SAI-AIS-IMM-A.01.01 5



Service AvailabilityTM Application Interface Specification

Table of Contents 

1

5

10

15

20

25

30

35

40
          4.3.4 saImmOmFinalize()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
   4.4 Object Class Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
          4.4.1 saImmOmClassCreate()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
          4.4.2 saImmOmClassDescriptionGet()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
          4.4.3 saImmOmClassDescriptionMemoryFree() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
          4.4.4 saImmOmClassDelete()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
   4.5 Object Search  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
          4.5.1 saImmOmSearchInitialize()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
          4.5.2 saImmOmSearchNext() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
          4.5.3 saImmOmSearchFinalize()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
   4.6 Object Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
          4.6.1 saImmOmAccessorInitialize()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
          4.6.2 saImmOmAccessorGet() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
          4.6.3 saImmOmAccessorFinalize()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
   4.7 Object Administration Ownership  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
          4.7.1 saImmOmAdminOwnerInitialize() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
          4.7.2 saImmOmAdminOwnerSet()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
          4.7.3 saImmOmAdminOwnerRelease() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
          4.7.4 saImmOmAdminOwnerFinalize()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
          4.7.5 saImmOmAdminOwnerClear() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
   4.8 Configuration Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
          4.8.1 saImmOmCcbInitialize() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
          4.8.2 saImmOmCcbObjectCreate()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
          4.8.3 saImmOmCcbObjectDelete()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
          4.8.4 saImmOmCcbObjectModify()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
          4.8.5 saImmOmCcbApply() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
          4.8.6 saImmOmCcbFinalize()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
   4.9 Administrative Operations Invocation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
          4.9.1 saImmOmAdminOperationInvoke(), saImmOmAdminOperationInvokeAsync() . . . . . . . . . 68
          4.9.2 SaImmOmAdminOperationInvokeCallbackT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.0 IMM Service - Object Implementer API Specification  . . . . . . . . . . . . . . . . . . . . . . . . . . 73
   5.1 Include File and Library Name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
   5.2 Type Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
          5.2.1 IMM Service Handle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
          5.2.2 SaImmOiImplementerNameT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
          5.2.3 SaImmOiCcbIdT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
          5.2.4 SaImmOiCallbacksT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
   5.3 Library Life Cycle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
          5.3.1 saImmOiInitialize() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
          5.3.2 saImmOiSelectionObjectGet()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
          5.3.3 saImmOiDispatch() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
          5.3.4 saImmOiFinalize()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
   5.4 Object Implementer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6 SAI-AIS-IMM-A.01.01 AIS Specification



Service AvailabilityTM Application Interface Specification
Table of Contents 

1

5

10

15

20

25

30

35

40
          5.4.1 saImmOiImplementerSet()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
          5.4.2 saImmOiImplementerClear()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
          5.4.3 saImmOiClassImplementerSet() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
          5.4.4 saImmOiClassImplementerRelease()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
          5.4.5 saImmOiObjectImplementerSet() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
          5.4.6 saImmOiObjectImplementerRelease()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
   5.5 Runtime Objects Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
          5.5.1 saImmOiRtObjectCreate()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
          5.5.2 saImmOiRtObjectDelete()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
          5.5.3 saImmOiRtObjectUpdate() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
          5.5.4 SaImmOiRtAttrUpdateCallbackT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
   5.6 Configuration Objects Implementer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
          5.6.1 SaImmOiCcbObjectCreateCallbackT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
          5.6.2 SaImmOiCcbObjectDeleteCallbackT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
          5.6.3 SaImmOiCcbObjectModifyCallbackT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
          5.6.4 SaImmOiCcbCompletedCallbackT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
          5.6.5 SaImmOiCcbApplyCallbackT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
          5.6.6 SaImmOiCcbAbortCallbackT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
   5.7 Administrative Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
          5.7.1 SaImmOiAdminOperationCallbackT  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
          5.7.2 saImmOiAdminOperationResult()  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
AIS Specification SAI-AIS-IMM-A.01.01 7



Service AvailabilityTM Application Interface Specification

Table of Contents 

1

5

10

15

20

25

30

35

40
8 SAI-AIS-IMM-A.01.01 AIS Specification



Service AvailabilityTM Application Interface Specification
Document Introduction 

1

5

10

15

20

25

30

35

40
1   Document Introduction

1.1 Document Purpose
This document defines the Information Model Management Service of the Application 
Interface Specification (AIS) of the Service AvailabilityTM Forum (SA Forum). It is 
intended for use by implementers of the Application Interface Specification and by 
application developers who would use the Application Interface Specification to 
develop applications that must be highly available. The AIS is defined in the C 
programming language, and requires substantial knowledge of the C programming 
language.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be 
used in conjunction with the Service AvailabilityTM Forum Hardware Interface 
Specification (HPI) and with the Service AvailabilityTM Forum System Management 
Specification.

1.2 AIS Documents Organization
The Application Interface Specification is organized into several volumes. For a list of 
all Application Interface Specification documents, refer to the SA Forum Overview 
document.

1.3 History
SAI-AIS-IMM-A.01.01 is the first release of the Information Model Management 
Service specification.

1.4 References
The following document contains information that is relevant to the specification:

[1] Service AvailabilityTM Forum, Application Interface Specification, Overview, 
SAI-Overview-B.02.01

1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback 
online by following the links provided for this purpose on the Service Availability™ 
Forum website ( http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.
AIS Specification SAI-AIS-IMM-A.01.01 Section 1 9



Service AvailabilityTM Application Interface Specification

Document Introduction 

1

5

10

15

20

25

30

35

40
1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to 
participate in the Forum complete a membership application. Once completed, a 
representative of the Service Availability™ Forum will contact you to discuss your 
membership in the Forum. The Service Availability™ Forum Membership Application 
can be completed online by following the pertinent links provided on the Forum’s 
website ( http://www.saforum.org).

You can also submit information requests online. Information requests are generally 
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can be viewed online by 
using the links provided on the Forum’s website 
( http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource 
materials, including the Forum Press Kit, graphics, and press contact information. 
Visit this area often for the latest press releases from the Service Availability™ Forum 
and its member companies by following the pertinent links provided on the Forum’s 
website ( http://www.saforum.org).
10 SAI-AIS-IMM-A.01.01 Section 1.6 AIS Specification



Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
 2   Overview 
This specification defines the Information Model Management Service within the 
Application Interface Specification (AIS).

2.1 Information Model Management Service
The different entities of an SA Forum cluster, such as components provided by the 
Availability Management Framework, checkpoints provided by the Checkpoint Ser-
vice, or message queues provided by the Message Service are represented by vari-
ous objects of the SA Forum information model.

The SA Forum information model (IM) is specified in UML and managed by the Infor-
mation Model Management (IMM) Service.

The objects in the Information Model are provided with their attributes and administra-
tive operations (i.e., operations that can be performed on the represented entities 
through system management interfaces). For management applications or Object 
Managers, the IMM provides the APIs to create, access and manage these objects.

Subsequently, it delivers the requested operations to the appropriate AIS services or 
applications (referred to as Object Implementers) that implement these objects for 
execution.

Information Model objects and attributes can be classified into two categories:
• Configuration objects and attributes
• Runtime objects and attributes

The IMM Service exposes two sets of APIs:
(1) An Object Management API (OM-API) exposed typically to System Manage-

ment applications (for example, SNMP agents and CIM providers).
(2) An Object Implementer API (OI-API) restricted to Object Implementers.
AIS Specification SAI-AIS-IMM-A.01.01 Section 2 11



Service AvailabilityTM Application Interface Specification

Overview 

1

5

10

15

20

25

30

35

40
12 SAI-AIS-IMM-A.01.01 Section 2.1 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
3   Information Model Management Service API
The Service AvailabilityTM Forum (SA Forum) information model (IM) is specified in 
UML and represents the various objects that constitute an SA Forum system. The SA 
Forum IM also specifies the attributes of these objects and administrative operations 
that can be performed on the entities through system management interfaces.

The Information Model Management (IMM) Service is the SA Forum service manag-
ing all objects of the SA Forum Information Model and provides the APIs to access 
and manage these objects.
AIS Specification SAI-AIS-IMM-A.01.01 Section 3 13



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 The actual implementation of objects represented in the information model is not part 
of the IMM Service but is provided by user applications or other SA Forum services 
such as Availability Management Framework, Checkpoint Service, etc.

SA Forum services and applications that implement the IMM objects are called 
Object Implementers in the rest of this document.

IMM objects are organized in a tree hierarchy. The hierarchy follows the structure of 
the LDAP distinguished name of each object. Refer to the SA Forum Overview docu-
ment ([1]) for more information about LDAP object names.

IMM objects and attributes can be classified into two categories:
• Configuration Objects and Attributes

Configuration objects and attributes are the means by which system manage-
ment applications provide input on the desired sets of objects and their handling 
that an Object Implementer should implement. The set of configuration objects 
and attributes constitute the prescriptive part of the information model.

Configuration objects and attributes are typically under the control of system 
management applications. They are of a persistent nature and must survive a 
full cluster power-off.

Configuration attributes are read-write attributes from an Object Management 
perspective but read-only from an Object Implementer perspective.

• Runtime Objects and Attributes

Runtime objects and attributes are the means by which Object Implementers 
reflect in the information model the current state of the objects they implement. 
The set of runtime objects and attributes constitute the descriptive part of the 
information model. Runtime objects and attributes are typically under the control 
of Object Implementers. 

Runtime objects, which contain persistent runtime attributes are persistent and 
must survive a full cluster power-off. Non-persistent runtime attributes do not 
survive a full cluster power-off.

Runtime attributes are read-only attributes from an Object Management per-
spective but read-write from an Object Implementer perspective.

As attributes cannot exist outside of an encapsulating object, configuration attributes 
can only belong to configuration objects as opposed to runtime attributes that may 
belong to objects of either category. Runtime objects can only have runtime 
attributes.
14 SAI-AIS-IMM-A.01.01 Section 3 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
After a full cluster power-off, during its initialisation step, the IMM Service automati-
cally re-creates all persistent objects with their persistent attributes from the copy it 
maintains on stable storage.

Object Implementers cannot on their own initiative create and delete configuration 
objects or modify configuration attributes through the Object Implementer interface. 
On the other hand, system management applications cannot directly create and 
delete runtime objects or modify runtime attributes. However, as a consequence of 
some administrative operations requested by these system management applications 
Object Implementers may create or delete runtime objects or modify runtime 
attributes to reflect the new system state after the completion of the administrative 
operation.

The IMM Service exposes two sets of APIs:
(1) An Object Management API (OM-API) exposed typically to system management 

applications (for example, SNMP agents and CIM providers).
(2) An Object Implementer API (OI-API) restricted to Object Implementers.

Chapter 4.0 (next chapter) describes the OM-API. The OI-API is found in Chapter 
5.0.
AIS Specification SAI-AIS-IMM-A.01.01 Section 3 15



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 

16 SAI-AIS-IMM-A.01.01 Section 3 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
4.0 IMM Service - Object Management API Specification

4.1 Include File and Library Name
The following statement containing declarations of data types and function prototypes 
must be included in the source of an application using the IMM Service Object Man-
agement API:

#include <saImmOm.h>

To use the IMM Service Object Management API, an application must be bound with 
the following library:

libSaImmOm.so

4.2 Type Definitions
The Information Model Management Service uses the types described in the follow-
ing sections.

4.2.1 Handles Used by the IMM Service

typedef SaUint64T SaImmHandleT;

typedef SaUint64T SaImmAdminOwnerHandleT;

typedef SaUint64T SaImmCcbHandleT;

typedef SaUint64T SaImmSearchHandleT;

typedef SaUint64T SaImmAccessorHandleT;

The acronym CCB stands for Configuration Changes Bundle.

4.2.2 Various IMM Service Names

The following types represent object class names, administrative owner names and 
object class attribute names. All these names are UTF-8 encoded character strings 
terminated by the NULL character.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.0 17



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 typedef SaStringT SaImmClassNameT;

typedef SaStringT SaImmAttrNameT;

typedef SaStringT SaImmAdminOwnerNameT;

4.2.3 SaImmValueTypeT

SaImmValueTypeT contains various data types used by the IMM Service for class 
attributes and administrative operation parameters.

typedef enum {

SA_IMM_ATTR_SAINT32T = 1,  /* SaInt32T */

SA_IMM_ATTR_SAUINT32T = 2,  /* SaUint32T */

SA_IMM_ATTR_SAINT64T = 3,  /* SaInt64T */

SA_IMM_ATTR_SAUINT64T = 4,  /* SaUint64T */

SA_IMM_ATTR_SATIMET = 5,  /* SaTimeT */

SA_IMM_ATTR_SANAMET = 6,  /* SaNameT */

SA_IMM_ATTR_SAFLOATT = 7, /* SaFloatT */

SA_IMM_ATTR_SADOUBLET = 8, /* SaDoubleT */

SA_IMM_ATTR_SASTRINGT = 9,  /* SaStringT */

SA_IMM_ATTR_SAANYT = 10 /* SaAnyT */

} SaImmValueTypeT;

4.2.4 SaImmClassCategoryT

SaImmClassCategoryT is used to distinguish among different categories of object 
classes.

typedef enum {

SA_IMM_CLASS_CONFIG = 1,

SA_IMM_CLASS_RUNTIME = 2

} SaImmClassCategoryT;

The values of SaImmClassCategoryT indicate whether the object class is a configu-
ration object class or a runtime object class.
18 SAI-AIS-IMM-A.01.01 Section 4.2.3 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
4.2.5 SaImmAttrFlagsT

SaImmAttrFlagsT is used to specify the various characteristics of an attribute of an 
object class.

#define SA_IMM_ATTR_MULTI_VALUE0x00000001

#define SA_IMM_ATTR_RDN 0x00000002

#define SA_IMM_ATTR_CONFIG 0x00000100

#define SA_IMM_ATTR_WRITABLE  0x00000200

#define SA_IMM_ATTR_INITIALIZED  0x00000400

#define SA_IMM_ATTR_RUNTIME  0x00010000

#define SA_IMM_ATTR_PERSISTENT  0x00020000

#define SA_IMM_ATTR_CACHED  0x00040000

typedef SaUint64T SaImmAttrFlagsT;

The meaning of the flags listed above is:

• SA_IMM_ATTR_MULTI_VALUE: If this flag is specified, the attribute is a multi-
value attribute; otherwise, the attribute is a single-value attribute.

• SA_IMM_ATTR_RDN: The attribute is used as the Relative Distinguished Name 
(RDN) for the containing object. Each object class must have one and only one 
RDN attribute. This attribute must be a single-value attribute and may not be 
modified after the object is created. The RDN attribute of a configuration object 
must be a configuration attribute.

The following two attributes are mutually exclusive as an attribute is either a configu-
ration or a runtime attribute.

• SA_IMM_ATTR_CONFIG: The attribute is a configuration attribute. Configura-
tion attributes are only allowed within object classes of the 
SA_IMM_CLASS_CONFIG category.

• SA_IMM_ATTR_RUNTIME: The attribute is a runtime attribute. Runtime 
attributes can belong to all object class categories.

The following two attributes are only meaningful for configuration attributes. Setting 
them for runtime attributes is not allowed and generates an error.

• SA_IMM_ATTR_WRITABLE: Setting this flag for a configuration attribute indi-
cates that the attribute can be modified. If the flag is not present, the configura-
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.2.5 19



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 tion attribute can only be set when the object is created and cannot be modified 
or deleted later on.

• SA_IMM_ATTR_INITIALIZED: Setting this flag for a configuration attribute indi-
cates that a value must be specified for this attribute when the object is created. 
This flag may not be set in the definition of a configuration attribute, which 
includes a default value for the attribute.

The following attributes are only meaningful for runtime attributes. Setting them for 
configuration attributes is not allowed and generates an error.

• SA_IMM_ATTR_PERSISTENT: Setting this flag for runtime attributes indicates 
that the attribute must be stored in a persistent manner by the IMM Service. If a 
runtime object has persistent attributes, or if one of its children has persistent 
attributes, its RDN attribute must be persistent.

• SA_IMM_ATTR_CACHED: Setting this flag for a runtime attribute indicates that 
the value of the attribute must be cached by the IMM Service.

4.2.6 SaImmAttrValueT

SaImmAttrValueT is used to represent the values of object attributes.

typedef void *SaImmAttrValueT;

4.2.7 SaImmAttrDefinitionT

SaImmAttrDefinitionT is used to specify the characteristics of an attribute belonging 
to a particular object class.

typedef struct {

SaImmAttrNameT attrName;

SaImmValueTypeT attrValueType;

SaImmAttrFlagsT attrFlags;

SaUint32T attrNtfId;

SaImmAttrValueT attrDefaultValue; 

} SaImmAttrDefinitionT;

The various fields of the structure above have the following usage:

• attrName: contains the attribute name.
• attrValueType: indicates what type of values can be assigned to this attribute.
• attrFlags: contains additional characteristics of this attribute.
20 SAI-AIS-IMM-A.01.01 Section 4.2.6 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
• attrNtfId: identifier used to designate this attribute in Notification Service notifica-
tions. This field must be set to 0 for attributes that are not involved in Notification 
Service notifications.

• attrDefaultValue: contains a value that will automatically be assigned by the IMM 
Service to this attribute if no value is specified when an object containing this 
attribute is created. Must be set to NULL if there is no default value for this 
attribute.

4.2.8 SaImmAttrValuesT

SaImmAttrValuesT is used to specify the values of one attribute of an object.

typedef struct {

SaImmAttrNameT  attrName;

SaUint32T attrValuesNumber;

SaImmAttrValueT *attrValues;

} SaImmAttrValuesT;

The attrName field indicates the attribute name and the attrValuesNumber field indi-
cates the number of attribute values contained in the array of value descriptors 
pointed to by the attrValues field.

4.2.9 SaImmAttrModificationTypeT

SaImmAttrModificationTypeT specifies the type of modification to apply on the values 
of an attribute.

typedef enum {

SA_IMM_ATTR_VALUES_ADD = 1,

SA_IMM_ATTR_VALUES_DELETE = 2,

SA_IMM_ATTR_VALUES_REPLACE = 3

} SaImmAttrModificationTypeT;
• SA_IMM_ATTR_VALUES_ADD is used to add one or several values to an 

attribute in an object. If the attribute did not already have a value, the attribute is 
added.

• SA_IMM_ATTR_DELETE is used to remove one or several specified values from 
an attribute of an object. If all values of the attribute are removed, the attribute is 
also removed from the object. If the intent is to remove an attribute without spec-
ifying all its values, the SA_IMM_ATTR_REPLACE enum can be used (see next 
enum value).
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.2.8 21



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 • SA_IMM_ATTR_REPLACE is used to replace all current values of an attribute 
with a new set of values. If the new set of values is empty, the attribute is 
removed. If one or several values are specified and the attribute does not exist in 
the object, the attribute is added to the object with the new set of values.

SaImmAttrModificationT is used to specify the modification to apply on an object 
attribute.

4.2.10 SaImmAttrModificationT

typedef struct {

SaImmAttrModificationTypeTmodType;

SaImmAttrValuesT modAttr;

} SaImmAttrModificationT;

The modType field indicates the type of modification to perform. The modAttr field 
specifies the attribute name and the values to be added to the attribute, removed 
from the attribute, or that will replace the existing values. An empty set of values can 
be specified by setting attrValuesNumber to 0 and attrValues to NULL in the modAttr 
field. It is an error to use such an empty set of values with the 
SA_IMM_ATTR_VALUES_ADD or SA_IMM_ATTR_VALUES_DELETE modification 
types.

4.2.11 SaImmScopeT

SaImmScopeT is used to specify the scope of some IMM Service operations.

typedef enum {

SA_IMM_ONE = 1,

SA_IMM_SUBLEVEL = 2,

SA_IMM_SUBTREE = 3

} SaImmScopeT;
• SA_IMM_ONE indicates that the scope of the operation is targeted to a single 

object.
• SA_IMM_SUBLEVEL indicates that the scope of the operation is targeted to one 

object and its direct children.
• SA_IMM_SUBTREE indicates that the scope of the operation is targeted to one 

object and the entire subtree rooted at that object.
22 SAI-AIS-IMM-A.01.01 Section 4.2.10 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
4.2.12 SaImmSearchOptionsT

SaImmSearchOptionsT is used to specify various options when performing searches 
among IMM Service objects.

typedef SaUint64T SaImmSearchOptionsT;

Two kinds of options can be specified by SaImmSearchOptionsT:

• Options related to the search criteria. Currently, only one such option is sup-
ported by the IMM Service. It must be specified for all search operations:

#define SA_IMM_SEARCH_ONE_ATTR 0x0001

SA_IMM_SEARCH_ONE_ATTR enables the retrieval of objects containing an 
attribute of a particular name and assigned to a particular value.

• Options used to specify which attributes of the objects matching the search crite-
ria must be returned to the process performing the search. One and only one of 
these three options must be specified for each search operation:

#define SA_IMM_SEARCH_GET_ALL_ATTR 0x0100

#define SA_IMM_SEARCH_GET_NO_ATTR 0x0200

#define SA_IMM_SEARCH_GET_SOME_ATTR 0x0400

SA_IMM_SEARCH_GET_ALL_ATTR indicates that for each object matching 
the search criteria, all its attributes along with their values must be returned to 
the process performing the search.

SA_IMM_SEARCH_GET_NO_ATTR indicates that no attributes of the objects 
matching the search criteria must be returned to the process performing the 
search. In this case, only the names of the objects matching the search criteria 
are returned.

SA_IMM_SEARCH_GET_SOME_ATTR indicates that for each object matching 
the search criteria, only a subset of its attributes along with their values must be 
returned to the process performing the search. The list of attribute names to be 
returned is specified by another parameter of the search operation.

4.2.13 SaImmSearchParametersT

SaImmSearchParametersT is used to provide the criteria parameters used for search 
operations.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.2.12 23



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 typedef struct {

SaImmAttrNameT *attrName;

SaImmValueTypeT attrValueType;

SaImmAttrValueT attrValue;

} SaImmSearchOneAttrT;

The SaImmSearchOneAttrT type contains the attribute description for 
SA_IMM_SEARCH_ONE_ATTR search operations. The fields attrName and 
attrValue point to the attribute name and value being searched for. The attrValueType 
field indicates the type of value, which is assigned to the attribute.

If attrValue is not set to NULL, an object matches the search criteria if one of its 
attributes has a name identical to the name pointed to by attrName, the values for this 
attribute are of type attrValueType, and the value of the attribute (or one of its values 
for multi-valued attributes) is identical to the value pointed to by attrValue.

If attrValue is set to NULL, only the attribute name is used as a search criteria, and all 
objects having an attribute with such a name will be retrieved by the search opera-
tion, regardless of their values.

If attrName is set to NULL, attrValue must also be set to NULL. Such an empty crite-
ria will match all IMM Service objects. This can be used to browse through all IMM 
Service objects.

typedef union {

SaImmSearchOneAttrT searchOneAttr;

} SaImmSearchParametersT;

Note: Searching for a particular value of a non-cached runtime attribute should be used with 
care, as it forces the IMM Service to fetch all values from the Object Implementers, which 
creates extra load on the system.

4.2.14 SaImmCcbFlagsT

SaImmCcbFlagsT is used to specify the various characteristics of a CCB. Currently, 
only one value is provided.

#define SA_IMM_CCB_REGISTERED_OI  0x00000001

typedef SaUint64T SaImmCcbFlagsT;
24 SAI-AIS-IMM-A.01.01 Section 4.2.14 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
SA_IMM_CCB_REGISTERED_OI: If this flag is specified, the CCB can only hold 
changes for objects that have a registered Object Implementer. This flag must be set 
by applications, which expect Object Implementers to validate the changes made 
through the CCB. If this flag is not set, the IMM Service accepts changes on objects 
with no registered implementer.

4.2.15 SaImmAdminOperationIdT

SaImmAdminOperationIdT is used to hold an identifier designating a particular 
administrative operation to perform on an object. The identifiers for all administrative 
operations of a given object class must have different integer values. However, the 
same values can be used for administrative operations of different object classes. In 
other words, the scope of an operation identifier is the object class.

typedef SaUint64T SaImmAdminOperationIdT;

4.2.16 SaImmAdminOperationParamsT

SaImmAdminOperationParamsT is used to specify the parameters of an administra-
tive operation performed on an object.

typedef struct {

SaStringT paramName;

SaImmValueTypeT paramType;

void *paramBuffer;

SaUint32T paramSize;

} SaImmAdminOperationParamsT;

The paramName field indicates the name of the parameter. The paramType field indi-
cates the type of the parameter. The paramBuffer field points to a buffer containing 
the parameter value. The paramSize field indicates the size in bytes of the parameter 
value.

4.2.17 SaImmCallbacksT

The SaImmCallbacksT structure defines the set of callbacks a process can provide to 
the IMM Service at initialization time.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.2.15 25



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 typedef struct {

SaImmOmAdminOperationInvokeCallbackT

saImmOmAdminOperationInvokeCallback;

} SaImmCallbacksT;

4.2.18 IMM Service Object Attributes

#define SA_IMM_ATTR_CLASS_NAME "SaImmAttrClassName"

The IMM Service adds an attribute to each object holding the name of the class of the 
object. The name of this attribute is specified by the constant 
SA_IMM_ATTR_CLASS_NAME.

#define SA_IMM_ATTR_ADMIN_OWNER_NAME "SaImmAttrAdminOwnerName"

When an object has been assigned an administrative owner, the IMM Service stores 
the name of the object administrative owner in one attribute of the object. The name 
of this attribute is specified by the constant 
SA_IMM_ATTR_ADMIN_OWNER_NAME. This attribute does not exist in objects 
having no administrative owners.

#define SA_IMM_ATTR_IMPLEMENTER_NAME "SaImmAttrImplementerName"

When an object has an implementer, the IMM Service stores the name of the Object 
Implementer in one attribute of the object. The name of this attribute is specified by 
the constant SA_IMM_ATTR_IMPLEMENTER_NAME. This attribute does not exist 
in objects having no implementers.

The above attributes are single-value attributes and their value is of type 
SA_IMM_ATTR_SASTRINGT. For configuration objects, these attributes are config-
uration attributes and for runtime objects, these attributes are runtime attributes. If the 
runtime object is persistent, these attributes are also persistent.
26 SAI-AIS-IMM-A.01.01 Section 4.2.18 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
4.3 Library Life Cycle

4.3.1 saImmOmInitialize()

Prototype

SaAisErrorT saImmOmInitialize(

SaImmHandleT *immHandle,

const SaImmCallbacksT *immCallbacks,

SaVersionT *version

);

Parameters
immHandle - [out] A pointer to the handle designating this particular initialization of 
the IMM Service that is to be returned by the IMM Service. This handle provides 
access to the Object Management APIs of the IMM Service. For the SaImmHandleT 
type definition, see Section 4.2.1 on page 17.

immCallbacks - [in] If immCallbacks is set to NULL, no callback is registered; other-
wise, it is a pointer to an SaImmCallbacksT structure, containing the callback func-
tions of the process that the IMM Service may invoke. Only non-NULL callback 
functions in this structure will be registered. For the SaImmCallbacksT type definition, 
see Section 4.2.17 on page 25.

version - [in/out] As an input parameter, version is a pointer to the required IMM Ser-
vice version (see the SA Forum Overview document). In this case, minorVersion is 
ignored and should be set to 0x00.
As an output parameter, the version actually supported by the IMM Service is deliv-
ered. For the SaVersionT type definition, see the SA Forum Overview document.

Description

This function initializes the Object Management functions of the Information Model 
Management Service for the invoking process and registers the various callback 
functions. This function must be invoked prior to the invocation of any other Object 
Management functions of the Information Model Management Service functionality. 
The handle immHandle is returned as the reference to this association between the 
process and the Object Management of the IMM Service. The process uses this han-
dle in subsequent communication with the Object Management of the IMM Service.

If the invoking process exits after successfully returning from the saImmOmInitialize() 
function and before invoking saImmOmFinalize() to finalize the handle immHandle 
(see Section 4.3.4 on page 32), the IMM Service automatically finalizes this handle 
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.3 27



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 and any other handles, which have been acquired via the handle immHandle when 
the death of the process is detected.

If the implementation supports the required releaseCode, and a major version >= the 
required majorVersion, SA_AIS_OK is returned. In this case, the version parameter is 
set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation can 

support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation can 

support for the required value of releaseCode and the returned value of 
majorVersion

If the above mentioned condition cannot be met, SA_AIS_ERR_VERSION is 
returned, and the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required 
releaseCode)

releaseCode = the least value of the supported release codes that is 
higher than the required releaseCode

else 

releaseCode = the highest value of the supported release codes that is
less than the required releaseCode

} 

majorVersion = highest value of the major versions that this implementation can 
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can 
support for the returned values of releaseCode and majorVersion

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.
28 SAI-AIS-IMM-A.01.01 Section 4.3.1 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_VERSION - The version parameter is not compatible with the version 
of the Information Model Management Service implementation.

See Also

saImmOmSelectionObjectGet(), saImmOmDispatch(), saImmOmFinalize()

4.3.2 saImmOmSelectionObjectGet()

Prototype

SaAisErrorT saImmOmSelectionObjectGet(

SaImmHandleT immHandle,

SaSelectionObjectT *selectionObject

);

Parameters
immHandle - [in] The handle, obtained through the saImmOmInitialize() function, des-
ignating this particular initialization of the Information Model Management Service. 
For the SaImmHandleT type definition, see Section 4.2.1 on page 17.

selectionObject - [out] A pointer to the operating system handle that the invoking pro-
cess can use to detect pending callbacks. For the SaSelectionObjectT type definition, 
see the SA Forum Overview document.

Description

This function returns the operating system handle, selectionObject, associated with 
the handle immHandle. The invoking process can use this handle to detect pending 
callbacks, instead of repeatedly invoking saImmOmDispatch() for this purpose.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.3.2 29



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 In a POSIX environment, the operating system handle is a file descriptor that is used 
with the poll() or select() system calls to detect pending callbacks.

The selectionObject returned by saImmOmSelectionObjectGet() is valid until 
saImmOmFinalize() is invoked on the same handle immHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

See Also

saImmOmInitialize(), saImmOmDispatch(), saImmOmFinalize()
30 SAI-AIS-IMM-A.01.01 Section 4.3.2 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
4.3.3 saImmOmDispatch()

Prototype

SaAisErrorT saImmOmDispatch(

SaImmHandleT immHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters
immHandle - [in] The handle, obtained through the saImmOmInitialize() function, des-
ignating this particular initialization of the Information Model Management Service. 
For the SaImmHandleT type definition, see Section 4.2.1 on page 17.

dispatchFlags - [in] Flags that specify the callback execution behavior of the 
saImmOmDispatch() function, which have the values SA_DISPATCH_ONE, 
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING, as defined in the SA Forum 
Overview document. The SaDispatchFlagsT type is also defined in the SA Forum 
Overview document.

Description

This function invokes, in the context of the calling thread, pending callbacks for the 
handle immHandle in a way that is specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.3.3 31



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 See Also

saImmOmInitialize(), saImmOmSelectionObjectGet(), saImmOmFinalize()

4.3.4 saImmOmFinalize()

Prototype

SaAisErrorT saImmOmFinalize(

SaImmHandleT immHandle

);

Parameters
immHandle - [in] The handle, obtained through the saImmOmInitialize() function, des-
ignating this particular initialization of the IMM Service. For the SaImmHandleT type 
definition, see Section 4.2.1 on page 17.

Description

The saImmOmFinalize() function closes the association, represented by the 
immHandle parameter, between the invoking process and the IMM Service. The pro-
cess must have invoked saImmOmInitialize() before it invokes this function. A pro-
cess must invoke this function once for each handle it acquired by invoking 
saImmOmInitialize().

If the saImmOmFinalize() function returns successfully, the saImmOmFinalize() func-
tion releases all resources acquired when saImmOmInitialize() was called. Moreover, 
it implicitly invokes:

• saImmOmSearchFinalize() on all search handles initialized with immHandle and 
not yet finalized.

• saImmOmAccessorFinalize() on all accessor handles initialized with immHandle 
and not yet finalized.

• saImmOmAdminOwnerFinalize() on all administrative owner handles initialized 
with immHandle and not yet finalized.

Furthermore, saImmOmFinalize() cancels all pending callbacks related to asynchro-
nous operations performed with immHandle. Note that because the callback invoca-
tion is asynchronous, it is still possible that some callback calls are processed after 
this call returns successfully.

After saImmOmFinalize() returns successfully, the selection object is no longer valid.
32 SAI-AIS-IMM-A.01.01 Section 4.3.4 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saImmOmInitialize()

4.4 Object Class Management
The following APIs are used to create and delete object classes. A caller can also use 
them to query the definition of an existing object class.

4.4.1 saImmOmClassCreate()

Prototype

SaAisErrorT saImmOmClassCreate(

SaImmHandleT immHandle,

const SaImmClassNameT className,

SaImmClassCategoryT classCategory,

const SaImmAttrDefinitionT **attrDefinitions

);

Parameters
immHandle - [in] The handle, obtained through the saImmOmInitialize() function, des-
ignating this particular initialization of the Information Model Management Service. 
For the SaImmHandleT type definition, see Section 4.2.1 on page 17.

className - [in] The name of the object class to create. The SaImmClassNameT 
type is defined in Section 4.2.2 on page 17.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.4 33



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 classCategory - [in] Category of the object class. The SaImmClassCategoryT type is 
defined in Section 4.2.4 on page 18.

attrDefinitions - [in] NULL terminated array of pointers to definitions of the class 
attributes. The SaImmAttrDefinitionT type is defined in Section 4.2.7 on page 20.

Description

This function creates a new object class of name className. The new object class 
can be a configuration or runtime object class, depending on the classCategory 
parameter setting.

Object class definitions are stored in a persistent manner by the IMM Service.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, the 
attrDefinitions parameter contains a NULL or zero length attribute name, an invalid 
value type, an invalid default attribute value, or a set of attribute flags, which are 
inconsistent with the class category specified by the classCategory parameter.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_EXIST - An object class with a name identical to className already 
exists.

See Also

saImmOmInitialize()
34 SAI-AIS-IMM-A.01.01 Section 4.4.1 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
4.4.2 saImmOmClassDescriptionGet()

Prototype

SaAisErrorT saImmOmClassDescriptionGet(

SaImmHandleT immHandle,

const SaImmClassNameT className,

SaImmClassCategoryT *classCategory,

SaImmAttrDefinitionT ***attrDefinitions

);

Parameters
immHandle - [in] The handle, obtained through the saImmOmInitialize() function, des-
ignating this particular initialization of the Information Model Management Service. 
For the SaImmHandleT type definition, see Section 4.2.1 on page 17.

className - [in] The name of the object class for which a description is requested. 
The SaImmClassNameT type is defined in Section 4.2.2 on page 17.

classCategory - [out] Pointer to an SaImmClassCategoryT structure to contain the 
category of the object class. The SaImmClassCategoryT type is defined in Section 
4.2.4 on page 18.

attrDefinitions - [out] Pointer to a NULL terminated array of pointers to definitions of 
the class attributes. The SaImmAttrDefinitionT type is defined in Section 4.2.7 on 
page 20.

Description

This function returns a description of the object class of name className.

The Information Model Management Service library allocates the memory to return 
the attribute definitions. When the calling process no longer needs to access the 
attribute definitions, the memory must be freed by calling the 
saImmOmClassDescriptionMemoryFree() function.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.4.2 35



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NOT_EXIST - There is no object class with a name identical to 
className.

See Also

saImmOmInitialize(), saImmOmClassCreate(), 
saImmOmClassDescriptionMemoryFree()

4.4.3 saImmOmClassDescriptionMemoryFree()

Prototype

SaAisErrorT saImmOmClassDescriptionMemoryFree(

SaImmHandleT immHandle,

SaImmAttrDefinitionT **attrDefinitions

);

Parameters
immHandle - [in] The handle, obtained through the saImmOmInitialize() function, des-
ignating this particular initialization of the Information Model Management Service. 
For the SaImmHandleT type definition, see Section 4.2.1 on page 17.

attrDefinitions - [in] NULL terminated array of pointers to attribute definitions to be 
freed. The SaImmAttrDefinitionT type is defined in Section 4.2.7 on page 20.

Description

This function deallocates the memory pointed to by attrDefinitions, and which was 
allocated by a previous call to the saImmOmClassDescriptionGet() function.
36 SAI-AIS-IMM-A.01.01 Section 4.4.3 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

See Also

saImmOmInitialize(), saImmOmClassCreate(), saImmOmClassDescriptionGet()

4.4.4 saImmOmClassDelete()

Prototype

SaAisErrorT saImmOmClassDelete(

SaImmHandleT immHandle,

const SaImmClassNameT className

);

Parameters
immHandle - [in] The handle, obtained through the saImmOmInitialize() function, des-
ignating this particular initialization of the Information Model Management Service. 
For the SaImmHandleT type definition, see Section 4.2.1 on page 17.

className - [in] Name of the object class to be deleted. The SaImmClassNameT 
type is defined in Section 4.2.2 on page 17.

Description

This function deletes the object class designated by className provided there are no 
existing objects of this class.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.4.4 37



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_NOT_EXIST - There is no object class with a name identical to 
className.

SA_AIS_ERR_BUSY - The object class cannot be deleted as objects of this class still 
exist, or a request to create an object of this class has been added to a CCB.

See Also

saImmOmInitialize(), saImmOmClassCreate()

4.5 Object Search
This set of APIs is used to search for particular objects in the IMM Service object tree 
and also to obtain the values of some of their attributes.

In order to facilitate the management of the memory allocated by the IMM Service 
library to return the results of the search, the search is performed through a search 
iterator.

The search criteria is specified when the search iterator is initialized. At initialization 
time, the attributes to be retrieved are also specified for each object that matches the 
search criteria. Then, each invocation of the iterator returns the object name and the 
specified attributes of the next object satisfying the search criteria.

The iteration is terminated through the finalize API.

Every object created before the invocation of the saImmOmSearchInitialize() func-
tion, which matches the search criteria, and has not been modified or deleted before 
the invocation of saImmOmSearchFinalize(), will be returned exactly once by the 
saImmOmSearchNext() search iterator. No other guarantees are made: Objects that 
38 SAI-AIS-IMM-A.01.01 Section 4.5 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
are created after the iteration is initialized, modified, or deleted before the iteration is 
finalized, may or may not be returned by the search iterator.

4.5.1 saImmOmSearchInitialize()

Prototype

SaAisErrorT saImmOmSearchInitialize(

SaImmHandleT immHandle,

const SaNameT *rootName,

SaImmScopeT scope,

SaImmSearchOptionsT searchOptions,

const SaImmSearchParametersT *searchParam,

const SaImmAttrNameT *attributeNames,

SaImmSearchHandleT *searchHandle

);

Parameters
immHandle - [in] The handle, obtained through the saImmOmInitialize() function, des-
ignating this particular initialization of the Information Model Management Service. 
For the SaImmHandleT type definition, see Section 4.2.1 on page 17.

rootName - [in] Pointer to the name of the root object for the search. If set to NULL, 
the search starts at the root of the IMM Service tree. For the SaNameT type defini-
tion, see the SA Forum Overview document.

scope - [in] Scope of the search. The SaImmScopeT type is defined in Section 4.2.11 
on page 22.

searchOptions - [in] Specifies the type of criteria being used as well as which attribute 
values must be returned for each object matching the search criteria. The 
SaImmSearchOptionsT type is defined in Section 4.2.12 on page 23.

searchParam - [in] A pointer to the search parameters according to the search criteria 
specified in searchOption. The SaImmSearchParametersT type is defined in Section 
4.2.13 on page 23.

attributeNames - [in] NULL terminated array of attribute names for which values must 
be returned while iterating through all objects matching the search criteria. Only used 
if the SA_IMM_SEARCH_GET_SOME_ATTR option has been set in the 
searchOptions parameter. It must be set to NULL otherwise. The SaImmAttrNameT 
type is defined in Section 4.2.2 on page 17.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.5.1 39



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 searchHandle - [out] Search handle used later to iterate through all objects that 
match the search criteria. The SaImmSearchHandleT type is defined in Section 4.2.1 
on page 17.

Description

This function initializes a search operation limited to a set of targeted objects desig-
nated by the scope and rootName parameters. 

The targeted set of objects is determined as follows:

• If scope is SA_IMM_SUBLEVEL, the scope of the operation is the object desig-
nated by rootName and its direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation is the object desig-
nated by rootName and the entire subtree rooted at that object

• SA_IMM_ONE is not a valid value for the scope parameter.

The SA_IMM_SEARCH_ONE_ATTR option must be set in the searchOptions 
parameter.

One and only one of the following three options must be set in the searchOptions 
parameter:

• SA_IMM_SEARCH_GET_ALL_ATTR, 
• SA_IMM_SEARCH_GET_NO_ATTR, or
• SA_IMM_SEARCH_GET_SOME_ATTR.

This parameter specifies which attributes must be returned for each object matching 
the search criteria. If SA_IMM_SEARCH_GET_SOME_ATTR is set, the 
attributeNames parameter specifies the names of the attributes to be returned. 
If SA_IMM_SEARCH_GET_SOME_ATTR is not set, the attributeNames parameter 
must be set to NULL.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
40 SAI-AIS-IMM-A.01.01 Section 4.5.1 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_NOT_EXIST - rootName is not the name of an existing object.

See Also

saImmOmInitialize()

4.5.2 saImmOmSearchNext()

Prototype

SaAisErrorT saImmOmSearchNext(

SaImmSearchHandleT searchHandle,

SaNameT *objectName,

SaImmAttrValuesT ***attributes

);

Parameters
searchHandle - [in] Handle returned by saImmOmSearchInitialize(). For the 
SaImmSearchHandleT type definition, see Section 4.2.1 on page 17.

objectName - [out] Pointer to the name of the next object matching the search criteria. 
For the SaNameT type definition, see the SA Forum Overview document.

attributes - [out] Pointer to a NULL terminated array of pointers to data structures 
holding the names and values of the attributes of this object, which where selected 
when the search was initialized. The SaImmAttrValuesT type is defined in Section 
4.2.8 on page 21.

Description

This function is used to obtain the next object matching the search criteria.

Attribute names and values will only be populated in the memory area pointed to by 
attributes if the handle searchHandle was obtained by specifying 
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.5.2 41



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_IMM_SEARCH_GET_ALL_ATTR or SA_IMM_SEARCH_GET_SOME_ATTR in 
the searchOptions parameter of the corresponding saImmOmSearchInitialize() call.

If one of the attributes requested by the search has no value or is a non-persistent 
runtime attribute, and there is no registered Object Implementer for the object, only 
the attribute name is returned (attrValuesNumber is set to 0 and attrValues is set to 
NULL in the SaImmAttrValuesT data structure specified by the attributes parameter).

The memory used to return the selected object attribute names and values is allo-
cated by the library and will be deallocated at the next invocation of 
saImmOmSearchNext() or saImmOmSearchFinalize() for the same search handle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle searchHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_NOT_EXIST - All objects matching the search criteria have already 
been returned to the calling process. The caller can now invoke the 
saImmOmSearchFinalize() function. Note that if no object matches the search crite-
ria, this value is returned at the first invocation of saImmOmSearchNext().

See Also

saImmOmInitialize(), saImmOmSearchInitialize(), saImmOmSearchFinalize()
42 SAI-AIS-IMM-A.01.01 Section 4.5.2 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
4.5.3 saImmOmSearchFinalize()

Prototype

SaAisErrorT saImmOmSearchFinalize(

SaImmSearchHandleT searchHandle

);

Parameters
searchHandle - [in] Handle returned by saImmOmSearchInitialize(). For the 
SaImmSearchHandleT type definition, see Section 4.2.1 on page 17.

Description

This function finalizes the search initialized by a previous call to 
saImmOmSearchInitialize(). It frees all memory previously allocated by that search, in 
particular, memory used to return attribute names and values in the previous 
saImmOmSearchNext() invocation.

Returned Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle searchHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saImmOmInitialize(), saImmOmSearchInitialize(), saImmOmSearchNext()

4.6 Object Access
This set of functions is used to access the values of some attributes of an object 
already known by its name. Once an application has discovered the object hierarchy, 
it can use this interface to fetch some particular attribute values.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.5.3 43



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 The object accessor is a way to facilitate the management of the memory allocated 
by the IMM Service library to return attribute names and values.

4.6.1 saImmOmAccessorInitialize()

Prototype

SaAisErrorT saImmOmAccessorInitialize(

SaImmHandleT immHandle,

SaImmAccessorHandleT *accessorHandle

);

Parameters
immHandle - [in] The handle, obtained through the saImmOmInitialize() function, des-
ignating this particular initialization of the Information Model Management Service. 
For the SaImmHandleT type definition, see Section 4.2.1 on page 17.

accessorHandle - [out] Pointer to the object accessor handle. For the 
SaImmAccessorHandleT type definition, see Section 4.2.1 on page 17.

Description

This function initializes an object accessor.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.
44 SAI-AIS-IMM-A.01.01 Section 4.6.1 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

See Also

saImmOmInitialize()

4.6.2 saImmOmAccessorGet()

Prototype

SaAisErrorT saImmOmAccessorGet(

SaImmAccessorHandleT accessorHandle,

const SaNameT *objectName,

const SaImmAttrNameT *attributeNames,

SaImmAttrValuesT ***attributes

);

Parameters
accessorHandle - [in] Object accessor handle. For the SaImmAccessorHandleT type 
definition, see Section 4.2.1 on page 17.

objectName - [in] Pointer to the name of the object being accessed. For the 
SaNameT type definition, see the SA Forum Overview document.

attributeNames - [in] NULL terminated array of attribute names for which values must 
be returned. The SaImmAttrNameT type is defined in Section 4.2.2 on page 17.

attributes - [out] Pointer to a NULL terminated array of pointers to data structures con-
taining the name and values of the attributes being accessed. The 
SaImmAttrValuesT type is defined in Section 4.2.8 on page 21.

Description

This function uses an object accessor to obtain the values assigned to some 
attributes of an object. If attributeNames is set to NULL, the values of all attributes of 
the object are returned.

If one of the requested attributes has no value or is a non-persistent runtime attribute, 
and there is no registered Object Implementer for the object, only the attribute name 
is returned (attrValuesNumber is set to 0 and attrValues is set to NULL in the 
SaImmAttrValuesT data structure specified by the attributes parameter).
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.6.2 45



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 The memory used to return the object attribute names and values is allocated by the 
library and will be deallocated at the next invocation of saImmOmAccessorGet() or 
saImmOmAccessorFinalize().

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle accessorHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_NOT_EXIST - objectName is not the name of an existing object, or 
one of the names specified by attributeNames does not exist for the object desig-
nated by objectName.

See Also

saImmOmAccessorInitialize()
46 SAI-AIS-IMM-A.01.01 Section 4.6.2 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
4.6.3 saImmOmAccessorFinalize()

Prototype

SaAisErrorT saImmOmAccessorFinalize(

SaImmAccessorHandleT accessorHandle

);

Parameters
accessorHandle - [in] Object accessor handle. For the SaImmAccessorHandleT type 
definition, see Section 4.2.1 on page 17.

Description

This function finalizes the object accessor and deallocates all memory previously 
allocated for this object accessor. In particular, the memory used to return the object 
attribute names and values during the previous invocation of 
saImmOmAccessorGet() is freed.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle accessorHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saImmOmAccessorInitialize()

4.7 Object Administration Ownership
Each object of the IMM Service may have at any time one and only one administra-
tive owner, which has the ability to modify the object or invoke administrative opera-
tions on the object. The administrative owner is usually distinct from the Object 
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.6.3 47



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 Implementer. Establishing the administrative ownership of an object, or a set of 
objects, guarantees that a process unrelated with this administrative owner will not 
modify the objects concurrently.

As management operations may be performed by a set of cooperating processes, an 
administrative owner is identified by its name and several processes may perform 
sequentially or concurrently administrative operations under the same administrative 
owner name (by initializing several administrative owner handles with the same 
name).

A process acting under that administrative owner name will typically release the 
administrative ownership on the objects. Note that this process need not necessarily 
be any of the one or more processes that set the administrative owner name of the 
objects. For recovery purposes, a process with appropriate privileges can also 
release the administrative ownership of a set of objects without acting under the 
name of their current administrative owner by invoking the 
saImmOmAdminOwnerClear() function.

Management applications are responsible for releasing the administrative ownership 
on objects when their management activities are completed.

4.7.1 saImmOmAdminOwnerInitialize()

Prototype

SaAisErrorT saImmOmAdminOwnerInitialize(

SaImmHandleT immHandle,

const SaImmAdminOwnerNameT adminOwnerName,

SaBoolT releaseOwnershipOnFinalize,

SaImmAdminOwnerHandleT *ownerHandle

);

Parameters
immHandle - [in] The handle, obtained through the saImmOmInitialize() function, des-
ignating this particular initialization of the Information Model Management Service. 
For the SaImmHandleT type definition, see Section 4.2.1 on page 17.

adminOwnerName - [in] Name of the administrative owner. The 
SaImmAdminOwnerNameT type is defined in Section 4.2.2 on page 17.

releaseOwnershipOnFinalize - [in] This parameter specifies how to release adminis-
trative ownerships that were acquired with the newly initialized handle ownerHandle 
48 SAI-AIS-IMM-A.01.01 Section 4.7.1 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
when this handle is finalized. For the SaBoolT type definition, see the SA Forum 
Overview document.

ownerHandle - [out] Pointer to the handle for the administrative owner. For the 
SaImmAdminOwnerHandleT type definition, see Section 4.2.1 on page 17.

Description

This function initializes a handle for an administrative owner whose name is pointed 
to by adminOwnerName. All objects owned by a particular administrative owner have 
the attribute whose name is defined by the constant 
SA_IMM_ATTR_ADMIN_OWNER_NAME set to the administrative owner name. For 
objects without an administrative owner, that attribute does not exist.

If releaseOwnershipOnFinalize is set to SA_TRUE, the IMM Service automatically 
releases all administrative ownerships that were acquired with the newly initialized 
handle ownerHandle when this handle is finalized.
If releaseOwnershipOnFinalize is set to SA_FALSE, the IMM Service does not auto-
matically release the ownership when the handle is finalized. In this case, if a man-
agement application fails while holding the administrative ownership on some 
objects, it is the responsibility of the recovery procedure of the failed application to 
release it.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.7.1 49



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 See Also

saImmOmInitialize(), saImmOmAdminOwnerSet(), saImmOmAdminOwnerFinalize()

4.7.2 saImmOmAdminOwnerSet()

Prototype

SaAisErrorT saImmOmAdminOwnerSet(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT **objectNames,

SaImmScopeT scope

);

Parameters
ownerHandle - [in] Administrative owner handle. For the SaImmAdminOwnerHandleT 
type definition, see Section 4.2.1 on page 17.

objectNames - [in] NULL terminated array of pointers to object names. For the 
SaNameT type definition, see the SA Forum Overview document.

scope - [in] Scope of the operation. The SaImmScopeT type is defined in Section 
4.2.11 on page 22.

Description

This function sets the administrative owner, designated by ownerHandle, as the 
owner of the set of objects designated by the scope and objectNames parameters. 
This function can be used to acquire the administrative ownership of either configura-
tion or runtime objects.

The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation are the objects designated 
by objectNames.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation are the objects des-
ignated by objectNames and their direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation are the objects desig-
nated by objectNames and the entire subtrees rooted at these objects.

The operation fails if one of the targeted objects has already an administrative owner 
whose name is different from the name used to initialize ownerHandle. If the opera-
tion fails, the administrative owner of the targeted objects is not changed.
50 SAI-AIS-IMM-A.01.01 Section 4.7.2 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
If the operation succeeds, the SA_IMM_ATTR_ADMIN_OWNER_NAME attribute of 
all targeted objects is set to the administrative owner name, specified when 
ownerHandle was initialized.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_NOT_EXIST - At least one of the objects designated by objectNames 
is not the name of an existing object.

SA_AIS_ERR_EXIST - At least one of the objects targeted by this operation already 
has an administrative owner having a name different from the name used to initialize 
ownerHandle.

See Also

saImmOmAdminOwnerInitialize(), saImmOmAdminOwnerRelease(), 
saImmOmAdminOwnerClear()
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.7.2 51



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 4.7.3 saImmOmAdminOwnerRelease()

Prototype

SaAisErrorT saImmOmAdminOwnerRelease(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT **objectNames,

SaImmScopeT scope

);

Parameters
ownerHandle - [in] Administrative owner handle. For the SaImmAdminOwnerHandleT 
type definition, see Section 4.2.1 on page 17.

objectNames - [in] NULL terminated array of pointers to object names. For the 
SaNameT type definition, see the SA Forum Overview document.

scope - [in] Scope of the operation. The SaImmScopeT type is defined in Section 
4.2.11 on page 22.

Description

This function releases the administrative owner of the set of objects designated by 
the scope and objectNames parameters. 

The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation are the objects designated 
by objectNames.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation are the objects des-
ignated by objectNames and their direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation are the objects desig-
nated by objectNames and the entire subtrees rooted at these objects.

If the operation succeeds, the SA_IMM_ATTR_ADMIN_OWNER_NAME attribute of 
all targeted objects is removed from the objects.

The operation fails if one of the targeted objects is not already owned by the adminis-
trative owner with the name used to initialize ownerHandle. The operation also fails if 
an administrative operation is currently in progress on one of the targeted objects, or 
if a change request for one of the targeted objects is included in a CCB that has not 
been applied or finalized.
If the operation fails, the administrative owner of the targeted objects is not changed.
52 SAI-AIS-IMM-A.01.01 Section 4.7.3 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_NOT_EXIST - At least one of the objects designated by objectNames 
is not the name of an existing object, or at least one of the objects targeted by this 
operation is not owned by the administrative owner whose name was used to initial-
ize ownerHandle.

SA_AIS_ERR_BUSY - An administrative operation is currently in progress on one of 
the targeted objects, or a change request for one of the targeted objects is included in 
a CCB that has not been applied or finalized.

See Also

saImmOmAdminOwnerInitialize(), saImmOmAdminOwnerSet()
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.7.3 53



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 4.7.4 saImmOmAdminOwnerFinalize()

Prototype

SaAisErrorT saImmOmAdminOwnerFinalize(

SaImmAdminOwnerHandleT ownerHandle

);

Parameters
ownerHandle - [in] Administrative owner handle. For the SaImmAdminOwnerHandleT 
type definition, see Section 4.2.1 on page 17.

Description

This function releases ownerHandle. If ownerHandle has been initialized with the 
releaseOwnershipOnFinalize option set to SA_FALSE, this operation does not 
release the administrative ownership that has been set on objects by using this han-
dle.

If ownerHandle has been initialized with the releaseOwnershipOnFinalize option set 
to SA_TRUE, this operation also releases the administrative ownership that has been 
set on objects by using this handle.

This function implicitly invokes saImmOmCcbFinalize() on all CCB handles initialized 
with ownerHandle and not yet finalized.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saImmOmAdminOwnerInitialize(), saImmOmCcbInitialize()
54 SAI-AIS-IMM-A.01.01 Section 4.7.4 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
4.7.5 saImmOmAdminOwnerClear()

Prototype

SaAisErrorT saImmOmAdminOwnerClear(

SaImmHandleT immHandle,

const SaNameT **objectNames,

SaImmScopeT scope

);

Parameters
immHandle - [in] The handle, obtained through the saImmOmInitialize() function, des-
ignating this particular initialization of the Information Model Management Service. 
For the SaImmHandleT type definition, see Section 4.2.1 on page 17.

objectNames - [in] NULL terminated array of pointers to object names. For the 
SaNameT type definition, see the SA Forum Overview document.

scope - [in] Scope of the operation. The SaImmScopeT type is defined in Section 
4.2.11 on page 22.

Description

This function clears the administrative owner of the set of objects designated by the 
scope and objectNames parameters.
The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation are the objects designated 
by objectNames.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation are the objects des-
ignated by objectNames and their direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation are the objects desig-
nated by objectNames and the entire subtrees rooted at these objects.

The operation succeeds even if some targeted objects do not have an administrative 
owner, or if the set of targeted objects have different administrative owners.

If the operation succeeds, the SA_IMM_ATTR_ADMIN_OWNER_NAME attribute of 
all targeted objects is removed from the objects.

The operation fails if an administrative operation is currently in progress on one of the 
targeted objects, or if a change request for one of the targeted objects is included in a 
CCB that has not been applied or finalized.
If the operation fails, the administrative owner of the targeted objects is not changed.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.7.5 55



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 This function is intended to be used only when recovering from situations where 
some management applications took ownership of some objects and did not release 
them.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NOT_EXIST - At least one of the objects designated by objectNames 
is not the name of an existing object.

SA_AIS_ERR_BUSY - An administrative operation is currently in progress on one of 
the targeted objects, or a change request for one of the targeted objects is included in 
a CCB that has not been applied or finalized.

See Also

saImmOmAdminOwnerInitialize(), saImmOmAdminOwnerSet()

4.8 Configuration Changes
All changes of IMM Service configuration objects are performed in the context of con-
figuration change bundles (CCB). Once a CCB has been initialized, change requests 
can be added to a CCB. A change request can be a creation, deletion, or modifica-
tion. Later on, when the CCB is applied, all pending change requests included in the 
CCB are applied with all-or-nothing semantics (either all change requests are applied 
or none are applied). The change requests are applied in the order they have been 
added to the CCB.

A CCB is associated with a single administrative owner, and all objects modified 
through change requests included in one CCB must have the same administrative 
owner as the CCB.
56 SAI-AIS-IMM-A.01.01 Section 4.8 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
The IMM Service does not prevent applications from reading (through 
saImmOmSearchNext() or saImmOmAccessorGet()) the attribute values of the 
objects modified by a CCB while a CCB is being applied. This means, for example, 
that a search operation may return for some matching objects the values that their 
attributes had before the CCB was applied and for other objects the values that their 
attributes had after the CCB was applied. However, the IMM Service must guarantee 
that all CCB changes are applied atomically for each particular object. The attribute 
values returned by saImmOmSearchNext() or saImmOmAccessorGet() for a particu-
lar object must all be the values before the CCB was applied or all be the values after 
the CCB was applied (in other words, mixing old and new values is not allowed).

The IMM Service enforces the following limitation regarding concurrent management 
tasks for a particular object: At a given time, an object can be the target of either a 
single CCB or a single administrative operation.

4.8.1 saImmOmCcbInitialize()

Prototype

SaAisErrorT saImmOmCcbInitialize(

SaImmAdminOwnerHandleT ownerHandle,

SaImmCcbFlagsT ccbFlags,

SaImmCcbHandleT *ccbHandle

);

Parameters
ownerHandle - [in] Administrative owner handle. For the SaImmAdminOwnerHandleT 
type definition, see Section 4.2.1 on page 17.

ccbFlags - [in] CCB flags. For the SaImmCcbFlagsT type definition, see Section 
4.2.14 on page 24.

ccbHandle - [out] Pointer to the CCB handle. For the SaImmCcbHandleT type defini-
tion, see Section 4.2.1 on page 17.

Description

This function initializes a new CCB and returns a handle for it. The CCB is initialized 
as empty (it contains no change requests).

Return Values

SA_AIS_OK - The function completed successfully.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.8.1 57



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

See Also

saImmOmAdminOwnerInitialize()

4.8.2 saImmOmCcbObjectCreate()

Prototype

SaAisErrorT saImmOmCcbObjectCreate(

SaImmCcbHandleT ccbHandle,

const SaImmClassNameT className,

const SaNameT *parentName,

const SaImmAttrValuesT **attrValues

);

Parameters
ccbHandle - [in] CCB handle. For the SaImmCcbHandleT type definition, see Section 
4.2.1 on page 17.

className - [in] Object name class. The SaImmClassNameT type is defined in Sec-
tion 4.2.2 on page 17.

parentName - [in] Pointer to the name of the new object’s parent. For the SaNameT 
type definition, see the SA Forum Overview document.
58 SAI-AIS-IMM-A.01.01 Section 4.8.2 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
attrValues - [in] NULL terminated array of pointers to attribute descriptors. The 
SaImmAttrValuesT type is defined in Section 4.2.8 on page 21.

Description

This function adds to the CCB, identified by its handle ccbHandle, a request to create 
a new IMM Service object. Once this new object is successfully created, it will be 
automatically owned by the administrative owner of the CCB. The new object is cre-
ated as a child of the object designated by the parentName DN. If parentName is set 
to NULL, the new object is created as a top level object.

This function can only be used to create configuration objects. The attributes speci-
fied by the attrValues array must match the object class definition. Only configuration 
attributes can be specified by the attrValues array.

Attributes named SA_IMM_ATTR_CLASS_NAME, 
SA_IMM_ATTR_ADMIN_OWNER_NAME, and 
SA_IMM_ATTR_IMPLEMENTER_NAME cannot be specified by the attrValues 
descriptors as these attributes are set automatically by the IMM Service.

The creation will only be performed when the CCB is applied. However, the IMM Ser-
vice invokes any existing Object Implementer synchronously to validate the creation 
request and may return an error if this creation is not a valid operation.

The IMM Service adds an attribute of name SA_IMM_ATTR_CLASS_NAME to the 
new object; the value of this attribute contains the name of the object class as speci-
fied by the objectClass parameter.

If the parent object is not administratively owned by the administrative owner of the 
CCB, this function fails and returns SA_AIS_ERR_BAD_OPERATION.

If this function returns an error, the creation request has not been added to the CCB.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.8.2 59



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular:

• the className parameter specifies a runtime object class,
• there is no valid RDN attribute specified for the new object, 
• all of the configuration attributes required at object creation are not provided by 

the caller.

    - the attrValues parameter includes:

• runtime attributes,
• attributes not defined for the specified class,
• attributes with values that do not match the defined value type for the attribute,
• multiple values for a single-valued attribute.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_BAD_OPERATION - The parent object is not administratively owned 
by the administrative owner of the CCB or the creation of the object has been 
rejected by its Object Implementer.

SA_AIS_ERR_NOT_EXIST - This value is returned due to one or more of the follow-
ing reasons:

• The parentName parameter is not the name of an existing object.
• The className parameter is not the name of an existing object class.
• One or more of the attributes specified by attrValues are not valid attribute 

names for className.
• There is no registered Object Implementer for the object to be created, and the 

CCB has been initialized with the SA_IMM_CCB_REGISTERED_OI flag set.

SA_AIS_ERR_EXIST - An object with the same name already exists.

SA_AIS_FAILED_OPERATION - The operation failed because the CCB has been 
aborted due to the registration of an Object Implementer or a problem with one of the 
registered Object Implementers. The CCB is now empty.

See Also

saImmOmCcbInitialize(), saImmOmCcbApply()
60 SAI-AIS-IMM-A.01.01 Section 4.8.2 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
4.8.3 saImmOmCcbObjectDelete()

Prototype

SaAisErrorT saImmOmCcbObjectDelete(

SaImmCcbHandleT ccbHandle,

const SaNameT *objectName

);

Parameters
ccbHandle - [in] CCB handle. For the SaImmCcbHandleT type definition, see Section 
4.2.1 on page 17.

objectName - [in] Pointer to the object name. For the SaNameT type definition, see 
the SA Forum Overview document.

Description

This function adds to the CCB, identified by its handle ccbHandle, a request to delete 
the configuration object identified by the objectName parameter and the entire sub-
tree of configuration objects rooted at that object.

This operation fails if one of the targeted objects is not a configuration object adminis-
tratively owned by the administrative owner of the CCB.

The deletion will only be performed when the CCB is applied. However, the IMM Ser-
vice invokes any existing Object Implementer synchronously to validate the deletion 
request and may return an error if the deletion is not a valid operation.

If this function returns an error, the deletion request has not been added to the CCB.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.8.3 61



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_BAD_OPERATION - At least one of the targeted objects is not a con-
figuration object owned by the administrative owner of the CCB, or its Object Imple-
menter has rejected its deletion.

SA_AIS_ERR_NOT_EXIST - This value is returned due to one or both of the follow-
ing reasons:

• The objectName parameter is not the name of an existing object.
• There is no registered Object Implementer for at least one of the objects targeted 

by this operation, and the CCB has been initialized with the 
SA_IMM_CCB_REGISTERED_OI flag set.

SA_AIS_ERR_EXIST - At least one of the targeted objects has one child in the IMM 
Service hierarchy that is not targeted by this operation.

SA_AIS_ERR_BUSY - At least one of the targeted objects is already the target of an 
administrative operation or of a change request in another CCB.

SA_AIS_FAILED_OPERATION - The operation failed because the CCB has been 
aborted due to the registration of an Object Implementer or a problem with one of the 
registered Object Implementers. The CCB is now empty.

See Also

saImmOmCcbInitialize(), saImmOmCcbApply()
62 SAI-AIS-IMM-A.01.01 Section 4.8.3 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
4.8.4 saImmOmCcbObjectModify()

Prototype

SaAisErrorT saImmOmCcbObjectModify(

SaImmCcbHandleT ccbHandle,

const SaNameT *objectName,

const SaImmAttrModificationT **attrMods

);

Parameters
ccbHandle - [in] CCB handle. For the SaImmCcbHandleT type definition, see Section 
4.2.1 on page 17.

objectName - [in] Pointer to the name of the object to be modified. For the SaNameT 
type definition, see the SA Forum Overview document.

attrMods - [in] NULL terminated array of pointers to descriptors of the modifications to 
perform. The SaImmAttrModificationT type is defined in Section 4.2.10 on page 22.

Description

This function adds to the CCB, identified by its handle ccbHandle, a request to modify 
configuration attributes of an IMM Service object. Only writable configuration 
attributes can be modified (SA_IMM_ATTR_WRITABLE).

This operation fails if the targeted object is not administratively owned by the adminis-
trative owner of the CCB.

The modify request will only be performed when the CCB is applied. However, the 
IMM Service invokes any existing Object Implementer synchronously to validate the 
modify request and may return an error if the requested modifications are not 
allowed.

Attributes named SA_IMM_ATTR_CLASS_NAME, 
SA_IMM_ATTR_ADMIN_OWNER_NAME, and 
SA_IMM_ATTR_IMPLEMENTER_NAME cannot be modified.

If this function returns an error, the modify request has not been added to the CCB.

Return Values

SA_AIS_OK - The function completed successfully.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.8.4 63



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, the 
attrMods parameter includes:

• runtime attributes,
• attributes not defined for the specified class,
• attributes with values that do not match the defined value type for the attribute, 
• a new value for the RDN attribute,
• attributes that cannot be modified,
• multiple values or additional values for a single-valued attribute.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_BAD_OPERATION - The modified object is not a configuration object 
owned by the administrative owner of the CCB, or its Object Implementer has 
rejected the modification.

SA_AIS_ERR_NOT_EXIST - This value is returned due to one or more of the follow-
ing reasons:

• The objectName parameter is not the name of an existing object.
• One or more attribute names specified in the attrMods parameter are not valid for 

the object class.
• There is no registered Object Implementer for the object specified by the 

objectName parameter, and the CCB has been initialized with the 
SA_IMM_CCB_REGISTERED_OI flag set.

SA_AIS_ERR_NOT_EXIST - The objectName parameter is not the name of an exist-
ing object, or one or more attribute names specified in the attrMods parameter are not 
valid for the object class.
64 SAI-AIS-IMM-A.01.01 Section 4.8.4 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_BUSY - The object designated by objectName is already the target of 
an administrative operation or of a change request in another CCB.

SA_AIS_FAILED_OPERATION - The operation failed because the CCB has been 
aborted due to the registration of an Object Implementer or a problem with one of the 
registered Object Implementers. The CCB is now empty.

See Also

saImmOmCcbInitialize(), saImmOmCcbApply()

4.8.5 saImmOmCcbApply()

Prototype

SaAisErrorT saImmOmCcbApply(

SaImmCcbHandleT ccbHandle

);

Parameters
ccbHandle - [in] CCB handle. For the SaImmCcbHandleT type definition, see Section 
4.2.1 on page 17.

Description

This function applies all requests included in the configuration change bundle identi-
fied by its handle ccbHandle. The requests are applied with all-or-nothing semantics, 
that is, either all requests are applied or none are applied. All requests are applied in 
the order in which they have been added to the CCB.

Any existing Object Implementer involved by the change requests contained in the 
CCB is invoked to apply the changes. The Object Implementers are responsible for 
checking that the set of requested changes is valid.

This operation fails if the administrative ownership of one of the objects targeted by 
this CCB has changed since the change was added to the CCB, and the new admin-
istrative owner of the object is not anymore the administrative owner of the CCB.

When this call returns with success or failure, all requests included in the CCB when 
the call was issued have been removed. The CCB is empty and can be populated 
again with change requests belonging to the same administrative owner.

Return Values

SA_AIS_OK - The function completed successfully.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.8.5 65



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_BAD_OPERATION - The changes requested do not constitute a valid 
set of changes.

SA_AIS_FAILED_OPERATION - The operation failed because the CCB has been 
aborted due to the registration of an Object Implementer or a problem with one of the 
registered Object Implementers. The CCB is now empty.

See Also

saImmOmCcbInitialize(), saImmOmCcbObjectCreate(), 
saImmOmCcbObjectDelete(), saImmOmCcbObjectModify()

4.8.6 saImmOmCcbFinalize()

Prototype

SaAisErrorT saImmOmCcbFinalize(

SaImmCcbHandleT ccbHandle

);

Parameters
ccbHandle - [in] CCB handle. For the SaImmCcbHandleT type definition, see Section 
4.2.1 on page 17.
66 SAI-AIS-IMM-A.01.01 Section 4.8.6 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
Description

This function finalizes the CCB identified by ccbHandle.

All change requests contained in the CCB are removed without being applied.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ccbHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saImmOmCcbInitialize()
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.8.6 67



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 4.9 Administrative Operations Invocation 

4.9.1 saImmOmAdminOperationInvoke(), saImmOmAdminOperationInvokeAsync()

Prototype

SaAisErrorT saImmOmAdminOperationInvoke(

SaImmAdminOwnerHandleT ownerHandle,

const SaNameT *objectName,

SaImmAdminOperationIdT operationId,

 const SaImmAdminOperationParamsT **params,

SaAisErrorT *operationReturnValue,

SaTimeT timeout

);

Parameters
ownerHandle - [in] Administrative owner handle. For the SaImmAdminOwnerHandleT 
type definition, see Section 4.2.1 on page 17.

objectName - [in] Pointer to the object name. For the SaNameT type definition, see 
the SA Forum Overview document.

operationId - [in] Identifier of the administrative operation. The 
SaImmAdminOperationIdT type is defined in Section 4.2.15 on page 25.

params - [in] NULL terminated array of pointers to parameter descriptors. The 
SaImmAdminOperationParamsT type is defined in Section 4.2.16 on page 25.

operationReturnValue - [out] Value returned by the Object Implementer for the 
invoked operation. This value is specific to the administrative operation being per-
formed. For more details about this value, refer to the Object Implementer administra-
tive operation description.

timeout - [in] The saImmOmAdminOperationInvoke() invocation is considered to have 
failed if it does not complete by the time specified. For the SaTimeT type definition, 
see the SA Forum Overview document.
68 SAI-AIS-IMM-A.01.01 Section 4.9 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
SaAisErrorT saImmOmAdminOperationInvokeAsync(

SaImmAdminOwnerHandleT ownerHandle,

SaInvocationT invocation,

const SaNameT *objectName,

SaImmAdminOperationIdT operationId,

 const SaImmAdminOperationParamsT **params

);

Parameters
ownerHandle - [in] Administrative owner handle. For the SaImmAdminOwnerHandleT 
type definition, see Section 4.2.1 on page 17.

invocation - [in] Used to match this invocation of 
saImmOmAdminOperationInvokeAsync() with the corresponding invocation of 
SaImmOmAdminOperationInvokeCallbackT callback. For the SaInvocationT type 
definition, see the SA Forum Overview document.

objectName - [in] Pointer to the object name. For the SaNameT type definition, see 
the SA Forum Overview document.

operationId - [in] Identifier of the administrative operation. The 
SaImmAdminOperationIdT type is defined in Section 4.2.15 on page 25.

params - [in] NULL terminated array of pointers to parameter descriptors. The 
SaImmAdminOperationParamsT type is defined in Section 4.2.16 on page 25.

Description

Using the IMM Service as an intermediary, these two functions request the imple-
menter of the object, designated by its name objectName, to perform an administra-
tive operation characterized by operationId on that object. Administrative operations 
can be performed on configuration or runtime objects.

Each descriptor of the params array represents an input parameter of the administra-
tive operation to execute.

The function saImmOmAdminOperationInvoke() is the synchronous variant and 
returns only when the Object Implementer has successfully completed the execution 
of the administrative operation, or when an error has been detected by the IMM Ser-
vice or the Object Implementer.

The function saImmOmAdminOperationInvokeAsync() is the asynchronous variant 
and returns as soon as the IMM Service has registered the request to be transmitted 
to the Object Implementer. If the IMM Service detects an error while registering the 
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.9.1 69



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 request, an error is returned immediately, and no further invocation of the 
SaImmOmAdminOperationInvokeCallbackT callback must be expected for this invo-
cation of saImmOmAdminOperationInvokeAsync(). If no error is detected by the IMM 
Service while registering the request, the invocation of 
saImmOmAdminOperationInvokeAsync() completes successfully, and a later invoca-
tion of the SaImmOmAdminOperationInvokeCallbackT callback will occur to indicate 
the success or failure of the administrative operation on the target object.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the 
timeout, specified by the timeout parameter, occurred before the call could complete. 
It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The initialization with saImmOmInitialize() of the IMM Service 
handle used itself to initialize ownerHandle was incomplete, since the 
SaImmOmAdminOperationInvokeCallbackT callback function was missing. This 
return value only applies to the saImmOmAdminOperationInvokeAsync() function. 

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or its library is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_BAD_OPERATION - The object designated by objectName is not 
owned by the administrative owner associated with ownerHandle.

SA_AIS_ERR_NOT_EXIST - The objectName parameter is not the name of an exist-
ing object, or there is no registered Object Implementer for this object.

SA_AIS_ERR_BUSY - The object designated by objectName is already the target of 
an administrative operation or of a change request in a CCB.

SA_AIS_FAILED_OPERATION - The operation failed due to a problem with the 
Object Implementer.
70 SAI-AIS-IMM-A.01.01 Section 4.9.1 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
See Also

saImmOmAdminOwnerInitialize()

4.9.2 SaImmOmAdminOperationInvokeCallbackT

Prototype

typedef void (*SaImmOmAdminOperationInvokeCallbackT) (

SaInvocationT invocation,

SaAisErrorT operationReturnValue,

SaAisErrorT error

);

Parameters
invocation - [in] Used to match this callback invocation to the corresponding invoca-
tion of saImmOmAdminOperationInvokeAsync(). For the SaInvocationT type defini-
tion, see the SA Forum Overview document.

operationReturnValue - [in] Value returned by the Object Implementer for the opera-
tion invoked through the corresponding saImmOmAdminOperationInvokeAsync() 
function. This value is specific to the administrative operation being performed, and it 
is valid only if the error parameter is set to SA_AIS_OK. For more details about this 
value, refer to the Object Implementer administrative operation description. For the 
SaTimeT type definition, see the SA Forum Overview document.

error - [in] Indicates whether the IMM Service succeeded or not to invoke the Object 
Implementer. For the SaAisErrorT type definition, see the SA Forum Overview docu-
ment. 
The returned values are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such 

as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred 

before the call could complete. It is unspecified whether the call succeeded or 
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The 
process may retry later.

• SA_AIS_ERR_BAD_HANDLE - The handle ownerHandle in the corresponding 
invocation of the saImmOmAdminOperationInvokeAsync() function is invalid, 
since it is corrupted, uninitialized, or has already been finalized.
AIS Specification SAI-AIS-IMM-A.01.01 Section 4.9.2 71



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 • SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.
• SA_AIS_ERR_NO_MEMORY - Either the IMM Service library or the provider of 

the service is out of memory and cannot provide the service.
• SA_AIS_ERR_NO_RESOURCES -The system is out of required resources 

(other than memory).
• SA_AIS_ERR_NOT_EXIST - The objectName parameter is not the name of an 

existing object, or there is no registered Object Implementer for this object.
• SA_AIS_ERR_BUSY - The object designated by objectName in the correspond-

ing invocation of the saImmOmAdminOperationInvokeAsync() function was 
already the target of an administrative operation or of a change request in a 
CCB.

• SA_AIS_FAILED_OPERATION - The operation failed due to a problem with the 
Object Implementer.

Object Implementers may extend the preceding list of return values with return values 
specific to the administrative operation being performed. Refer to the Object Imple-
menter administrative operation description for more details.

Description

The IMM Service invokes this callback function when the operation requested by the 
invocation of saImmOmAdminOperationInvokeAsync() completes successfully, or an 
error is detected. This callback is invoked in the context of a thread issuing an 
saImmOmDispatch() call on the handle immHandle, which was used to initialize the 
ownerHandle specified in the saImmOmAdminOperationInvokeAsync() call.

Return Values

None.

See Also

saImmOmAdminOperationInvokeAsync(), saImmOmDispatch()
72 SAI-AIS-IMM-A.01.01 Section 4.9.2 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
5.0 IMM Service - Object Implementer API Specification

5.1 Include File and Library Name
The following statement containing declarations of data types and function prototypes 
must be included in the source of an application using the IMM Service Object Imple-
menter API:

#include <saImmOi.h>

To use the IMM Service Object Implementer API, an application must be bound with 
the following library:

libSaImmOi.so

5.2 Type Definitions

5.2.1 IMM Service Handle

The following handle is used by IMM Service Object Implementer API functions:

typedef SaUint64T SaImmOiHandleT;

5.2.2 SaImmOiImplementerNameT

SaImmOiImplementerNameT represents an Object Implementer name; it points to an 
UTF-8 encoded character string, terminated by the NULL character.

typedef SaStringT SaImmOiImplementerNameT;

5.2.3 SaImmOiCcbIdT

typedef SaUint64T SaImmOiCcbIdT;

This type is used through in the IMM Service Object Implementer APIs to identify a 
particular configuration change bundle (CCB).

5.2.4 SaImmOiCallbacksT

The SaImmOiCallbacksT structure defines the set of callbacks a process implement-
ing IMM Service objects can provide to the IMM Service at initialization time.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.0 73



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 typedef struct {

SaImmOiRtAttrUpdateCallbackT saImmOiRtAttrUpdateCallback;

SaImmOiCcbObjectCreateCallbackT saImmOiCcbObjectCreateCallback;

SaImmOiCcbObjectDeleteCallbackT saImmOiCcbObjectDeleteCallback;

SaImmOiCcbObjectModifyCallbackT saImmOiCcbObjectModifyCallback;

SaImmOiCcbCompletedCallbackT saImmOiCcbCompletedCallback;

SaImmOiCcbApplyCallbackT saImmOiCcbApplyCallback;

SaImmOiCcbAbortCallbackT saImmOiCcbAbortCallback;

SaImmOiAdminOperationCallbackT saImmOiAdminOperationCallback;

} SaImmOiCallbacksT;

5.3 Library Life Cycle

5.3.1 saImmOiInitialize()

Prototype

SaAisErrorT saImmOiInitialize(

SaImmOiHandleT *immOiHandle,

const SaImmOiCallbacksT *immOiCallbacks,

SaVersionT *version

);

Parameters
immOiHandle - [out] A pointer to the handle designating this particular initialization of 
the Information Model Management Service that is to be returned by the Information 
Model Management Service. This handle provides access to the Object Implementer 
APIs of the IMM Service. For the SaImmOiHandleT type definition, see Section 5.2.1 
on page 73.

immOiCallbacks - [in] A pointer to an SaImmOiCallbacksT structure, containing the 
callback functions of the process that the IMM Service may invoke. Only non-NULL 
callback functions in this structure will be registered. The SaImmOiCallbacksT type is 
defined in Section 5.2.4 on page 73.

version - [in/out] As an input parameter, version is a pointer to the required Informa-
tion Model Management Service version. In this case, minorVersion is ignored and 
should be set to 0x00.
74 SAI-AIS-IMM-A.01.01 Section 5.3 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
As an output parameter, the version actually supported by the Information Model 
Management Service is delivered. For the SaVersionT type definition, see the SA 
Forum Overview document.

Description

This function initializes the Object Implementer functions of the Information Model 
Management Service for the invoking process and registers the various callback 
functions. This function must be invoked prior to the invocation of any other Informa-
tion Model Management Service Object Implementer functionality. The handle 
immOiHandle is returned as the reference to this association between the process 
and the Information Model Management Service. The process uses this handle in 
subsequent communication with the Information Model Management Service.

The returned handle immOiHandle is not associated with any implementer name. 
The association of the handle with an implementer name is performed by the invoca-
tion of the saImmOiImplementerSet() function.

If the invoking process exits after successfully returning from the saImmOiInitialize() 
function and before invoking saImmOiFinalize() to finalize the handle immOiHandle 
(see Section 5.3.4 on page 79), the IMM Service automatically finalizes this handle 
when the death of the process is detected.

If the implementation supports the required releaseCode, and a major version >= the 
required majorVersion, SA_AIS_OK is returned. In this case, the version parameter is 
set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation can 

support for the required releaseCode
• minorVersion = highest value of the minor version that this implementation can 

support for the required value of releaseCode and the returned value of 
majorVersion

If the above mentioned condition cannot be met, SA_AIS_ERR_VERSION is 
returned, and the version parameter is set to:
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.3.1 75



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required 
releaseCode)

releaseCode = the least value of the supported release codes that is 
higher than the required releaseCode

else 

releaseCode = the highest value of the supported release codes that is
less than the required releaseCode

} 

majorVersion = highest value of the major versions that this implementation can 
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can 
support for the returned values of releaseCode and majorVersion

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_VERSION - The version parameter is not compatible with the version 
of the Information Model Management Service implementation.
76 SAI-AIS-IMM-A.01.01 Section 5.3.1 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
See Also

saImmOiSelectionObjectGet(), saImmOiDispatch(), saImmOiFinalize(), 
saImmOiImplementerSet()

5.3.2 saImmOiSelectionObjectGet()

Prototype

SaAisErrorT saImmOiSelectionObjectGet(

SaImmOiHandleT immOiHandle,

SaSelectionObjectT *selectionObject

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

selectionObject - [out] A pointer to the operating system handle that the invoking pro-
cess can use to detect pending callbacks. For the SaSelectionObjectT type definition, 
see the SA Forum Overview document.

Description

This function returns the operating system handle, selectionObject, associated with 
the handle immOiHandle. The invoking process can use this handle to detect pending 
callbacks, instead of repeatedly invoking saImmOiDispatch() for this purpose.

In a POSIX environment, the operating system handle is a file descriptor that is used 
with the poll() or select() system calls to detect pending callbacks.

The selectionObject returned by saImmOiSelectionObjectGet() is valid until 
saImmOiFinalize() is invoked on the same handle immOiHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.3.2 77



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

See Also

saImmOiInitialize(), saImmOiDispatch(), saImmOiFinalize()

5.3.3 saImmOiDispatch()

Prototype

SaAisErrorT saImmOiDispatch(

SaImmOiHandleT immOiHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

dispatchFlags - [in] Flags that specify the callback execution behavior of the 
saImmOiDispatch() function, which have the values SA_DISPATCH_ONE, 
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING, as defined in the SA Forum 
Overview document. The SaDispatchFlagsT type is also defined in the SA Forum 
Overview document.

Description

This function invokes, in the context of the calling thread, pending callbacks for the 
handle immOiHandle in a way that is specified by the dispatchFlags parameter.

Return Values

SA_AIS_OK - The function completed successfully.
78 SAI-AIS-IMM-A.01.01 Section 5.3.3 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

See Also

saImmOiInitialize(), saImmOiSelectionObjectGet(), saImmOiFinalize()

5.3.4 saImmOiFinalize()

Prototype

SaAisErrorT saImmOiFinalize(

SaImmOiHandleT immOiHandle

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

Description

The saImmOiFinalize() function closes the association, represented by the 
immOiHandle parameter, between the invoking process and the Information Model 
Management Service. The process must have invoked saImmOiInitialize() before it 
invokes this function. A process must invoke this function once for each handle it 
acquired by invoking saImmOiInitialize().

If the saImmOiFinalize() function returns successfully, the saImmOiFinalize() function 
releases all resources acquired when saImmOiInitialize() was called.
Furthermore, saImmOiFinalize() cancels all pending callbacks related to asynchro-
nous operations performed with the handle immOiHandle. Note that because the call-
back invocation is asynchronous, it is still possible that some callback calls are 
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.3.4 79



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 processed after this call returns successfully. After saImmOiFinalize() is invoked, the 
selection object is no longer valid.

This function does not release the associations established between object classes 
or objects and the implementer name, which may still be associated with the handle 
immOiHandle.
The next time a process associates the same implementer name with an Object 
Implementer handle, that process automatically becomes the implementer of all 
objects having the same implementer name.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saImmOiInitialize()

5.4 Object Implementer
As a runtime object is created by its Object Implementer, the IMM Service can auto-
matically set the name of the implementer of a runtime object when the object is cre-
ated.

On the other hand, configuration objects are typically created by management appli-
cations, which are not the Object Implementers. Configuration Object Implementers 
must explicitly indicate to the IMM Service which configuration objects they imple-
ment. This can be done for all objects of a given class or by targeting a particular set 
of objects.

The implementer of an object is identified by an implementer name. Once set, the 
implementer name remains associated with the object until explicitly released. This 
applies even if the process, which was registered as the Object Implementer, clears 
the implementer name associated with its Object Implementer handle. This enables 
80 SAI-AIS-IMM-A.01.01 Section 5.4 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
faster recovery of Object Implementers failures as the new Object Implementer does 
not have to explicitly re-register all objects it implements. Simply registering itself with 
the same implementer name allows the IMM Service to associate all objects with the 
same implementer name with that process.

5.4.1 saImmOiImplementerSet()

Prototype

SaAisErrorT saImmOiImplementerSet(

SaImmOiHandleT immOiHandle,

const SaImmOiImplementerNameT implementerName

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

ImplementerName - [in] Name of the Object Implementer. The 
SaImmOiImplementerNameT type is defined in Section 5.2.2 on page 73.

Description

This function sets the implementer name specified in the implementerName parame-
ter for the handle immOiHandle. In order to be a valid parameter to all Object Imple-
menter APIs except for saImmOiSelectionObjectGet(), saImmOiDispatch(), 
saImmOiImplementerSet() and saImmOiFinalize(), an Object Implementer handle 
must be successfully associated with an implementer name.

This function also registers the invoking process as an Object Implementer whose 
name is specified in the ImplementerName parameter. At any given time, only a sin-
gle process in the entire cluster can be registered under a particular Object Imple-
menter name.

The invoking process becomes the implementer of all existing IMM Service objects 
having an implementer name identical to ImplementerName.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.4.1 81



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

SA_AIS_ERR_EXIST - An Object Implementer with the same name is already regis-
tered with the IMM Service.

See Also

saImmOiInitialize(), saImmOiImplementerClear()

5.4.2 saImmOiImplementerClear()

Prototype

SaAisErrorT saImmOiImplementerClear(

SaImmOiHandleT immOiHandle

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

Description

This function clears the implementer name associated with the immOiHandle handle 
and unregisters the invoking process as an Object Implementer for the name previ-
ously associated with immOiHandle.

With no associated implementer name, immOiHandle is only a valid parameter for the 
following APIs: saImmOiSelectionObjectGet(), saImmOiDispatch(), 
saImmOiImplementerSet() and saImmOiFinalize().

IMM object classes and objects, which have an implementer name equal to the name 
previously associated with immOiHandle keep the same implementer name but stay 
without any registered Object Implementer until a process invokes 
saImmOiImplementerSet() again with the same implementer name.
82 SAI-AIS-IMM-A.01.01 Section 5.4.2 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, or has already been finalized.

See Also

saImmOiInitialize(), saImmOiImplementerSet()

5.4.3 saImmOiClassImplementerSet()

Prototype

SaAisErrorT saImmOiClassImplementerSet(

SaImmOiHandleT immOiHandle,

const SaImmClassNameT className

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

className - [in] Object class name. The SaImmClassNameT type is defined in Sec-
tion 4.2.2 on page 17.

Description

This function informs the IMM Service that all objects, which are instances of the 
class designated by its name, className, are implemented by the Object Imple-
menter whose name has been associated with the handle immOiHandle.

The current process becomes the current implementer of all objects of the class des-
ignated by its name, className, unless the object class has already an Object Imple-
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.4.3 83



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 menter whose name is different from the implementer name provided when 
immOiHandle was initialized.

The IMM Service adds an attribute of name SA_IMM_ATTR_IMPLEMENTER_NAME 
to all objects of that class (existing objects as well as objects created in the future) 
with a value equal to the implementer name associated with the handle 
immOiHandle. This is performed for each existing instance of className and also for 
new instances of className when created in the future.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_BAD_OPERATION -The className parameter specifies a runtime 
object class.

SA_AIS_ERR_NOT_EXIST - The className parameter is not the name of an exist-
ing class.

SA_AIS_ERR_EXIST - The className parameter has already an Object Imple-
menter whose name is different from the implementer name associated with the han-
dle immOiHandle.

See Also

saImmOiInitialize()
84 SAI-AIS-IMM-A.01.01 Section 5.4.3 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
5.4.4 saImmOiClassImplementerRelease()

Prototype

SaAisErrorT saImmOiClassImplementerRelease(

SaImmOiHandleT immOiHandle,

const SaImmClassNameT className

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

className - [in] Object class name. The SaImmClassNameT type is defined in Sec-
tion 4.2.2 on page 17.

Description

This function informs the IMM Service that the implementer, whose name is associ-
ated with the handle immOiHandle, must not be considered anymore as the imple-
menter of the objects, which are instances of the class designated by its name, 
className.

If the operation succeeds, the IMM Service removes the attribute of name 
SA_IMM_ATTR_IMPLEMENTER_NAME as well as all runtime cached attributes 
from all objects of that class.

This operation fails if the invoking process is not the current implementer of the class 
designated by its name, className, or if one or more objects affected by the opera-
tion are currently taking part in an in-progress CCB and/or administrative operations.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.4.4 85



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_BAD_OPERATION -The className parameter specifies a runtime 
object class.

SA_AIS_ERR_NOT_EXIST - The className parameter is not the name of an exist-
ing class, or the implementer of object instances from className is different from the 
implementer name associated with the handle immOiHandle.

SA_AIS_ERR_BUSY - One or more objects affected by this operation are taking part 
in an in-progress CCB and/or an administrative operation.

See Also

saImmOiInitialize(), saImmOiClassImplementerSet()

5.4.5 saImmOiObjectImplementerSet()

Prototype

SaAisErrorT saImmOiObjectImplementerSet(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName,

SaImmScopeT scope

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

objectName - [in] Pointer to the object name. For the SaNameT type definition, see 
the SA Forum Overview document.

scope - [in] Scope of the operation. The SaImmScopeT type is defined in Section 
4.2.11 on page 22.
86 SAI-AIS-IMM-A.01.01 Section 5.4.5 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
Description

This function informs the IMM Service that all objects, which are designated by the 
scope and objectName parameters, are implemented by the Object Implementer 
whose name has been associated with the handle immOiHandle.

The current process becomes the current implementer of all targeted objects.

The targeted set of objects is determined as follows:

• If scope is SA_IMM_ONE, the scope of the operation is the object designated by 
objectName.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation is the object desig-
nated by objectName and its direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation is the object desig-
nated by objectName and the entire subtree rooted at that object.

The operation fails if one of the targeted objects has already an implementer whose 
name is different from the name associated with the handle immOiHandle. If the 
operation fails, the implementer of the targeted objects is not changed.

If the operation succeeds, the SA_IMM_ATTR_IMPLEMENTER_NAME attribute of 
all targeted objects is set to the implementer name associated with the handle 
immOiHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.4.5 87



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_BAD_OPERATION - One or more targeted objects are runtime 
objects.

SA_AIS_ERR_NOT_EXIST - The objectName parameter is not the name of an exist-
ing object.

SA_AIS_ERR_EXIST - At least one of the objects targeted by this operation already 
has an implementer having a name different from the name associated with the han-
dle immOiHandle.

See Also

saImmOiInitialize(), saImmOiObjectImplementerRelease()

5.4.6 saImmOiObjectImplementerRelease()

Prototype

SaAisErrorT saImmOiObjectImplementerRelease(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName,

SaImmScopeT scope

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

objectName - [in] Pointer to the object name. For the SaNameT type definition, see 
the SA Forum Overview document.

scope - [in] Scope of the operation. The SaImmScopeT type is defined in Section 
4.2.11 on page 22.

Description

This function informs the IMM Service that the implementer whose name is associ-
ated with the handle immOiHandle must not be considered anymore as the imple-
menter of the set of objects designated by the scope and objectName parameters.

The targeted set of objects is determined as follows:
88 SAI-AIS-IMM-A.01.01 Section 5.4.6 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
• If scope is SA_IMM_ONE, the scope of the operation is the object designated by 
objectName.

• If scope is SA_IMM_SUBLEVEL, the scope of the operation is the object desig-
nated by objectName and its direct children.

• If scope is SA_IMM_SUBTREE, the scope of the operation is the object desig-
nated by objectName and the entire subtree rooted at that object.

The operation fails if one of the targeted objects is not implemented by the current 
process, or if one or more objects affected by the operation are taking part in an in-
progress CCB and/or an administrative operation. If the operation fails, the imple-
menter of the targeted objects is not changed.

If the operation succeeds, the SA_IMM_ATTR_IMPLEMENTER_NAME attribute and 
all cached runtime attributes of all targeted objects is removed from the objects.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_BAD_OPERATION - One or more targeted objects are runtime 
objects.

SA_AIS_ERR_NOT_EXIST - The objectName parameter is not the name of an exist-
ing object or at least one of the objects targeted by this operation is not owned by the 
administrative owner whose name was used to initialize ownerHandle.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.4.6 89



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_BUSY - One or more objects affected by this operation are taking part 
in an in-progress CCB and/or an administrative operation.

See Also

saImmOiInitialize(), saImmOiClassImplementerSet()

5.5 Runtime Objects Management
The set of functions contained in this section are used by an Object Implementer to 
create or delete runtime objects and update the runtime attributes of either configura-
tion or runtime objects. They are similar to the functions provided in the IMM Service 
Object Management interface, the difference being that they are not part of a configu-
ration change bundle (CCB).

The values of non-persistent attributes are not accessible when there is no registered 
implementer for the objects they belong to.

Runtime attributes whose values are cached by the IMM Service must be updated by 
its Object Implementer whenever their value changes. The value of non-cached 
attributes must only be updated by the Object Implementer on request by the IMM 
Service through the invocation of the SaImmOiRtAttrUpdateCallbackT callback func-
tion.

Updating cached runtime attribute values in the IMM Service generates some load on 
the system each time the values change. Attributes whose values change frequently 
but are rarely read through the Object Management API should typically not be 
cached.
90 SAI-AIS-IMM-A.01.01 Section 5.5 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
5.5.1 saImmOiRtObjectCreate()

Prototype

SaAisErrorT saImmOiRtObjectCreate(

SaImmOiHandleT immOiHandle,

const SaImmClassNameT className,

const SaNameT *parentName,

const SaImmAttrValuesT **attrValues

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

className - [in] Object class name. The SaImmClassNameT type is defined in Sec-
tion 4.2.2 on page 17.

parentName - [in] Pointer to the name of the new object’s parent. For the SaNameT 
type definition, see the SA Forum Overview document.

attrValues- [in] NULL terminated array of pointers to attribute descriptors. The 
SaImmAttrValuesT type is defined in Section 4.2.8 on page 21.

Description

This function creates a new IMM Service runtime object.

The new object is created as a child of the object designated by the parentName DN. 
If parentName is set to NULL, the new object is created as a top level object.

The attributes specified by the attrValues array must match the object class definition. 
Only runtime attributes can be specified by the attrValues array. 

The attrValues array must contain one and only one attribute with the 
SA_IMM_ATTR_RDN flag set; this attribute is used as the Relative Distinguished 
Name of the new object.

Attributes named SA_IMM_ATTR_CLASS_NAME, 
SA_IMM_ATTR_ADMIN_OWNER_NAME and 
SA_IMM_ATTR_IMPLEMENTER_NAME cannot be specified by the attrValues 
descriptors as these attributes are set automatically by the IMM Service.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.5.1 91



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 The IMM Service adds an attribute of name SA_IMM_ATTR_CLASS_NAME to the 
new object, and the value of this attribute contains the name of the object class as 
specified by the className parameter.

The invoking process becomes the implementer of the new object, and the IMM Ser-
vice adds an attribute of name SA_IMM_ATTR_IMPLEMENTER_NAME to the new 
object with a value equal to the implementer name associated with the handle 
immOiHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular:

• the className parameter specifies a configuration object class,
• there is no valid RDN attribute specified for the new object, 
• some cached attributes do not have values,
• the attrValues parameter includes:

• attributes not defined for the specified class,
• attributes with values that do not match the defined value type for the attribute,
• multiple values for a single-valued attribute.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - The system is out of required resources (other 
than memory).

SA_AIS_ERR_NOT_EXIST - This value is returned due to one or more of the follow-
ing reasons:

• The parentName parameter is not the name of an existing object.
92 SAI-AIS-IMM-A.01.01 Section 5.5.1 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
• The className parameter is not the name of an existing object class.
• One or more of the attributes specified by attrValues are not valid attribute 

names for className.

SA_AIS_ERR_EXIST - An object with the same name already exists.

See Also

saImmOiInitialize()

5.5.2 saImmOiRtObjectDelete()

Prototype

SaAisErrorT saImmOiRtObjectDelete(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

objectName - [in] Pointer to the object name. For the SaNameT type definition, see 
the SA Forum Overview document.

Description

This function deletes the object identified by the objectName parameter and the 
entire subtree of objects rooted at that object.

This operation fails if one of the targeted objects is not a runtime object implemented 
by the invoking process.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.5.2 93



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_BAD_OPERATION - One or more of the targeted objects are configu-
ration objects.

SA_AIS_ERR_NOT_EXIST - The objectName parameter is not the name of an exist-
ing object.

SA_AIS_ERR_EXIST - At least one of the targeted objects has one child in the IMM 
Service hierarchy that is not targeted by this operation.

See Also

saImmOiInitialize()

5.5.3 saImmOiRtObjectUpdate()

Prototype

SaAisErrorT saImmOiRtObjectUpdate(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName,

const SaImmAttrModificationT **attrMods

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

objectName - [in] Pointer to the name of the updated object. For the SaNameT type 
definition, see the SA Forum Overview document.
94 SAI-AIS-IMM-A.01.01 Section 5.5.3 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
attrMods - [in] NULL terminated array of pointers to descriptors of the modifications to 
perform. The SaImmAttrModificationT type is defined in Section 4.2.10 on page 22.

Description

This function updates runtime attributes of a configuration or runtime object.

Attributes named SA_IMM_ATTR_CLASS_NAME, 
SA_IMM_ATTR_ADMIN_OWNER_NAME and 
SA_IMM_ATTR_IMPLEMENTER_NAME cannot be modified.

This operation fails if the targeted object is not implemented by the invoking process.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, the 
attrMods parameter includes:

• configuration attributes,
• a new value for the RDN attribute,
• attributes not defined for the specified class,
• attributes with values that do not match the defined value type for the attribute, 
• multiple values or additional values for a single-valued attribute.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

SA_AIS_ERR_BAD_OPERATION - The modifications requested on the object are 
not valid.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.5.3 95



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 SA_AIS_ERR_NOT_EXIST - The objectName parameter is not the name of an exist-
ing object, or one or more attribute names specified in the attrMods parameter are not 
valid for the object class.

SA_AIS_FAILED_OPERATION - The targeted object is not implemented by the 
invoking process.

See Also

saImmOiInitialize()

5.5.4 SaImmOiRtAttrUpdateCallbackT

Prototype

typedef SaAisErrorT (*SaImmOiRtAttrUpdateCallbackT)(

SaImmOiHandleT immOiHandle,

const SaNameT *objectName,

const SaImmAttrNameT *attributeNames

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

objectName - [in] Pointer to the name of the object for which the update is requested. 
For the SaNameT type definition, see the SA Forum Overview document.

attributeNames - [in] NULL terminated array of attribute names for which values must 
be updated. The SaImmAttrNameT type is defined in Section 4.2.2 on page 17.

Description

The IMM Service invokes this callback function to request an Object Implementer to 
update the values of some attributes of a runtime object. These attributes are 
attributes whose values are not cached by the IMM Service. The target object is iden-
tified by its name, objectName. The process must use the saImmOiRtObjectUpdate() 
function to update the values of the attributes whose names are specified by the 
attributeNames parameter.

If a requested attribute has no value, the SA_IMM_ATTR_VALUES_REPLACE flag 
of the SaImmAttrModificationTypeT structure can be used in the 
saImmOiRtObjectUpdate() call to set the attribute value to the empty set.
96 SAI-AIS-IMM-A.01.01 Section 5.5.4 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
On successful return of this callback, all requested attributes have been updated.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_NO_MEMORY - The implementer process is out of memory and can-
not provide the service.

SA_AIS_ERR_NO_RESOURCES -The implementer process is out of required 
resources (other than memory) to provide the service.

SA_AIS_FAILED_OPERATION - The implementer process failed to update the 
requested attributes due to an error occurring in the saImmOiRtObjectUpdate() invo-
cation.

See Also

saImmOiInitialize()

5.6 Configuration Objects Implementer
Implementers of configuration objects are invoked via callbacks by the IMM Service 
when requests to change the objects they implement are added to a configuration 
change bundle (CCB) and also when the CCB is being applied. On each callback 
invocation indicating the addition of a change request to a CCB, the Object Imple-
menter is responsible for validating the change and memorizing it, so it can react 
appropriately when all change requests contained in the CCB are applied by invoking 
the saImmOmCcbApply() function.

If a change is added to a CCB for a particular object but its Object Implementer did 
not provide the appropriate callback for the change or the callbacks used by the IMM 
Service to eventually apply or abort the CCB, the change is rejected with an 
SA_AIS_ERR_FAILED_OPERATION error.

Each change request added to a CCB must be validated by the Object Implementer 
with the understanding that the new request will be applied after all requests already 
present in the CCB are applied. So the validation should not consider the current 
state of the IMM Information Model but the state it would have with all prior requests 
being applied. Before invoking the Object Implementer callbacks, the IMM Service 
validates that the Information Model tree hierarchy is consistent:

• It checks that a newly created object has a parent in the hierarchy, 
• and it checks that an object being deleted has no child.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.6 97



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 If changes are made on configuration objects for which there is no registered Object 
Implementer, the IMM Service still applies the changes when the CCB is applied with-
out invoking any Object Implementer callbacks for these changes.

If an Object Implementer either registers or unregisters itself while some registered 
CCB changes are still pending for objects it implements (i.e., the IMM Service has not 
yet passed the step of successfully invoking all SaImmOiCcbCompletedCallbackT 
functions of registered Object Implementers for the CCB), the IMM Service aborts the 
CCBs which hold these changes.

When the user of the Object Management API requests the IMM Service to apply all 
change requests contained in a CCB, the IMM Service gives a last chance to the 
Object Implementers to validate that all changes will bring the set of configuration 
objects they implement in a consistent state. As a CCB may contain change requests 
for objects having different implementers, the IMM Service applies a CCB in two 
steps:

• In the first step, the IMM Service indicates to each Object Implementer, which 
has at least one object changed by the CCB requests, that the CCB is now com-
plete and that it must validate the entire set of CCB changes. This indication is 
done by invoking the SaImmOiCcbCompletedCallbackT callback function. If one 
of the Object Implementers returns an error, the attempt to apply the CCB fails, 
and the saImmOmCcbApply() function returns an error.

• If all implementers agreed with the proposed changes, the IMM Service applies 
the changes. In a second step, the IMM Service informs the implementers that 
the changes have been applied by invoking the SaImmOiCcbApplyCallbackT 
callback function. If one implementer rejected the proposed changes, the IMM 
Service informs implementers affected by the CCB that the CCB is aborted by 
invoking the SaImmOiCcbAbortCallbackT callback function.
98 SAI-AIS-IMM-A.01.01 Section 5.6 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
5.6.1 SaImmOiCcbObjectCreateCallbackT

Prototype

typedef SaAisErrorT (*SaImmOiCcbObjectCreateCallbackT)(

SaImmOiHandleT immOiHandle,

SaImmOiCcbIdT ccbId,

const SaImmClassNameT className,

const SaNameT *parentName,

const SaImmAttrValuesT **attr

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

ccbId - [in] CCB identifier. The SaImmOiCcbIdT type is defined in Section 5.2.3 on 
page 73.

className - [in] Object class name. The SaImmClassNameT type is defined in Sec-
tion 4.2.2 on page 17.

parentName - [in] Pointer to the name of the new object’s parent. For the SaNameT 
type definition, see the SA Forum Overview document.

attr - [in] NULL terminated array of pointers to attribute descriptors. 
The SaImmAttrValuesT type is defined in Section 4.2.8 on page 21.

Description

The IMM Service invokes this callback function to enable an Object Implementer to 
validate and register a change request being added to a CCB identified by ccbId. The 
change request is a creation request for a configuration object of a class, which is 
implemented by the process implementing the callback.

All parameters of the creation request are provided as parameters of the callback 
function to enable the implementer process to validate and memorize the creation 
request. Refer to the description of the saImmOmCcbObjectCreate() function for 
details on these parameters. All the parameters of the creation request may be mem-
orized by the implementer process and associated with the ccbId identifier, because 
these parameters will not be provided later on when the CCB is finally applied.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.6.1 99



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 The changes will only be applied by the IMM Service after a successful invocation of 
the SaImmOiCcbCompletedCallbackT callback.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_NO_MEMORY - The implementer process is out of memory and can-
not allocate the memory required to register the request.

SA_AIS_ERR_NO_RESOURCES -The implementer process is out of required 
resources (other than memory) to register the request.

SA_AIS_BAD_OPERATION - The implementer process rejects the creation request.

See Also

saImmOmCcbObjectCreate(), SaImmOiCcbCompletedCallbackT

5.6.2 SaImmOiCcbObjectDeleteCallbackT

Prototype

typedef SaAisErrorT (*SaImmOiCcbObjectDeleteCallbackT)(

SaImmOiHandleT immOiHandle,

SaImmOiCcbIdT ccbId,

const SaNameT *objectName

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

ccbId - [in] CCB identifier. The SaImmOiCcbIdT type is defined in Section 5.2.3 on 
page 73.

objectName - [in] Pointer to the object name. For the SaNameT type definition, see 
the SA Forum Overview document.

Description

The IMM Service invokes this callback function to enable an Object Implementer to 
validate and memorize a deletion request being added to a CCB identified by ccbId. 
The deletion request is a request to delete the object identified by the objectName 
100 SAI-AIS-IMM-A.01.01 Section 5.6.2 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
parameter and the entire subtree of objects rooted at that object and that are imple-
mented by the process implementing the callback.

The objectName parameter may be memorized by the implementer process and 
associated with the ccbId identifier, because these parameters will not be provided 
later on when the CCB is finally applied.

The changes will only be applied by the IMM Service after a successful invocation of 
the SaImmOiCcbCompletedCallbackT callback.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_NO_MEMORY - The implementer process is out of memory and can-
not allocate the memory required to validate and memorize the request.

SA_AIS_ERR_NO_RESOURCES -The implementer process is out of required 
resources (other than memory) to validate and memorize the request.

SA_AIS_BAD_OPERATION - The implementer process rejects the deletion request.

See Also

saImmOmCcbObjectDelete(), SaImmOiCcbCompletedCallbackT

5.6.3 SaImmOiCcbObjectModifyCallbackT

Prototype

typedef SaAisErrorT (*SaImmOiCcbObjectModifyCallbackT)(

SaImmOiHandleT immOiHandle,

SaImmOiCcbIdT ccbId,

const SaNameT *objectName,

const SaImmAttrModificationT **attrMods

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

ccbId - [in] CCB identifier. The SaImmOiCcbIdT type is defined in Section 5.2.3 on 
page 73.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.6.3 101



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 objectName - [in] Pointer to the object name. For the SaNameT type definition, see 
the SA Forum Overview document.

attrMods - [in] NULL terminated array of pointers to descriptors of the modifications to 
perform. The SaImmAttrModificationT type is defined in Section 4.2.10 on page 22.

Description

The IMM Service invokes this callback function to enable an Object Implementer to 
validate and memorize a change request being added to a CCB identified by ccbId. 
The change request is a request to modify configuration attributes of a configuration 
object implemented by the process implementing the callback.

All parameters of the modification request are provided as parameters of the callback 
function to enable the implementer process to validate and memorize the modifica-
tion request. Refer to the description of the saImmOmCcbObjectModify() function for 
details on these parameters. All the parameters of the modification request may be 
memorized by the implementer process and associated with the ccbId identifier, 
because these parameters will not be provided later on when the CCB is finally 
applied.

The changes will only be applied by the IMM Service after a successful invocation of 
the SaImmOiCcbCompletedCallbackT callback.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_NO_MEMORY - The implementer process is out of memory and can-
not allocate the memory required to validate and memorize the request.

SA_AIS_ERR_NO_RESOURCES -The implementer process is out of required 
resources (other than memory) to validate and memorize the request.

SA_AIS_BAD_OPERATION - The implementer process rejects the modification 
request.

See Also

saImmOmCcbObjectModify(), SaImmOiCcbCompletedCallbackT
102 SAI-AIS-IMM-A.01.01 Section 5.6.3 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
5.6.4 SaImmOiCcbCompletedCallbackT

Prototype

typedef SaAisErrorT (*SaImmOiCcbCompletedCallbackT)(

SaImmOiHandleT immOiHandle,

SaImmOiCcbIdT ccbId

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

ccbId - [in] CCB identifier. The SaImmOiCcbIdT type is defined in Section 5.2.3 on 
page 73.

Description

The IMM Service invokes this callback function to inform an Object Implementer that 
the CCB identified by ccbId is now complete (no additional requests will be added). 
The implementer process must check that the sequence of change requests con-
tained in the CCB is valid, and that no errors will be generated when these changes 
are applied.

If all Object Implementers, which implement objects changed by the CCB, agree with 
the changes, the IMM Service will apply the changes and then invoke the 
SaImmOiCcbApplyCallbackT callback to notify all Object Implementers that the CCB 
has been applied.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_NO_MEMORY - The implementer process is out of memory and can-
not allocate the memory required to later apply all requested changes.

SA_AIS_ERR_NO_RESOURCES -The implementer process is out of required 
resources (other than memory) to later apply all requested changes.

SA_AIS_BAD_OPERATION - The validation by the implementer process of all 
change requests contained in the CCB failed.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.6.4 103



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 See Also

saImmOmCcbApply(), SaImmOiCcbObjectCreateCallbackT, 
SaImmOiCcbObjectDeleteCallbackT, SaImmOiCcbObjectModifyCallbackT

5.6.5 SaImmOiCcbApplyCallbackT

Prototype

typedef void (*SaImmOiCcbApplyCallbackT)(

SaImmOiHandleT immOiHandle,

SaImmOiCcbIdT ccbId

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

ccbId - [in] CCB identifier. The SaImmOiCcbIdT type is defined in Section 5.2.3 on 
page 73.

Description

The IMM Service invokes this callback function to inform an Object Implementer that 
the CCB identified by ccbId has been applied by the IMM Service.

All configuration changes have already been validated by the Object Implementer in a 
previous call to SaImmOiCcbCompletedCallbackT.

Each Object Implementer is responsible for determining the effect of the configuration 
changes.

Return Values

None

See Also

saImmOmCcbApply(), SaImmOiCcbCompletedCallbackT
104 SAI-AIS-IMM-A.01.01 Section 5.6.5 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
5.6.6 SaImmOiCcbAbortCallbackT

Prototype

typedef void (*SaImmOiCcbAbortCallbackT)(

SaImmOiHandleT immOiHandle,

SaImmOiCcbIdT ccbId

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

ccbId - [in] CCB identifier. The SaImmOiCcbIdT type is defined in Section 5.2.3 on 
page 73.

Description

The IMM Service invokes this callback function to inform an Object Implementer that 
the CCB identified by ccbId is aborted, and the Object Implementer can remove all 
change requests memorized for this CCB.

Return Values

None

See Also

saImmOmCcbApply()
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.6.6 105



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 5.7 Administrative Operations

5.7.1 SaImmOiAdminOperationCallbackT

Prototype

typedef void (*SaImmOiAdminOperationCallbackT) (

SaImmOiHandleT immOiHandle,

SaInvocationT invocation,

const SaNameT *objectName,

 SaImmAdminOperationIdT operationId,

 const SaImmAdminOperationParamsT **params

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

invocation - [in] Used to match this invocation of SaImmOiAdminOperationCallbackT 
with the corresponding invocation of saImmOiAdminOperationResult(). For the 
SaInvocationT type definition, see the SA Forum Overview document.

objectName - [in] Pointer to the object name. For the SaNameT type definition, see 
the SA Forum Overview document.

operationId - [in] Identifier of the administrative operation. The 
SaImmAdminOperationIdT type is defined in Section 4.2.15 on page 25.

params - [in] NULL terminated array of pointers to parameter descriptors. The 
SaImmAdminOperationParamsT type is defined in Section 4.2.16 on page 25.

Description

The IMM Service invokes this callback function to request an Object Implementer to 
execute an administrative operation on the object designated by the its name, 
objectName. The administrative operation identified by the operationId parameter 
has been initiated by an invocation of the saImmOmAdminOperationInvoke() or 
saImmOmAdminOperationInvokeAsync() functions.

Each descriptor of the params array represents an input parameter of the administra-
tive operation to execute.
106 SAI-AIS-IMM-A.01.01 Section 5.7 AIS Specification



 Service AvailabilityTM Application Interface Specification
Information Model Management Service

1

5

10

15

20

25

30

35

40
The Object Implementer indicates the success or failure of the administrative opera-
tion by invoking the saImmOiAdminOperationResult() function. The invocation of 
saImmOiAdminOperationResult() can be done from the callback itself or outside of 
the callback by any thread of the process, which initialized the immOiHandle.

Return Values

None.

See Also

saImmOiInitialize(), saImmOmAdminOperationInvoke(), 
saImmOmAdminOperationInvokeAsync(), saImmOiAdminOperationResult()

5.7.2 saImmOiAdminOperationResult()

Prototype

SaAisErrorT saImmOiAdminOperationResult(

SaImmOiHandleT immOiHandle,

SaInvocationT invocation,

SaAisErrorT result

);

Parameters
immOiHandle - [in] The handle, obtained through the saImmOiInitialize() function, 
designating this particular initialization of the Information Model Management Ser-
vice. For the SaImmOiHandleT type definition, see Section 5.2.1 on page 73.

invocation - [in] Used to match this invocation of saImmOiAdminOperationResult() 
with the previous corresponding invocation of the 
SaImmOiAdminOperationCallbackT callback. For the SaInvocationT type definition, 
see the SA Forum Overview document.

result - [in] Result of the execution of the administrative operation. For the 
SaAisErrorT type definition, see the SA Forum Overview document.

Description

This function is used by an Object Implementer to provide to the IMM Service the 
result of the execution of an administrative operation requested through an invocation 
of the SaImmOiAdminOperationCallbackT callback.
AIS Specification SAI-AIS-IMM-A.01.01 Section 5.7.2 107



Service AvailabilityTM Application Interface Specification

Information Model Management Service

1

5

10

15

20

25

30

35

40
 This function can only be called by the process for which the 
SaImmOiAdminOperationCallbackT callback has been invoked.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as 
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before 
the call could complete. It is unspecified whether the call succeeded or whether it did 
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle immOiHandle is invalid, since it is cor-
rupted, uninitialized, has already been finalized, or it is not associated with an imple-
menter name.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Information Model Management Service 
library or the provider of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES -The system is out of required resources (other 
than memory).

See Also

saImmOiInitialize(), SaImmOiAdminOperationCallbackT
108 SAI-AIS-IMM-A.01.01 Section 5.7.2 AIS Specification


	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials


	2 Overview
	2.1 Information Model Management Service

	3 Information Model Management Service API
	4.0 IMM Service - Object Management API Specification
	4.1 Include File and Library Name
	4.2 Type Definitions
	4.2.1 Handles Used by the IMM Service
	4.2.2 Various IMM Service Names
	4.2.3 SaImmValueTypeT
	4.2.4 SaImmClassCategoryT
	4.2.5 SaImmAttrFlagsT
	4.2.6 SaImmAttrValueT
	4.2.7 SaImmAttrDefinitionT
	4.2.8 SaImmAttrValuesT
	4.2.9 SaImmAttrModificationTypeT
	4.2.10 SaImmAttrModificationT
	4.2.11 SaImmScopeT
	4.2.12 SaImmSearchOptionsT
	4.2.13 SaImmSearchParametersT
	4.2.14 SaImmCcbFlagsT
	4.2.15 SaImmAdminOperationIdT
	4.2.16 SaImmAdminOperationParamsT
	4.2.17 SaImmCallbacksT
	4.2.18 IMM Service Object Attributes

	4.3 Library Life Cycle
	4.3.1 saImmOmInitialize()
	4.3.2 saImmOmSelectionObjectGet()
	4.3.3 saImmOmDispatch()
	4.3.4 saImmOmFinalize()

	4.4 Object Class Management
	4.4.1 saImmOmClassCreate()
	4.4.2 saImmOmClassDescriptionGet()
	4.4.3 saImmOmClassDescriptionMemoryFree()
	4.4.4 saImmOmClassDelete()

	4.5 Object Search
	4.5.1 saImmOmSearchInitialize()
	4.5.2 saImmOmSearchNext()
	4.5.3 saImmOmSearchFinalize()

	4.6 Object Access
	4.6.1 saImmOmAccessorInitialize()
	4.6.2 saImmOmAccessorGet()
	4.6.3 saImmOmAccessorFinalize()

	4.7 Object Administration Ownership
	4.7.1 saImmOmAdminOwnerInitialize()
	4.7.2 saImmOmAdminOwnerSet()
	4.7.3 saImmOmAdminOwnerRelease()
	4.7.4 saImmOmAdminOwnerFinalize()
	4.7.5 saImmOmAdminOwnerClear()

	4.8 Configuration Changes
	4.8.1 saImmOmCcbInitialize()
	4.8.2 saImmOmCcbObjectCreate()
	4.8.3 saImmOmCcbObjectDelete()
	4.8.4 saImmOmCcbObjectModify()
	4.8.5 saImmOmCcbApply()
	4.8.6 saImmOmCcbFinalize()

	4.9 Administrative Operations Invocation
	4.9.1 saImmOmAdminOperationInvoke(), saImmOmAdminOperationInvokeAsync()
	4.9.2 SaImmOmAdminOperationInvokeCallbackT


	5.0 IMM Service - Object Implementer API Specification
	5.1 Include File and Library Name
	5.2 Type Definitions
	5.2.1 IMM Service Handle
	5.2.2 SaImmOiImplementerNameT
	5.2.3 SaImmOiCcbIdT
	5.2.4 SaImmOiCallbacksT

	5.3 Library Life Cycle
	5.3.1 saImmOiInitialize()
	5.3.2 saImmOiSelectionObjectGet()
	5.3.3 saImmOiDispatch()
	5.3.4 saImmOiFinalize()

	5.4 Object Implementer
	5.4.1 saImmOiImplementerSet()
	5.4.2 saImmOiImplementerClear()
	5.4.3 saImmOiClassImplementerSet()
	5.4.4 saImmOiClassImplementerRelease()
	5.4.5 saImmOiObjectImplementerSet()
	5.4.6 saImmOiObjectImplementerRelease()

	5.5 Runtime Objects Management
	5.5.1 saImmOiRtObjectCreate()
	5.5.2 saImmOiRtObjectDelete()
	5.5.3 saImmOiRtObjectUpdate()
	5.5.4 SaImmOiRtAttrUpdateCallbackT

	5.6 Configuration Objects Implementer
	5.6.1 SaImmOiCcbObjectCreateCallbackT
	5.6.2 SaImmOiCcbObjectDeleteCallbackT
	5.6.3 SaImmOiCcbObjectModifyCallbackT
	5.6.4 SaImmOiCcbCompletedCallbackT
	5.6.5 SaImmOiCcbApplyCallbackT
	5.6.6 SaImmOiCcbAbortCallbackT

	5.7 Administrative Operations
	5.7.1 SaImmOiAdminOperationCallbackT
	5.7.2 saImmOiAdminOperationResult()



