
Service AvailabilityTM Forum
System Management Specification

Log Service SAI-AIS-LOG-A.01.01

The Service AvailabilityTM solution is high availability and more; it is the delivery of ultra-dependable
communication services on demand and without interruption.

This Service AvailabilityTM Forum Application Interface Specification document might contain
design defects or errors known as errata, which might cause the product to deviate from
published specifications. Current characterized errata are available on request.

.

Service AvailabilityTM Application Interface Specification
Legal Notice

1

5

10

15

20

25

30

35

40
 SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT

The Service Availability™ Specification(s) (the "Specification") found at the URL http://www.saforum.org (the
"Site") is generally made available by the Service Availability Forum (the "Licensor") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions, which govern the
use of the Specification are set forth in this agreement (this "Agreement").

IMPORTANT – PLEASE READ THE TERMS AND CONDITIONS PROVIDED IN THIS AGREEMENT BEFORE DOWN-
LOADING OR COPYING THE SPECIFICATION. IF YOU AGREE TO THE TERMS AND CONDITIONS OF THIS AGREE-
MENT, CLICK ON THE "ACCEPT" BUTTON. BY DOING SO, YOU AGREE TO BE BOUND BY THE TERMS AND
CONDITIONS STATED IN THIS AGREEMENT. IF YOU DO NOT WISH TO AGREE TO THESE TERMS AND CONDITIONS,
YOU SHOULD PRESS THE "CANCEL"BUTTON AND THE DOWNLOAD PROCESS WILL NOT PROCEED.

1. LICENSE GRANT. Subject to the terms and conditions of this Agreement, Licensor hereby grants you a non-
exclusive, worldwide, non-transferable, revocable, but only for breach of a material term of the license granted in
this section 1, fully paid-up, and royalty free license to:

a. reproduce copies of the Specification to the extent necessary to study and understand the
Specification and to use the Specification to create products that are intended to be compatible
with the Specification;
b. distribute copies of the Specification to your fellow employees who are working on a project or
product development for which this Specification is useful; and
c. distribute portions of the Specification as part of your own documentation for a product you have
built, which is intended to comply with the Specification.

2. DISTRIBUTION. If you are distributing any portion of the Specification in accordance with Section 1(c), your
documentation must clearly and conspicuously include the following statements:

a. Title to and ownership of the Specification (and any portion thereof) remain with Service Avail-
ability Forum ("SA Forum").
b. The Specification is provided "As Is." SA Forum makes no warranties, including any implied
warranties, regarding the Specification (and any portion thereof) by Licensor.
c. SA Forum shall not be liable for any direct, consequential, special, or indirect damages (includ-
ing, without limitation, lost profits) arising from or relating to the Specification (or any portion
thereof).
d. The terms and conditions for use of the Specification are provided on the SA Forum website.

3. RESTRICTION. Except as expressly permitted under Section 1, you may not (a) modify, adapt, alter, translate,
or create derivative works of the Specification, (b) combine the Specification (or any portion thereof) with another
document, (c) sublicense, lease, rent, loan, distribute, or otherwise transfer the Specification to any third party, or
(d) copy the Specification for any purpose.

4. NO OTHER LICENSE. Except as expressly set forth in this Agreement, no license or right is granted to you, by
implication, estoppel, or otherwise, under any patents, copyrights, trade secrets, or other intellectual property by
virtue of your entering into this Agreement, downloading the Specification, using the Specification, or building prod-
ucts complying with the Specification.

5. OWNERSHIP OF SPECIFICATION AND COPYRIGHTS. The Specification and all worldwide copyrights therein
are the exclusive property of Licensor. You may not remove, obscure, or alter any copyright or other proprietary
rights notices that are in or on the copy of the Specification you download. You must reproduce all such notices on
all copies of the Specification you make. Licensor may make changes to the Specification, or to items referenced
AIS Specification SAI-AIS-LOG-A.01.01 3

Service AvailabilityTM Application Interface Specification

Legal Notice

1

5

10

15

20

25

30

35

40
therein, at any time without notice. Licensor is not obligated to support or update the Specification.

6. WARRANTY DISCLAIMER. THE SPECIFICATION IS PROVIDED "AS IS." LICENSOR DISCLAIMS ALL
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY, NONINFRINGEMENT OF THIRD-PARTY RIGHTS, FITNESS FOR ANY PARTICULAR PUR-
POSE, OR TITLE. Without limiting the generality of the foregoing, nothing in this Agreement will be construed as
giving rise to a warranty or representation by Licensor that implementation of the Specification will not infringe the
intellectual property rights of others.

7. PATENTS. Members of the Service Availability Forum and other third parties [may] have patents relating to the
Specification or a particular implementation of the Specification. You may need to obtain a license to some or all of
these patents in order to implement the Specification. You are responsible for determining whether any such
license is necessary for your implementation of the Specification and for obtaining such license, if necessary.
[Licensor does not have the authority to grant any such license.] No such license is granted under this Agreement.

8. LIMITATION OF LIABILITY. To the maximum extent allowed under applicable law, LICENSOR DISCLAIMS
ALL LIABILITY AND DAMAGES, INCLUDING DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, AND INCI-
DENTAL DAMAGES, ARISING FROM OR RELATING TO THIS AGREEMENT, THE USE OF THE SPECIFICA-
TION OR ANY PRODUCT MANUFACTURED IN ACCORDANCE WITH THE SPECIFICATION, WHETHER
BASED ON CONTRACT, ESTOPPEL, TORT, NEGLIGENCE, STRICT LIABILITY, OR OTHER THEORY. NOT-
WITHSTANDING ANYTHING TO THE CONTRARY, LICENSOR’S TOTAL LIABILITY TO YOU ARISING FROM
OR RELATING TO THIS AGREEMENT OR THE USE OF THE SPECIFICATION OR ANY PRODUCT MANU-
FACTURED IN ACCORDANCE WITH THE SPECIFICATION WILL NOT EXCEED ONE HUNDRED DOLLARS
($100). YOU UNDERSTAND AND AGREE THAT LICENSOR IS PROVIDING THE SPECIFICATION TO YOU AT
NO CHARGE AND, ACCORDINGLY, THIS LIMITATION OF LICENSOR’S LIABILITY IS FAIR, REASONABLE,
AND AN ESSENTIAL TERM OF THIS AGREEMENT.

9. TERMINATION OF THIS AGREEMENT. Licensor may terminate this Agreement, effective immediately upon
written notice to you, if you commit a material breach of this Agreement and do not cure the breach within ten (30)
days after receiving written notice thereof from Licensor. Upon termination, you will immediately cease all use of
the Specification and, at Licensor’s option, destroy or return to Licensor all copies of the Specification and certify in
writing that all copies of the Specification have been returned or destroyed. Parts of the Specification that are
included in your product documentation pursuant to Section 1 prior to the termination date will be exempt from this
return or destruction requirement.

10. ASSIGNMENT. You may not assign, delegate, or otherwise transfer any right or obligation under this Agree-
ment to any third party without the prior written consent of Licensor. Any purported assignment, delegation, or
transfer without such consent will be null and void.

11. GENERAL. This Agreement will be construed in accordance with, and governed in all respects by, the laws of
the State of Delaware (without giving effect to principles of conflicts of law that would require the application of the
laws of any other state). You acknowledge that the Specification comprises proprietary information of Licensor and
that any actual or threatened breach of Section 1 or 3 will constitute immediate, irreparable harm to Licensor for
which monetary damages would be an inadequate remedy, and that injunctive relief is an appropriate remedy for
such breach. All waivers must be in writing and signed by an authorized representative of the party to be charged.
Any waiver or failure to enforce any provision of this Agreement on one occasion will not be deemed a waiver of
any other provision or of such provision on any other occasion. This Agreement may be amended only by binding
written instrument signed by both parties. This Agreement sets forth the entire understanding of the parties relating
to the subject matter hereof and thereof and supersede all prior and contemporaneous agreements, communica-
tions, and understandings between the parties relating to such subject matter.
4 SAI-AIS-LOG-A.01.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Table of Contents

1

5

10

15

20

25

30

35

40
Table of Contents Log Service
1 Document Introduction . 7
 1.1 Document Purpose . 7
 1.2 AIS Documents Organization . 7
 1.3 History . 7
 1.4 References . 7
 1.5 How to Provide Feedback on the Specification . 8
 1.6 How to Join the Service Availability™ Forum . 8
 1.7 Additional Information . 8
 1.7.1 Member Companies . 8
 1.7.2 Press Materials . 8

2 Overview . 9
 2.1 Log Service . 9
 2.2 Log Streams . 11
 2.3 Log Stream Handlers . 11

3 SA Log Service API . 13

 3.1 Log Service Model . 13
 3.1.1 Logger . 13
 3.1.2 Log Stream . 13
 3.1.2.1 Alarm, Notification, and System Log Streams . 14
 3.1.2.2 Application Log Stream . 14
 3.1.3 Log Record Properties . 15
 3.1.4 Log Filtering . 15
 3.1.5 Log Record Output Format . 16
 3.1.5.1 Format Tokens . 16
 3.1.5.2 Format Expressions . 22
 3.1.5.3 Default Format Expressions . 22
 3.1.6 Log File Properties . 23
 3.1.6.1 Log File Configurable Attributes . 24
 3.1.6.2 Log File Configuration File . 25
 3.1.6.3 Log File Naming Rules . 26
 3.1.6.4 Log File Behaviors . 27
 3.1.7 Internationalization . 27
 3.2 Include File and Library Names . 28
 3.3 Type Definitions . 28
 3.3.1 Handles . 28
 3.3.1.1 SaLogHandleT . 28
 3.3.1.2 SaLogStreamHandleT . 28
 3.3.2 Log Types . 28
 3.3.2.1 Log Stream Names . 28
 3.3.2.2 SaLogSeverityT and SaLogSeverityFlagsT . 30
AIS Specification SAI-AIS-LOG-A.01.01 5

Service AvailabilityTM Application Interface Specification

Table of Contents

1

5

10

15

20

25

30

35

40
 3.3.2.3 SaLogBufferT . 31
 3.3.2.4 SaLogAckFlagsT . 31
 3.3.2.5 SaLogStreamOpenFlagsT . 31
 3.3.3 Log Service API and Notification Types . 31
 3.3.4 Log Service as Notification Producer . 32
 3.3.4.1 SaLogNtfIdentifiersT . 32
 3.3.4.2 SaLogNtfAttributesT . 32
 3.3.5 Log Record Types . 33
 3.3.5.1 SaLogHeaderTypeT . 33
 3.3.5.2 SaLogNtfLogHeaderT . 33
 3.3.5.3 SaLogGenericLogHeaderT . 35
 3.3.5.4 SaLogHeaderT . 35
 3.3.5.5 SaLogRecordT . 36
 3.3.6 Application Log Types . 37
 3.3.6.1 SaLogFileFullActionT . 37
 3.3.6.2 SaLogFileCreateAttributesT . 37
 3.3.7 SaLogCallbacksT . 38
 3.4 Library Life Cycle . 39
 3.4.1 saLogInitialize() . 39
 3.4.2 saLogSelectionObjectGet() . 41
 3.4.3 saLogDispatch() . 42
 3.4.4 saLogFinalize() . 43
 3.5 Log Service Operations . 45
 3.5.1 saLogStreamOpen() and saLogStreamOpenAsync() . 45
 3.5.2 SaLogStreamOpenCallbackT . 48
 3.5.3 saLogWriteLog() and saLogWriteLogAsync() . 50
 3.5.4 SaLogWriteLogCallbackT . 52
 3.5.5 SaLogFilterSetCallbackT . 54
 3.5.6 saLogStreamClose() . 55

4 Administrative API . 57

 4.1 Log Service Administration API Model . 57
 4.1.1 Log Service Administration API Basics . 57
 4.2 Include File and Library Name . 57
 4.3 Type Definitions . 57
 4.3.1 saLogAdminOperationIdT . 58
 4.4 Log Service Administration API . 58
 4.4.1 SA_LOG_ADMIN_CHANGE_FILTER . 58

5 Alarms and Notifications . 61

 5.1 Setting Common Attributes . 61
 5.2 Log Service Notifications . 62
 5.2.1 Log Service Alarms . 62
 5.2.2 Log Service Object Change Notifications . 65
6 SAI-AIS-LOG-A.01.01 AIS Specification

Service AvailabilityTM Application Interface Specification
Document Introduction

1

5

10

15

20

25

30

35

40
1 Document Introduction

1.1 Document Purpose
This document defines the Log Service of the Application Interface Specification
(AIS) of the Service AvailabilityTM Forum (SA Forum). It is intended for use by
implementors of the Application Interface Specification and by application developers
who would use the Application Interface Specification to develop applications that
must be highly available. The AIS is defined in the C programming language, and
requires substantial knowledge of the C programming language.

Typically, the Service AvailabilityTM Forum Application Interface Specification will be
used in conjunction with the Service AvailabilityTM Forum Hardware Interface
Specification (HPI) and the Service AvailabilityTM Forum System Management
Specification.

1.2 AIS Documents Organization

The Application Interface Specification is organized into several volumes. For a list of
all Application Interface Specification documents, refer to the SA Forum Overview
document [4].

1.3 History
SAI-AIS-LOG-A.01.01 is the first release of the Log Service specification.

1.4 References
The following documents contain information that is relevant to this specification.

[1] CCITT Recommendation X.735 | ISO/IEC 10164-5, Log Control Function

[2] Service AvailabilityTM Forum, Application Interface Specification, Notification Ser-
vice, SAI-AIS-NTF-A.01.01

[3] Service AvailabilityTM Forum, Application Interface Specification, Information
Model Management Service, SAI-AIS-IMM-A.01.01

[4] Service AvailabilityTM Forum, Application Interface Specification, Overview,
SAI-Overview-B.02.01

[5] Service AvailabilityTM Forum, Hardware Platform Interface, SAI-HPI-B.02.01

[6] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function

[7] IETF RFC 3164, The BSD Syslog Protocol
AIS Specification SAI-AIS-LOG-A.01.01 Section 1 7

Service AvailabilityTM Application Interface Specification

Document Introduction

1

5

10

15

20

25

30

35

40
1.5 How to Provide Feedback on the Specification
If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum website (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.6 How to Join the Service Availability™ Forum
The Promoter Members of the Forum require that all organizations wishing to
participate in the Forum complete a membership application. Once completed, a
representative of the Service Availability™ Forum will contact you to discuss your
membership in the Forum. The Service Availability™ Forum Membership Application
can be completed online by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can also be viewed
online by using the links provided on the Forum’s website
(http://www.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.
Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).
8 SAI-AIS-LOG-A.01.01 Section 1.5 AIS Specification

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
 2 Overview
This specification defines the Log Service within the Application Interface Specifica-
tion (AIS).

2.1 Log Service
SA Forum specifications distinguish between log and trace services. This specifica-
tion does not support trace services. The distinction can be characterized as follows:

Logging information is a high level cluster-significant, function-based (as opposed to
implementation-particular) information suited primarily for network or system adminis-
trators, or automated tools to review current and historical logged information to trou-
ble shoot issues such as mis-configurations, network disconnects and unavailable
resources.

Tracing information, on the other hand, is low level product and implementation-par-
ticular information suited primarily for developers or field engineers, often engaged in
debugging implementation specifics such as timing, algorithms and distributed appli-
cations. A SA Forum Trace Service is on the roadmap, but is not yet defined.

A SA Forum compliant ecosystem assumes the AIS Log Service, or some function-
ally equivalent service is available for use by applications as well as other AIS ser-
vices.

Some SA Forum services, such as the Notification Service (abbreviated as NTF, see
[2]), explicitly expect a log service, such as the SA Forum Log Service, to be avail-
able.

SA Forum Hardware Platform Interface (HPI)[5] logging is not integrated with the SA
Forum Log Service in this version of the document. This is left for future study with
the intent of integrating these two in a subsequent version of this document.

The following diagram identifies the principle abstractions of the SA Forum Log Ser-
vice.
AIS Specification SAI-AIS-LOG-A.01.01 Section 2 9

Service AvailabilityTM Application Interface Specification

Overview

1

5

10

15

20

25

30

35

40
FIGURE 1 Log Service Entities

Within the SA Forum Log Service boundary, there are objects internal to the Log Ser-
vice. They are:

• log stream - A log stream is a conceptual flow of log records. There are four dis-
tinct log stream types (alarm, notification, system, and application), which are
explained in the next section 2.2 and then more extensively in section 3.1.2 .

• log record - A log record is an ordered set of information logged by some process
(see section 3.1.3).

All grayed objects at the SA Forum Log Service boundary are public interfaces and
are formally defined in this document. Briefly, these public interfaces are:

• Logger API - The logger API is a linkable library used by processes that wish to
send a log record on a particular log stream (see section 3.5).

• Log File Configuration File - At an output destination of a particular log stream,
there is a publicly readable ‘log file configuration file’ (see section 3.1.6.2) which
explains the log file (or files) properties associated with that log stream, such as
how the log record data is formatted for the associated log file or files (see sec-
tion 3.1.5).

Alarm
 Log [1]

Drag the side
handles to

change the width
of the text block.

Logger API
Logger AP

I
Logger A

PI

IMM OI
API

Notification
 Log File

Configuration
File[1]

System
 Log [1]

Per application
 Log [0..*]

Notification
 Log [1]

System
 Log File

Configuration
File[1]

Alarm
 Log File

Configuration
File [1]

Per application
 Log File

Configuration
File[0..*]

N
TF

App2
A

pp1

Application
log stream [0..*]

System
log stream [1]

Notification
log stream [1]

Alarm
log stream [1]

Log Viewer
A) read log file
configuration

B) read log file

AIS Log Service

A
B

10 SAI-AIS-LOG-A.01.01 Section 2.1 AIS Specification

Service AvailabilityTM Application Interface Specification
Overview

1

5

10

15

20

25

30

35

40
 • IMM Object Implementer API - This is the Information Management Model (IMM)
Service [3] Object Manager interface. It is not intended for consumers of the Log
Service. Rather, it provides access to the Log Service objects as well as admin-
istrative operations associated with those objects. Clients of this interface would
typically be system management applications such as SNMP agents or CIM pro-
viders.

The diagram also shows a 3rd party ‘Log Viewer’ that (A) first reads the log file config-
uration file which allows the viewer to (B) read and understand how the log records
are formatted in the associated log file or files (see section 3.3.6.1). Such ‘viewer’ or
‘reader’ functionality is outside the scope of the SA Forum Log Service.

2.2 Log Streams
The Log Service enables applications to express and forward log records through
well-known log streams that lead to particular output destinations such as a named
file. A log record format expression explains how the fields of each log record shall be
displayed at an output destination.

There are four types of log streams supported by the Log Service:

• The alarm log stream is for ITU X.733 and ITU X.736 based log records.
• The notification log stream is for ITU X.730 and ITU X.731 based log records.
• The system log stream is for system relevant log records.
• Application log streams are for application-specific log records.

There is exactly one log stream for each of the alarm, notification, and system log
stream types in an SA Forum cluster. However, there can be any number of applica-
tion log streams. The SA Forum Notification Service (NTF)[2] is envisioned as the
principal user of the alarm and notification log streams, though other users are possi-
ble.

The SA Forum Log Service may define new log streams or augment existing streams
with new log record types in some future revision of this specification.

2.3 Log Stream Handlers
The SA Forum Log Service also has the concept of log stream handlers, which is not
specified in this release of the document but will be specified in a future release.

Roughly, a log stream handler will allow an administrator to copy or redirect ‘matched’
log records traveling through a particular log stream to a distinct output destination
such as a log file, terminal or another program. Matched log records will then be sub-
ject to a log record format expression that is associated with that log stream handler.
AIS Specification SAI-AIS-LOG-A.01.01 Section 2.2 11

Service AvailabilityTM Application Interface Specification

Overview

1

5

10

15

20

25

30

35

40
Administrators will be able to configure any number of log stream handlers to a log
stream.
12 SAI-AIS-LOG-A.01.01 Section 2.3 AIS Specification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3 SA Log Service API

3.1 Log Service Model

3.1.1 Logger

A logger is a client of the Log Service that uses the saLogWriteLog() API in order to
introduce a log record to a specific log stream. A logger gains access to a log
stream by invoking saLogStreamOpen() and can terminate its relationship with a log
stream by invoking saLogStreamClose().

3.1.2 Log Stream

A log stream is a conceptual flow of log records. Each log stream has a name that is
unique in the cluster. Each log stream leads to an output destination log file or files
(see Section 3.3.6.1). There are four distinct types of log streams supported by the
Log Service:

1. Alarm log stream: The SA Forum Notification (NTF) Service [2] is presumed a
client of this Log Service though it is not required. NTF logs alarm information as
per the ITU documents alarm reporting (X.733) and security alarm reporting
(X.736). Within a cluster, there is a single, well-known alarm log stream named
‘safLgStr = saLogAlarm’, which leads to an output destination file that only con-
tains these alarm log records.

2. Notification log stream: The SA Forum Notification (NTF) Service [2] is pre-
sumed a client of this Log Service though it is not required. NTF optionally logs
notification information as per ITU documents object management (X.730) and
state management (X.731). Within a cluster, there is a single, well-known notifi-
cation log stream named ‘safLgStr = saLogNotification’, which leads to an output
destination file that only contains these notification log records.

3. System log stream: The system log stream is used by applications to record rel-
evant and noteworthy system circumstances, particularly those that effect ser-
vice. This log can also be used by AIS services as well as AMF to log cluster
wide significant events. The data on this stream is less formal than alarm or noti-
fication log streams. Within a cluster, there is a single, well known system log
stream named ‘safLgStr = saLogSystem’, which leads to an output destination
file that only contains these system log records.

4. Application log stream: An application log stream can be created and used by
an application that wants certain log records isolated from the system log. Each
application can create its own application log stream or open an existing applica-
tion log stream using saLogStreamOpen(). There can be any number of applica-
tion log streams in a cluster at one time, and they can dynamically come and go.
AIS Specification SAI-AIS-LOG-A.01.01 Section 3 13

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
Log records on one stream do not mingle with log records on any of the other log
streams.

The transport requirements for these log streams are guaranteed and in-order deliv-
ery from any given logger source to its final output destination.

3.1.2.1 Alarm, Notification, and System Log Streams

The alarm, notification and system log streams are distinct, well-known cluster-wide
log streams that can neither be created or destroyed. Each of these three log streams
leads to a stream specific, mandatory system defined log file or files (see Section
3.3.6.1) that also has an associated log file configuration file (see Section 3.1.6.2).

Log file configuration file attributes can be configured through administrative means
very early in the life of the cluster through the IMM interface [3]. If no configuration is
provided, an implementation-specific default configuration shall be applied to these
log streams.

The alarm, notification and system log streams are made active when the Log Ser-
vice successfully initializes and is available for service.

3.1.2.2 Application Log Stream

Application loggers can create private application log streams at runtime by way of
the saLogStreamOpen() API. The application logger must specify both a file (Section
3.1.6) and format (Section 3.1.5) configuration. This configuration applies to all log
records placed on that log stream by way of saLogWriteLog(). Any number of applica-
tion loggers can join an existing application log stream using the saLogStreamOpen()
API by identifying the same log stream by it logStreamName and either:

• Specifying no other create properties (since the log stream and its properties
already exist), or

• Specifying exactly the same create properties of the already existing log stream.
If create properties are specified, but do not match, it is an error.

There can be any number of private application log streams in a cluster at any given
time, though each must go by a cluster wide unique name. The same application can
also call saLogStreamOpen() to open more than one application log stream at the
same time.

An application log stream is destroyed when all application loggers using that stream
saLogStreamClose() it. The output destination log file or files (see Section 3.3.6.1)
and log file configuration file (see Section 3.1.6.2) associated with the destroyed log
stream is closed and persists indefinitely.

If another application log stream is created using saLogStreamOpen() with the same
logStreamName and saLogFilePathName as a previously destroyed log stream and
14 SAI-AIS-LOG-A.01.01 Section 3.1.2.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
other saLogStreamCreateAttributeT values are either the same or different, the Log
Service (and log readers) can distinguish this new log stream from any predecessors
by inspection of the log file name changes that have been automatically applied by
the Log Service to all completed log files (see Sections 3.1.6.2 and 3.1.6.3).

3.1.3 Log Record Properties

Log records travel through a log stream toward an output destination. The Log Ser-
vice is not required to interleave log records on a log stream based on log record’s
logTimeStamp (time stamp). Rather, log records can be interleaved on a log stream
on a first-to-arrive basis.

In fact, the Log Service makes no internal decisions based on logTimeStamp values.
The Log Service places no firm requirements regarding clock synchronization in a
distributed system.

3.1.4 Log Filtering

Log filtering applies to application and system log records only.

Log filtering means that only matched log records are allowed entry onto a log
stream; all others are discarded. A log filter criteria can only be accessed and config-
ured through administrative means.

Log filtering of alarm or notification log records is not supported since the SA Forum
log philosophy is that all published alarms and notifications must be logged. Notice,
the SA Forum Notification Service [2] has a concept of non-alarm filtering, but this
would happen prior to and outside the scope of Log Service awareness.

A log filter criteria is based on:

• The severity value of a system or application log record

Other filter criteria can be imagined and may be introduced in future revisions of this
document. For example, a filter criteria may qualify that particular nodes, applications
or service units shall be allowed to log. Such imagined criteria would be considered in
conjunction with the existing severity filter criteria.

Log filtering behavior is experienced by a logger as follows:

• The (*saLogFilterSetCallbackT)() callback explains to a logger its current filter
criteria. This allows a logger to avoid the overhead of packaging and invoking
the saLogWriteLog() for those log records that the Log Service will discard any-
way.

• The Log Service itself also reviews introduced log records against the current fil-
ter criteria and discards any that do not match. This is done regardless of
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.1.3 15

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
whether a logger provided a (*saLogFilterSetCallbackT)() function pointer at
saLogInitialize() time or not.

3.1.5 Log Record Output Format

Log record output formatting rules consist of a well-known set of log record format
tokens that can be ordered into well formed log record format expressions, which
governs the output properties of each log record at an output destination.

Each format token maps to a specific field or sub-field in a log record. A format token
also implies a specific output display. A format expression is a sequence of these for-
mat tokens, which as a whole, explains the presence, order and format of how log
record fields are to be displayed.

Log record format expression rules must be formally described since such expres-
sions serve as a public interface of the Log Service. Precise syntax ensures that third
party tools can read and manipulate Log Service output such as log files since such
log file ‘reader’ tools are outside the scope of this Log Service.

The Log Service provides a means to configure a format expression at each output
destination. A default format expression is applied if no format expression is config-
ured or a configured format expression is illegal (not well formed). Once an output
destination is made operational, the associated format expression cannot change for
the life of that output destination. This guarantees that all log records delivered to a
particular output destination are formatted the same way.

3.1.5.1 Format Tokens

There is a set of simple format tokens that are used to both identify fields or subfields
of a log record and to express the desired output form of that field.

Each token type either implicitly or explicitly identifies the number of character spaces
associated with that token’s output. The cumulative effect is that each field in a log
record can be placed at fixed offsets so that all output records at the same output
destination are formatted identically. This allows a log reader to easily calculate off-
sets into specific log records within a log file.

The formal representation of a format token is:

<@><C|S|N><letter><field-size>

which breaks down to these parts:

<@ >All token sequences start with the ‘at’ symbol

<C|S|N> the next character indicates if it is:

• C = A common log record field, or
16 SAI-AIS-LOG-A.01.01 Section 3.1.5 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• S = A system or application log record field, or
• N = A notification or alarm field

<letter> a distinct character that maps to a specific field or subfield of a log record.

<field-size> most token types imply a fixed output field size and cannot be followed by
this field size qualifier. However, some token types optionally allow its output field
size to be specified.

• If allowed and specified by the user, the output will occupy exactly <field-size>
spaces either by adding blanks or truncating a long string.

• If not specified but allowed, then the output will use exactly the number of spaces
it takes to express the value. This results in variable field offsets from log record
to log record at the same output destination.

An example token is:

@Sl30

This is a system or application (S) token for the logSvcUsrName field (the letter ’l’). It
will occupy exactly 30 spaces.

The table below shows the complete set of format tokens available for constructing
format expressions. These tokens track to specific fields or subfields of the
SaLogRecordT data type(see Section 3.3.5.5).

• The left column shows each token type syntax supported by the Log Service.
The token types that end with <fs> can optionally be configured with a numeric
<field-size> value.

• The center column describes format rules and semantics.
• The right column is an arbitrary example of legal output (‘.’ is used here to make

clear the number spaces that would otherwise appear as blanks. The ‘.’ is not a
Log Service output requirement).

Table 1: Log Record Format Tokens

Token
Type Description Example Output Format

@Cr A 10 digit log record Identifier that the Log
Service internally generates. This unsigned
32bit numeric assignment starts at 1 and
increments by 1 as log records arrive at the
particular output destination (see Section
3.1.6.4).

‘.......345’
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.1.5.1 17

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
@Ct 18 character hexadecimal representation of
time from logTimeStamp of type saTimeT in
the SaLogRecordT structure (see Section
3.3.5.5). This time is when a log record was
actually logged.

0x0006670634553455

@Ch 2 digit hour of the day from logTimeStamp of
type saTimeT. If the common token type
@Ca (for am/pm output) is in a format
expression, then the output is formatted for a
12 hour clock. Otherwise the output is format-
ted for a 24 hour clock.

04

@Cn 2 digit minute of the hour from logTimeStamp
of type saTimeT.

45

@Cs 2 digit second of the minute fromlogTimeS-
tamp of type saTimeT.

08

@Ca am/pm according to a 12 hour clock, from
logTimeStamp of type saTimeT. See token
type @Ch.

am

@Cm 2 digit month from logTimeStamp of type
saTimeT.

10

@CM 3 letter abbreviation for month from log-
TimeStamp of type saTimeT.

Oct

@Cd 3 letter day of the week from logTimeStamp
of type saTimeT.

Mon

@Cy 2 digit year from logTimeStamp of type
saTimeT.

05

@CY 4 digit year from logTimeStamp of type
saTimeT.

2005

Table 1: Log Record Format Tokens

Token
Type Description Example Output Format
18 SAI-AIS-LOG-A.01.01 Section 3.1.5.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
@Cc 29 spaced Notification class identifier from
notificationClassId of type saNtfClassIdT [2].
The vendorid, majorId and minorId values are
expressed as hexadecimal. Notice that the
‘NCI’ prefix, brackets and commas are
implicit features of this output formatting.

NCI[0x000346f1,0x0034,0
x012a]

@Cx a single character that indicates if this log
record’s output has been truncated to remain
within its configured fixed log record size (see
Section 3.1.6.2). The output values are:

• ‘T’ means truncated
• ‘C’ means complete

T

@Cb<fs> If this token is used, the body of the log
record from logBuffer of type saLogBufferT is
assumed a printable string (see Section
3.3.2.3). If a \0 is found prior to the <fs>
length, then blank characters will be applied
for the remaining characters up to <fs>.

“port access denied..”
where <fs>=20

@Ci<fs> If this token is used, the body of the log
record from logBuffer of type saLogBufferT is
output as hexadecimal characters (see Sec-
tion 3.3.2.3). If the logBufSize is less then
<fs>, then blank characters will be applied for
the remaining characters up to <fs>.

“706f727420616363657373
2064656e6965642020”,
where <fs>=40; (ascii=
“port access denied ”)

@Sl<fs> logger name from logSvcUsrName of type
saNameT (see Section 3.3.5.3).

‘safSu=xx,safSg=yy,safA
pp=zz...’, where
<fs>=30

Table 1: Log Record Format Tokens

Token
Type Description Example Output Format
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.1.5.1 19

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
@Sv 2 character severity identifier that maps to
one of the SA_LOG_SEV_ severity values
(see Section 3.3.2.2). The identifiers are:

• EM for EMERGENCY
• AL for ALARM
• CR for CRITICAL
• ER for ERROR
• WA for WARNING
• NO for NOTIFICATION
• IN for INFO

CR

@Ni 18 character hexadecimal representation of
Notification id of type saNtfIdentifierT [2], a
field in the SaLogNtfLogHeaderT structure
(see Section 3.3.5.2)

0x0000000000000043

@Nt 18 character hexadecimal representation of
time from eventTime of type saTimeT, a field
in the SaLogNtfLogHeaderT structure (see
Section 3.3.5.2). Notice that this time is when
an alarm or notifications occurred, which is
distinct from when a log record is logged (see
@Ct).

0x0006670634553455

@Nh 2 digit hour of the day from eventTime of type
saTimeT. If the common token type @Na (for
am/pm output) is in a format expression, then
the output is formatted for a 12 hour clock.
Otherwise the output is formatted for a 24
hour clock.

04

@Nn 2 digit minute of the hour from eventTime of
type saTimeT.

05

@Ns 2 digit second of the minute from eventTime
of type saTimeT.

47

Table 1: Log Record Format Tokens

Token
Type Description Example Output Format
20 SAI-AIS-LOG-A.01.01 Section 3.1.5.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
There are distinct but parallel time-related tokens for both common (C) and alarm and notifi-
cation (N) record fields since the time when an alarm or notification is published and the time
when that alarm or notification is logged are different times.

Also notice that all output is printable text, so that some amount of human inspection of log
record output is possible without the aid of a log reader program.

@Na am/pm according to a 12 hour clock, from
eventTime of type saTimeT. See token type
@Nh.

pm

@Nm 2 digit month from eventTime of type
saTimeT.

04

@NM 3 letter abbreviation for month from event-
Time of type saTimeT.

Jan

@Nd 3 letter day of the week from eventTime of
type saTimeT.

Fri

@Ny 2 digit year from eventTime of type saTimeT. 11

@NY 4 digit year from eventTime of type saTimeT. 2011

@Ne<fs> <field-size> hexadecimal expression for
event type from type saNtfEventTypeT [2], a
field in the SaLogNtfLogHeaderT structure
(see Section 3.3.5.2). The hex expression
makes it easier for a human reader to identify
the previously ORed parts of it.

‘0x3002’, where <fs>=6
(which corresponds to
SA_NTF_ATTRIBUTE_REMOVE
D).

@Na<fs> notificationObject of type saNameT, a field in
the SaLogNtfLogHeaderT structure (see Sec-
tion 3.3.5.2)

‘safSu=xx,safSg=yy,safA
pp=zz........’, where
<fs>=35

@Ng<fs> notifyingObject of type saNameT, a field in
the SaLogNtfLogHeaderT structure (see Sec-
tion 3.3.5.2)

‘safSu=xx,safSg=yy,safA
pp=zz........’, where
<fs>=35

Table 1: Log Record Format Tokens

Token
Type Description Example Output Format
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.1.5.1 21

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
3.1.5.2 Format Expressions

These format token types are sequenced to form log record format expressions that
are subject to these rules.

1. It is an error to use a particular token type in a format expression that is incom-
patible with the log stream that the expression is associated with. This means:

• Only @C and @S tokens can be used in a format expression that is associ-
ated with an application or system log stream.

• Only @C and @N tokens can be used in a format expression that is associ-
ated with a notification or alarm log stream.

2. If a <field-size> is allowed and expressed for a particular token type, then
• All character output is left justified within its <field-size>. If the output is too big,

the tail of the character output is truncated.
• All digit or hex output is right justified within its <field-size>. If the output is too

big, the most significant digits or hex positions are truncated.
3. It is an error to reference the same token type more than once per format expres-

sion.
4. Literal characters placed in a format expression are output as is, in place (see

Section 3.1.5.3). The exception is the @ character, which is reserved. It cannot
be used as a literal. No escape sequence is defined.

5. For token types that format the identified field to a printable string (such as
@Cb), any non-printable characters are output as under-bar (“_”). Some other
substitute character may be defined as an implementation option.

The Log Service shall also place termination character(s) at the final character posi-
tion(s) of each output log record. The actual character or characters used are imple-
mentation-specific, but the intent is to match ‘carriage return line feed’ semantics
(different operating systems have their preferences). These characters are included
in the fixed size total of each log record (see Section 3.1.6.2).

3.1.5.3 Default Format Expressions

If a log record format expression is not explicitly configured at an output destination,
then the Log Service will us a default format expression.

The default log record format expression for the application and system log streams
are:

@Cr @Ch:@Cn:@Cs @Cm/@Cd/@CY @Sv @Sl “@Cb”

This produces a formatted output like:
22 SAI-AIS-LOG-A.01.01 Section 3.1.5.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
........33 04:35:45 05/22/2005 3 safSu=xx,safSg=yy,safApp=zz
“port access denied”

Notice in the example that the literal characters [:, ,/,”] placed in the format
expression appear in the formatted output in the corresponding places. Also notice
that the token types for logSvcUsrName (@Sl) and logBuffer (@Cb) fields are not
qualified by a <field-size> value, so the field sizes for those tokens will be different for
each log record in the log file.

The default log record format expression for the notification and alarm log streams
are:

@Cr @Ct @Nt @Ne5 @Na30 @Ng30 “@Cb”

This produces a formatted output like:

...4563419 0x0006670634553455 0x0006670634553455 ...76
safSu=xx,safSg=yy,safApp=zz...safSu=xx,safSg=yy,safApp=zz... “port
access denied”

3.1.6 Log File Properties

The alarm, notification and system log streams each lead to their respective output
files, where either a supplied log file configuration or a default log file configuration is
applied. For these three cases, a configuration can be supplied through the IMM[3]
service interface available very early in the life of the Log Service. If a log file configu-
ration is not supplied, the Log Service shall use a default configuration. If a file config-
uration is supplied but has errors, the Log Service shall use a default configuration.

The actual values of a default configuration are implementation-specific as long as
the default profile is legal, as outlined in Section 3.1.6.2.

For an application log stream however log file properties are configured by the logger
when it creates a new application log stream when saLogOpenStream() is invoked. In
this case, the configuration supplied must be correct in order for the stream to be cre-
ated (see Section 3.5.1). There is no concept of a default set of log file properties.

From an external point of view, log stream log file properties can be learned in one of
two ways:

• by way of IMM[3], where current application log stream properties are identified
in runtime and configuration objects, or

• by subscribing to the 'log stream created’ object change notification (see Section
5.2.2), which contains the data points necessary to know the name and location
of the <filename>.cfg file (see Section 3.1.6.2), which explains the pertinent con-
figuration information necessary to ‘read’ the corresponding log file.
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.1.6 23

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
Once an output destination is made operational, the associated file configuration can-
not change for the life of that output destination.

3.1.6.1 Log File Configurable Attributes

The log file configurable attributes are:

log file path: this standard POSIX path name explains which directory the log file (or
files) shall be placed. Details regarding where log files can live and how location
within a cluster is specified is implementation-specific.

log file name: this name is used to create (at least) two files.

• <filename>.cfg, which contains the format expression and key configuration
information associated with the log output files, and

• <filename>_<createtime>.log, which houses the logging information so formatted
starting at <createtime> time.

maximum log file size: The maximum size a log file may grow, in bytes. Zero means
there is no predefined limit.

fixed log record size: indicates the fixed log record size (after the formatting rules
have been applied) that can be written to this file. Log record output smaller than this
size are padded with blank characters. Log record output larger than this is truncated
at the fixed log record size. This size includes Log Service termination characters, as
described in Section 3.1.5.2.

high availability flag: Indicates if the log file must always be available and implies file
replication and persistency. The implementation can achieve replication in any fash-
ion it desires (replication, RAID storage, NAS/SAN, etc.) so long as it is accessible
from the same path name from any node in the cluster. Persistency means that the
log file must exist across cluster reboots (i.e., all nodes go down, then come back,
thus for some period of time there is no cluster). High availability is always TRUE for
the alarm and notification log files.

log file full action: explains the desired Log Service behavior when a file’s maximum
log size is reached. The options are:

• wrap – Once the maximum log file size has been reached, the oldest log records
are deleted as needed to allow for new log records to be added.

• halt – The log is full. No more log records are allowed in this file. For this action,
‘capacity alarm condition’ attributes may be configured, though such a configura-
tion is left as an implementation matter in this release.
• A ‘capacity alarm’ notification (see Section 5.2.1.2) shall be generated by the

Log Service when capacity alarm conditions are reached.
24 SAI-AIS-LOG-A.01.01 Section 3.1.6.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• rotation – When the current log file is full, a new log file is created (with cre-
atetime>) to which future log records are now written. For this action, these other
attributes must also be configured.
• max number of files: the maximum number of files allowed in the rotation. If the

maximum number is reached, then the oldest file is removed and another file
is then created.

3.1.6.2 Log File Configuration File

When an output destination is configured with a log <filename>, several files are cre-
ated, and certain naming conventions are expected.

<filename>.cfg - The Log Service creates this log file configuration file prior to the log
stream becoming operational. This file explains these key log file properties:

• The version of the Log Service that generated this file
• The log record format expression applied to the output (see Section 3.1.5.2).
• The maximum log file size configured
• The fixed size of each log record in the file
• Log file full action

The syntax of how these values appear in the <filename>.cfg must be formally
described as it is a public interface of the Log Service. This specification allows any
SA Forum standards based log file reader to parse the content and understand how
to read the corresponding log files. The following BNF explains this syntax:

LogFileCfg : <LogVerExp> <FmatExp> <CfgExp>
LogVerExp : LOG_SVC_VERSION: <Version>
FmatExp : FORMAT: <LogRecFmatExp>
CfgExp : MAX_FILE_SIZE: <number>
 FIXED_LOG_REC_SIZE: <number>
 LOG_FULL_ACTION: <Action>
Action : WRAP

| HALT
| ROTATE <NumFilesToRotate>

Version : <ReleaseCode>.<MajorVers>.<MinorVers>
ReleaseCode : <character>
MajorVers : <number>
MinorVers : <number>
NumFilesToRotate : <number>
LogRecFmatExp : <see Section 3.1.5>
number : [0..9]+

An example of a legal <filename>.cfg file is:
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.1.6.2 25

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
LOG_SVC_VERSION: B.2.1
FORMAT:@Cr @Ch:@Cn:@Cs @Cm/@Cd/@CY @Sv @Sl “@Cb”
MAX_FILE_SIZE: 8000000
FIXED_LOG_REC_SIZE: 100
LOG_FULL_ACTION: ROTATE 4

This particular example <filename>.cfg file uses the default system an application log
record format expression.

When the log file or files associated with this output destination are complete, and the
last log file is closed (see Section 3.1.6.3), the Log Service changes the configuration
file name to:

<filename>_<closetime>.cfg

so that a log reader can know that this configuration file is no longer active, and that
the configuration specified is associated with one or more log files with the same
<filename> prefix and qualifying <closetime> suffix.

3.1.6.3 Log File Naming Rules

The content of a log file (or files) conforms to the configuration expressed in the <file-
name>.cfg file.

There are two notable moments in the life of a log file (or files), which correspond to a
name change of the log file.

1. When a log file is created or is in use, the log file has the file name:

<filename>_<createtime>.log

2. When a log file is closed, the log file has the file name:

<filename>_<createtime>_<closetime>.log

A log file can close for one of these reasons:

• An application log stream is closed by its last user, or
• The last application log stream user dies (which is an implicit log stream close).
• A log file has reached maximum capacity and a log file full action is undertaken;

specifically halt or rotate.

A closed log file does not imply a closed log stream. First, the constant log streams
(notification, alarm, and system) are always available. Second, in future versions of
this specification there may be several independent output destinations associated
with the same log stream as suggested by the log stream handler concept (see Sec-
tion 2.3).
26 SAI-AIS-LOG-A.01.01 Section 3.1.6.3 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
The log file naming rules for the various log full actions is now considered.

If an application log stream is closed, or when the LogFullAction is either ROTATE or
HALT and the log file has reached the configure MAX_FILE_SIZE, the file is given its
file closed name.

In the case of ROTATE, a new file is created with a <createtime> that is the same as
the <closetime> of the just-finished log file. This makes the ordered creation of these
files simple to identify.

In the case of WRAP, there is only ever a single file that is never finished and so its
name is never augmented with a <closetime>. The exception is when this file is asso-
ciated with an application log stream and the log stream is closed.

the format of <createtime> and <closetime> is:

yyyymmdd__hhmmss

This order allows for easy lexicographical sorting by date and time of any group of
files.

So a completed ROTATE log file might read:

myLogFile_20050712_102316__20050713_030854.log

3.1.6.4 Log File Behaviors

Log records must be readable immediately after they are written to a log file. A file
reader cannot be blocked from accessing a file that is currently being written to.

Log records are written to a file in the order in which they arrive at the output destina-
tion (as opposed to the order of its time-stamp). Third party reader tools can use the
time-stamp value of each log record if the temporal sequence is desired.

All log records are given an ascending 32 bit record-id value per distinct output desti-
nation (in this case a log file) that is assigned in the order in which the log record
arrived at the particular output destination.

It is left as an implementation matter as to if, how or when log files can be deleted,
moved, compacted, archived or otherwise modified in a running system while the log
stream is active and how these activities are coordinated with the Log Service. Log
Service operations to cover such cases may be introduced in future revisions of this
document.

3.1.7 Internationalization

Internationalization refers to a means by which the text associated with a log record is
formatted and presented in the preferred language of choice to a human reader. The
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.1.6.4 27

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
SA Forum Notification (NTF) Service[2] data type saNtfClassIdT provides the princi-
ple data points that allow for a catalog lookup of the substitute values necessary to
achieve a specific language presentation.

Though the Log service provides the data points to support Internationalization, the
actual method for achieving it is postponed to some future Log Service release.

3.2 Include File and Library Names
The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the Log Service API:

#include <saLog.h>

To use the Log Service API, an application must be bound with the following library:

libSaLog.so

3.3 Type Definitions
The Log Service uses the types described in the following sections.

3.3.1 Handles

3.3.1.1 SaLogHandleT

typedef SaUint64T SaLogHandleT;

The type of the handle supplied by the Log Service to a process during initialization of
the Log Service and used by a process when it invokes functions of the Log Service
API so that the Log Service can recognize the process.

3.3.1.2 SaLogStreamHandleT

typedef SaUint64T SaLogStreamHandleT;

The type of the handle associated with a particular log stream.

3.3.2 Log Types

3.3.2.1 Log Stream Names

The following log stream name constants map to the three well-known log streams.
28 SAI-AIS-LOG-A.01.01 Section 3.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
#define SA_LOG_STREAM_SYSTEM “safLgStr=saLogSystem"

#define SA_LOG_STREAM_NOTIFICATION “safLgStr=saLogNotification"

#define SA_LOG_STREAM_ALARM “safLgStr=saLogAlarm"

These log stream name constant values have the following interpretation:

• SA_LOG_STREAM_ALARM - this log stream name is used by the SA Forum
Notification (NTF) Service [2] to open the alarm log stream, which tracks to the
ITU specifications alarm reporting (X.733) and security alarm reporting
(X.736). There is one alarm log stream in a cluster.

• SA_LOG_STREAM_NOTIFICATION - this log stream name is used by the SA
Forum Notification (NTF) Service [2] to open the notification log stream, which
tracks to the ITU specifications object management (X.730) and state man-
agement (X.731). There is one notification log stream in a cluster.

• SA_LOG_STREAM_SYSTEM - this log stream name is used by applications
to open the system log stream in order to log circumstances that are system
relevant, but less formal than alarm or notification logging. These log records
are noteworthy or supplementary to a reasonable view of a cluster’s (historic)
circumstances. There is one system log stream in a cluster.

Application log stream names are user defined and must be cluster wide unique. As
such, no application log stream constant names are identified in this specification.
There can be any number of application log streams in a cluster.
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.3.2.1 29

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
3.3.2.2 SaLogSeverityT and SaLogSeverityFlagsT

The SaLogSeverityT and SaLogSeverityFlagsT types are used to express severity in
the context of applications and system log records and log streams.

#define SA_LOG_SEV_EMERGENCY 0

#define SA_LOG_SEV_ALERT 1

#define SA_LOG_SEV_CRITICAL 2

#define SA_LOG_SEV_ERROR 3

#define SA_LOG_SEV_WARNING 4

#define SA_LOG_SEV_NOTICE 5

#define SA_LOG_SEV_INFO 6

typedef SaUint16T SaLogSeverityT;

typedef SaUint16T SaLogSeverityFlagsT;

SaLogSeverityT is a used to specify the severity level of a particular system or appli-
cation log record (see Section 3.3.5.3) when the saLogWriteLog() is invoked (see
Section 3.5.3).

SaLogSeverityFlagsT is a bitmap used in the SaLogFilterSetCallbackT() callback
(see Section 3.5.5). In this case, each SA_LOG_SEV_ value identifies a bit position
in the SaLogSeverityFlagsT bitmap to allow (bit is 1) or disallow (bit is 0) log records
of a particular severity on to the associated system or application log stream.

These severity levels have the following interpretation [7]:

• SA_LOG_SEV_EMERGENCY - the system is unusable
• SA_LOG_SEV_ALERT - action must be taken immediately
• SA_LOG_SEV_CRITICAL - critical conditions
• SA_LOG_SEV_ERROR - error conditions
• SA_LOG_SEV_WARNING - warning conditions
• SA_LOG_SEV_NOTICE - normal but significant condition
• SA_LOG_SEV_INFO - informational messages
30 SAI-AIS-LOG-A.01.01 Section 3.3.2.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.3.2.3 SaLogBufferT

typedef struct {

SaSizeT logBufSize;

SaUint8T *logBuf;

} SaLogBufferT;

This data structure contains the body of the log record and is provided while invoking
the saLogWriteLog() function. The Log Service does not interpret or parse the interior
of a SaLogBufferT, except as implied by either the @Cb or @Ci format tokens (see
Section 3.1.5.1) when used in a format expression (see Section 3.1.5.2).

3.3.2.4 SaLogAckFlagsT

The SaLogAckFlagsT type is used in the saLogWriteLogAsync() calls. A parameter of
the type SaLogAckFlagsT indicates the kind of the required acknowledgment:

#define SA_LOG_RECORD_WRITE_ACK 0x1

typedef SaUint32T SaLogAckFlagsT;

SA_LOG_RECORD_WRITE_ACK - indicates that the calling logger requires an
acknowledgment to confirm whether the log record could be written to the destination
output log file associated with the log stream. If SA_LOG_RECORD_WRITE_ACK is
not set, the calling logger does not require an acknowledgment.

3.3.2.5 SaLogStreamOpenFlagsT

The following values specify the open attributes used in the saLogStreamOpen()
while opening an application log stream.

#define SA_LOG_STREAM_CREATE 0x1

typedef SaUint8T SaLogStreamOpenFlagsT;

A value or parameter of the type SaLogStreamOpenFlagsT is zero or the bitwise OR
of the values in the following list:

• SA_LOG_STREAM_CREATE - This flag requests the creation of an application log
stream if the identified log stream does not already exist.

3.3.3 Log Service API and Notification Types

The Log Service API interface uses SA Forum Notification (NTF) Service [2] data
types SaLogNtfLogHeaderT (see Section 3.3.5.2) and SaLogGenericLogHeaderT
(see Section 3.3.5.3) as part of their definition. In order to resolve these data types,
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.3.2.3 31

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
the saLog.h file simply includes the SA Forum Notification (NTF) Service [2] header
file, as follows:

#include <saNtf.h>

3.3.4 Log Service as Notification Producer

The Log Service is also a producer of Notifications (see Section 4). The values
placed in certain fields within notifications are assigned by the Log Service.

3.3.4.1 SaLogNtfIdentifiersT

The Log Service defines a set of Notification identifiers, which are scoped to the Log
Service only.

typedef enum {

SA_LOG_NTF_LOGFILE_PERCENT_FULL= 1 /* used in capacity alarm */

} SaLogNtfIdentifiersT;

3.3.4.2 SaLogNtfAttributesT

The object change notifications allow a list of attributes to be delivered. The Log Ser-
vice notifications that have such a list are:

• log stream create
• log stream destroy

typedef enum {

SA_LOG_NTF_ATTR_LOG_STREAM_NAME = 1,

SA_LOG_NTF_ATTR_LOGFILE_NAME,

SA_LOG_NTF_ATTR_LOGFILE_PATH_NAME

} SaLogNtfAttributesT;
32 SAI-AIS-LOG-A.01.01 Section 3.3.4 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.3.5 Log Record Types

3.3.5.1 SaLogHeaderTypeT

typedef enum {

SA_LOG_NTF_HEADER = 1,

SA_LOG_GENERIC_HEADER = 2

} SaLogHeaderTypeT;

The values of the SaLogHeaderTypeT have the following interpretations:

• SA_LOG_NTF_HEADER - The log record header structure used for an
saLogWriteLog() is SaLogNtfLogHeaderT, which is suitable for the alarm or
notification log streams.

• SA_LOG_GENERIC_HEADER - The log record header structure used for a
saLogWriteLog() is SaLogGenericLogHeaderT, which is suitable for the sys-
tem or any application log stream.

3.3.5.2 SaLogNtfLogHeaderT

typedef struct {

SaNtfIdentifierT notificationId;

SaNtfEventTypeT eventType;

SaNameT *notificationObject;

SaNameT *notifyingObject;

SaNtfClassIdT *notificationClassId;

SaTimeT eventTime;

} SaLogNtfLogHeaderT;

This structure contains the fields specific to a notification or alarm log record header.
It must be populated by the logger when saLogWriteLog() is invoked. The fields have
the following interpretation:

• notificationId - (defined in saNtf.h [2]). This is a cluster-wide unique identifier
value provided to the Log Service by a Notification service client. This field
may be set to SA_NTF_IDENTIFIER_UNUSED [2] if no identifier is provided.
The Log Service does not police this value for uniqueness.

• eventType - (defined in saNtf.h [2]) This field must be set. It reflects the event
type of the notification. This value is achieved by OR-ing together an enum
value of type SaLogNtfEventTypeT with an enum value of type
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.3.5 33

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
SaLogNtfNotificationTypeT. This produces a two-part value that expresses the
macro type of the event like alarm, security alarm, object, state or attribute
change as well as the exact event subtype such as an alarm that is QOS or
environment related.

• notificationObject - A non-NULL pointer to the name of the logical entity about
which the notification is generated, identified by its full LDAP name.

• notifyingObject - This field must be set. A non-NULL pointer to the name of the
logical entity that is sending the notification, identified by its full LDAP name.

• notificationClassId - This field is optional (defined in saNtf.h [2]). It uniquely
identifies the kind of situation that caused the notification. This identifier alone
is sufficient to unequivocally identify the kind of situation, no other information
from the notification is necessary.

• eventTime - This field must be set. This field contains the time at which an
event is detected. This may not be the same time at which the event was
reported or the notification was logged.
34 SAI-AIS-LOG-A.01.01 Section 3.3.5.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.3.5.3 SaLogGenericLogHeaderT

typedef struct {

SaNtfClassIdT *notificationClassId;

const SaNameT *logSvcUsrName;

SaLogSeverityT logSeverity;

} SaLogGenericLogHeaderT;

This structure contains the fields that go into a log record header and whose destina-
tion is either the system or an application specific log stream. The fields have the fol-
lowing interpretation:

• notificationClassId - (defined in saNtf.h) This field is used for internationaliza-
tion. This is an optional field that may be set to NULL. The Log Service itself
just passes this value through to the output destination. Future versions of this
specification will address internationalization issues (see Section 3.1.7).

• logSvcUsrName - The LDAP name used by the logger to identify itself. This
will typically be a component or service unit provided the user is a component
under the control of the Availability Management Framework. This argument
only needs to be specified on a per log record basis in the saLogWriteLog() or
saLogWriteLogAsync() API when the logger wants to override the default user
name maintained by the Log Service on behalf of a logger. The default user
name is fetched by the Log Service library from the
SA_AMF_COMPONENT_NAME environment variable by using a POSIX
getenv() subroutine. This mechanism avoids cross-library dependencies. If
this argument is not specified at saLogWriteLog() time and the environment
variable is not set, it is an error.

• logSeverity - This field must be set to a single severity level value for this log
record. The various severity levels supported by the Log Service are defined in
Section 3.3.2.2.

3.3.5.4 SaLogHeaderT

typedef union {

SaLogNtfLogHeaderT ntfHdr;

SaLogGenericLogHeaderT genericHdr;

} SaLogHeaderT;

The SaLogHeaderT type contains log record header information that is specific to the
log stream for which the log record is destined. If the log record is destined for either
the notification or alarm log streams then the ntfHdr structure must be properly popu-
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.3.5.3 35

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
lated (refer to Section 3.3.5.2). If the log record is destined for either the system or an
application log stream then genericHdr must be properly populated (refer to Section
3.3.5.3).

3.3.5.5 SaLogRecordT

The following data structure describes the contents of a log record. This data-struc-
ture wraps data structures that have been described earlier.

typedef struct {

SaTimeT logTimeStamp;

SaLogHeaderTypeT logHdrType;

SaLogHeaderT logHeader;

SaLogBufferT *logBuffer;

} SaLogRecordT;

The fields in this data structure have the following interpretation:

• logTimeStamp - This field contains the time at which the log is produced. If the
time-stamp can not be provided by the user then the constant
SA_TIME_UNKNOWN shall be specified instead, which means the Log Ser-
vice needs to supply the time-stamp.

• logHdrType - This field must be set. It indicates the log record header type that
is populated in the union SaLogHeaderT (see Section 3.3.5.4) of the next
parameter, logHeader.

• logHeader - Refer to Section 3.3.5.4 for details on how to populate this field
based on the logHdrType field.

• logBuffer - Contains the body of the log record, which the Log service treats as
a single opaque data unit. It may be NULL indicating that there is no body. The
Log Service transfers the log body as a part of the log record reliably through
the log stream to its final output destination where this data unit is subject to
either the @Cb or @Ci format tokens (see Section 3.1.5.1) both of which result
in only printable character output.
36 SAI-AIS-LOG-A.01.01 Section 3.3.5.5 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.3.6 Application Log Types

This section describes additional data-structures used by application loggers only.

3.3.6.1 SaLogFileFullActionT

typedef enum {

SA_LOG_FILE_FULL_ACTION_WRAP = 1,

SA_LOG_FILE_FULL_ACTION_HALT = 2,

SA_LOG_FILE_FULL_ACTION_ROTATE = 3

} SaLogFileFullActionT;

This type explains Log Service behavior when a file’s maximum log size is reached.
This policy is specified while opening a new application log stream. These policies
are as follows:

SA_LOG_FILE_FULL_ACTION_WRAP - Once the maximum log file size has been
reached, the oldest log records are deleted as needed to allow for new log records.

SA_LOG_FILE_FULL_ACTION_HALT - The log file is full. No more log records are
allowed in this log file.

SA_LOG_FILE_FULL_ACTION_ROTATE - When the current log file is full, a new log
file is created (with <createtime>) to which future log records are now written.

3.3.6.2 SaLogFileCreateAttributesT

typedef struct {

SaStringT *logFileName;

SaStringT *logFilePathName;

SaUint64T maxLogFileSize;

SaUint32T maxLogRecordSize;

SaBoolT haProperty;

SaLogFileFullActionT logFileFullAction;

SaUint16T maxFilesRotated;

SaStringT *logFileFmt;

} SaLogFileCreateAttributesT;

This type contains the log file creation information that needs to be supplied while
creating a new application log stream. The fields are interpreted as follows:
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.3.6 37

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
• logFileName - The POSIX log file name to be associated with an application
specific log stream. A value must be set.

• logFilePathName - The POSIX path, which qualifies where the log file resides
in the cluster. Details regarding where log files can live and how location within
a cluster is actually specified is implementation-specific.

• maxLogFileSize - The maximum size a log file may grow to, in bytes. A value
of zero indicates no predefined limit. If the specified limit is exceeded the
logFileFullAction action as described in Section 3.3.6.1 is invoked. A value
must be set.

• maxLogRecordSize - This is required. Max log record size that can be written
to this file. Log records larger than this size shall be truncated. A value must be
set.

• haProperty - Indicates if the log file must always be available and implies file
replication and persistency (see Section 3.1.6.1). A value must be set.

• logFileFullAction - explains the Log Service behavior when a file’s maximum
log size in bytes is reached. Refer to Section 3.3.6.1 for details. A value must
be set.

• maxFilesRotated - Indicates the number of files maintained at a time if the
logFileFullAction policy is chosen as
SA_LOG_FILE_FULL_ACTION_ROTATE. If the logFileFullAction policy is not
SA_LOG_FILE_FULL_ACTION_ROTATE, this field is ignored by the Log Ser-
vice.

• logFileFmt - contains a log record format expression specified by the logger. If
this value is NULL, then the Log Service uses the default format expression for
the target log stream type (see Section 3.1.5.3).

3.3.7 SaLogCallbacksT

The SaLogCallbacksT structure is defined as follows:

typedef struct {

SaLogFilterSetCallbackT saLogFilterSetCallback;

SaLogStreamOpenCallbackT saLogStreamOpenCallback;

SaLogWriteLogCallbackT saLogWriteLogCallback;

} SaLogCallbacksT;

This structure contains the callback function pointers supplied by the logger to the
Log Service. The Log Service will invoke these callbacks at well defined moments.
38 SAI-AIS-LOG-A.01.01 Section 3.3.7 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.4 Library Life Cycle

3.4.1 saLogInitialize()

Prototype

SaAisErrorT saLogInitialize(

SaLogHandleT *logHandle,

const SaLogCallbacksT *logCallbacks,

SaVersionT *version

);

Parameters

logHandle - [out] A pointer to the handle designating this particular initialization of the
Log Service that is to be returned by the Log Service.

logCallbacks - [in] If logCallbacks is set to NULL, no callback is registered; otherwise,
it is a pointer to a SaLogCallbacksT structure, containing the callback functions of the
process that the Log Service may invoke. Only non-NULL callback functions in this
structure will be registered.

version - [in/out] As an input parameter, version is a pointer to the required Log Ser-
vice version. In this case, minorVersion is ignored and should be set to 0x00.
As an output parameter, the version actually supported by the Log Service is deliv-
ered.

Description

This function initializes the Log Service for the invoking process and registers the var-
ious callback functions. This function must be invoked prior to the invocation of any
other Log Service functionality. The handle logHandle is returned as the reference to
this association between the process and the Log Service. The process uses this
handle in subsequent communication with the Log Service.

If the implementation supports the required releaseCode, and a major version >= the
required majorVersion, SA_AIS_OK is returned. In this case, the version parameter is
set by this function to:

• releaseCode = required release code
• majorVersion = highest value of the major version that this implementation can

support for the required releaseCode
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.4 39

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
• minorVersion = highest value of the minor version that this implementation can
support for the required value of releaseCode and the returned value of
majorVersion

If the above mentioned condition cannot be met, SA_AIS_ERR_VERSION is
returned, and the version parameter is set to:

if (implementation supports the required releaseCode)

releaseCode = required releaseCode

else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the least value of the supported release codes that is
higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that is
less than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Log Service library or the Log Service pro-
vider is out of memory and cannot provide the service.
40 SAI-AIS-LOG-A.01.01 Section 3.4.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_VERSION - The version parameter is not compatible with the version
of the Log Service implementation.

See Also

saLogSelectionObjectGet(), saLogDispatch(), saLogFinalize()

3.4.2 saLogSelectionObjectGet()

Prototype

SaAisErrorT saLogSelectionObjectGet(

SaLogHandleT logHandle,

SaSelectionObjectT *selectionObject

);

Parameters

logHandle - [in] The handle, obtained through the saLogInitialize() function, designat-
ing this particular initialization of the Log Service.

selectionObject - [out] A pointer to the operating system handle that the process can
use to detect pending callbacks.

Description

This function returns the operating system handle, selectionObject, associated with
the handle logHandle. The invoking process can use this handle to detect pending
callbacks, instead of repeatedly invoking saLogDispatch() for this purpose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.

The selectionObject returned by saLogSelectionObjectGet() is valid until
saLogFinalize() is invoked on the same handle logHandle.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.4.2 41

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle logHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Log Service library or the Log Service pro-
vider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

See Also

saLogInitialize(), saLogDispatch(), saLogFinalize()

3.4.3 saLogDispatch()

Prototype

SaAisErrorT saLogDispatch(

SaLogHandleT logHandle,

SaDispatchFlagsT dispatchFlags

);

Parameters

logHandle - [in] The handle, obtained through the saLogInitialize() function, designat-
ing this particular initialization of the Log Service.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saLogDispatch() function, which have the values SA_DISPATCH_ONE,
SA_DISPATCH_ALL, or SA_DISPATCH_BLOCKING, as defined in the SA Forum
Overview document.

Description

This function invokes, in the context of the calling thread, pending callbacks for the
handle logHandle in a way that is specified by the dispatchFlags parameter.
42 SAI-AIS-LOG-A.01.01 Section 3.4.3 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle logHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.

See Also

saLogInitialize(), saLogSelectionObjectGet()

3.4.4 saLogFinalize()

Prototype

SaAisErrorT saLogFinalize(

SaLogHandleT logHandle

);

Parameters

logHandle - [in] The handle, obtained through the saLogInitialize() function, designat-
ing this particular initialization of the Log Service.

Description

The saLogFinalize() function closes the association, represented by the logHandle
parameter, between the invoking process and the Log Service. The process must
have invoked saLogInitialize() before it invokes this function. A process must invoke
this function once for each handle acquired by invoking saLogInitialize().

If the saLogFinalize() function returns successfully, the saLogFinalize() function
releases all resources acquired when saLogInitialize() was called. Moreover, it closes
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.4.4 43

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
all log streams that are still open for the particular handle. Furthermore, it cancels all
pending callbacks related to the particular handle.

After saLogFinalize() is called, the selection object is no longer valid. Note that
because the callback invocation is asynchronous, it is still possible that some call-
back calls are processed after this call returns successfully.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle logHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

See Also

saLogInitialize()
44 SAI-AIS-LOG-A.01.01 Section 3.4.4 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
3.5 Log Service Operations

3.5.1 saLogStreamOpen() and saLogStreamOpenAsync()

Prototype

SaAisErrorT saLogStreamOpen(

SaLogHandleT logHandle,

SaNameT logStreamName,

SaLogFileCreateAttributesT *logFileCreateAttributes,

SaLogStreamOpenFlags logStreamOpenFlags,

SaTimeT timeout,

SaLogStreamHandleT *logStreamHandle

);

SaAisErrorT saLogStreamOpenAsync(

SaLogHandleT logHandle,

SaNameT logStreamName,

SaLogFileCreateAttributesT *logFileCreateAttributes,

SaLogStreamOpenFlags logStreamOpenFlags,

SaInvocationT invocation

);

Parameters

logHandle - [in] The handle, obtained through the saLogInitialize() function, designat-
ing this particular initialization of the Log Service.

logStreamName - [in] This parameter designates the DN name of the log stream to
open. This may be one of the well-known log stream names (see Section 3.3.2.1) or it
may be a user defined cluster wide unique application log stream name.

logFileCreateAttributes - [in] A pointer to the SaLogFileCreateAttributesT (see Sec-
tion 3.3.6.2) that describes the attributes associated with an application log stream
only. If one of the well-known log streams is being opened this should be NULL.
Other considerations are as follows:
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.5 45

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
• If the intent is only to open an existing application log stream by supplying the
same logStreamName, then this value should be NULL.

• If the intent is to open and create an application log stream that does not yet
exist, then logFileCreateAttributes must be populated and its pointer passed.

• If the intent is to open a (possibly) existing application log stream, but still specify
creation attribute values, then the provided values must be identical to those val-
ues provided by the initial logger who successfully created the application log
stream.

logStreamOpenFlags - [in] The value of the parameters is constructed by a bit OR of
the flags defined by the (see Section 3.3.2.5). This value is only set when opening an
application log stream. If one of the well-known log streams is being opened this must
not be set. Other considerations are as follows:

• If the intent is only to open an existing application log stream by supplying the
same logStreamName, then this value may not be set.

• If the intent is to open and create an application log stream that does not yet
exist, then the SA_LOG_STREAM_CREATE flag must be set.

• If the intent is to open a (possibly) existing application log stream by providing an
identical set of values in the parameter logFileCreateAttributes, then the
SA_LOG_STREAM_CREATE flag must also be set.

timeout - [in] The saLogStreamOpen() invocation is considered to have failed if it
does not complete by the time specified. A log stream may still be created in such a
case, as the outcome is non-deterministic.

invocation - [in] This parameter allows the invoking logger to match this invocation of
saLogStreamOpenAsync() with the corresponding (*SaLogStreamOpenCallbackT)()
callback call.

logStreamHandle- [out] A pointer to the log stream handle, allocated in the address
space of the invoking process. If the log stream is opened successfully, the Log Ser-
vice stores in logStreamHandle the handle that the logger uses to access the correct
log stream in subsequent invocations of the functions of the Log Service Operations
APIs.

Description

The saLogStreamOpen() opens a log stream. If the log stream is an application log
stream and the named application log stream does not exist, then the
logFileCreateAttributes must be populated and passed and the
SA_LOG_STREAM_CREATE flag is set in the logStreamOpenFlags parameter.
46 SAI-AIS-LOG-A.01.01 Section 3.5.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
For the three well-known log streams, the logStreamHandle references the existing
alarm, notification, or system log streams, which are created when the Log Service is
initialized in the cluster. These log streams persist over the life time of the Log Ser-
vice in the cluster.

An invocation of saLogStreamOpen() is blocking. If the log stream is successfully
opened, a new log stream handle is returned upon completion. A log stream can be
opened multiple times from within the same process or by different processes.

Completion of the saLogStreamOpenAsync() function is signaled by an invocation of
the associated SaLogStreamOpenCallbackT() callback function, which must have
been supplied when the process invoked the saLogInitialize() call. The process sup-
plies the value of invocation when it invokes the saLogStreamOpenAsync() function
and the Log Service gives that value of invocation back to the application when it
invokes the corresponding SaLogStreamOpenCallbackT() function. The invocation
parameter is a mechanism that enables the process to determine which call triggered
which callback.

Application log streams have a default log record format expression associated with
them as described in Section 3.1.5.3. If this format expression is not desired a differ-
ent format may be specified while creating the log stream using the syntax described
in Section 3.1.5. Once a format expression is associated with a log stream it can not
be changed over the life of the log stream.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout, specified by the timeout parameter, occurred before the call could complete.
It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle logHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saLogInitialize() was incomplete,
since the saLogStreamOpenCallbackT() callback function is missing. This applies
only to the saLogStreamOpenAsync() function.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
error is returned for each of the following cases:
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.5.1 47

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
• An application log stream is identified, and the SA_LOG_STREAM_CREATE
flag is set in logStreamOpenFlags but the logFileCreateAttributes parameter is
NULL.

• An application log stream is identified, and the SA_LOG_STREAM_CREATE
flag is not set in logStreamOpenFlags but the logFileCreateAttributes parameter
is not NULL.

• The LogStreamName is not a DN, or the type of its first RND is not safLgStr.

SA_AIS_ERR_NO_MEMORY - Either the Log Service library or the Log Service pro-
vider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The SA_LOG_STREAM_CREATE flag is not set and
the logFileCreateAttributes is NULL and the application log stream designated by
logStreamName does not exist.

SA_AIS_ERR_EXIST - The application log stream designated by logStreamName
already exists and the logFileCreateAttributes is either non-NULL, or the values pro-
vided do not match the values used to originally open this application log stream.

SA_AIS_ERR_BAD_FLAGS - The logStreamOpenFlags parameter is invalid.

See Also

saLogStreamClose()

3.5.2 SaLogStreamOpenCallbackT

Prototype

typedef void (*SaLogStreamOpenCallbackT)(

SaInvocationT invocation,

SaLogStreamHandleT logStreamHandle,

SaAisErrorT error

);

Parameters

invocation - [in] This parameter was supplied by a process in the corresponding invo-
cation of the saLogStreamOpenAsync() function and is used by the Log Service in
this callback. This invocation parameter allows the process to match the invocation of
that function with this callback.
48 SAI-AIS-LOG-A.01.01 Section 3.5.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
logStreamHandle - [in] The handle that designates the log stream if error is
SA_AIS_OK.

error - [in] This parameter indicates whether the saLogStreamOpenAsync() function
was successful. The values that can be returned are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred

before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may try again.

• SA_AIS_ERR_NO_MEMORY - Either the Log Service library or the provider
of the service is out of memory and cannot provide the service.

• SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other
than memory).

• SA_AIS_ERR_NOT_EXIST - The log stream, identified by logStreamName,
does not exist, and the value of the SA_LOG_STREAM_CREATE flag is not
set.

• SA_AIS_ERR_EXIST - The log stream already exists and the
logFileCreateAttribs creation attributes are different from the ones used at cre-
ation time.

• SA_AIS_ERR_BAD_FLAGS - The logStreamOpenFlags parameter is invalid.

Description

The Log Service calls this callback function when the operation requested by the
invocation of saLogStreamOpenAsync() completes. This callback is invoked in the
context of a thread issuing an saLogDispatch() call on the handle logHandle, which
was specified in the saLogStreamOpenAsync() call. If successful, the reference to
the opened/created stream is returned in logStreamHandle; otherwise, an error is
returned in the error parameter.

Return Values

None

See Also

saLogStreamOpenAsync(), saLogDispatch(), saLogInitialize()
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.5.2 49

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
3.5.3 saLogWriteLog() and saLogWriteLogAsync()

Prototype

SaAisErrorT saLogWriteLog(

SaLogStreamHandleT logStreamHandle,

SaTimeT timeOut,

SaLogRecordT *logRecord

);

SaAisErrorT saLogWriteLogAsync(

SaLogStreamHandleT logStreamHandle,

SaInvocationT invocation,

SaLogAckFlagsT ackFlags,

SaLogRecordT *logRecord

);

Parameters

logStreamHandle - [in] The handle that designates the destination log stream for this
log record. The handle logStreamHandle must have been obtained previously by the
invocation of the saLogStreamOpen() or saLogStreamOpenAsync() function.

timeOut - [in] The saLogWriteLog() invocation is considered to have failed if it does
not complete by the time specified. A log record may be still written to the log stream.

ackFlags - [in] The kind of the required acknowledgment. This field must be set to
zero or to SA_LOG_RECORD_WRITE_ACK. In the latter case, the caller requires to
be acknowledged whether the log record can be logged. If set to 0 no such acknowl-
edgement is desired.

logRecord - [in] A non-NULL pointer to the contents of the log record. The various
fields of this parameter are described in details in Section 3.3.5.5. Refer to that sec-
tion for a detailed overview of how the log record needs to be populated, including
which fields are required and which are optional.

invocation - [in] This parameter associates this invocation of saLogWriteLogAsync()
with a corresponding invocation of the SaLogWriteLogCallbackT() function. This
parameter is ignored if ackFlags is set to zero, meaning that the
SaLogWriteLogCallbackT() function is not called, and the caller is not informed
whether an error occurred.
50 SAI-AIS-LOG-A.01.01 Section 3.5.3 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
Description

This API is used to log a record designated by logRecord to a stream specified by the
logStreamHandle.

An invocation of saLogWriteLog() is blocking. The log record is written to the log file
associated with the stream designated by logStreamHandle upon successful comple-
tion.

An invocation of saLogWriteLogAsync() is non-blocking. Completion of the
saLogWriteLogAsync() signifying that a log record has been written to the log file
associated with the stream designated by logStreamHandle is optionally signaled by
an invocation of the SaLogWriteLogCallbackT() callback function if the flag
SA_LOG_RECORD_WRITE_ACK is set in the ackFlags.

Each log record written to a log file is an atomic operation so that concurrent writes
must be properly handled.

If the destination log file has reached maximum capacity and the logFileFullAction
policy is SA_LOG_FILE_FULL_ACTION_HALT then a
SA_AIS_ERR_NO_RESOURCES error code is returned.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred, or the
timeout, specified by the timeOut parameter, occurred before the call could complete.
It is unspecified whether the call succeeded or whether it did not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle logStreamHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saLogStreamOpen() or
saLogStreamOpenCallback() functions, or the corresponding log stream has
already been closed.

• The handle logHandle that was passed to the saLogStreamOpen() or
saLogStreamOpenAsync() functions has already been finalized.

SA_AIS_ERR_INIT - The previous initialization with saLogInitialize() was incomplete,
since the SaLogWriteLogCallbackT() callback function is missing. This applies only to
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.5.3 51

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
the saLogWriteLogAsync() function if SA_LOG_RECORD_WRITE_ACK flag is set in
the ackFlags.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly. In particular, this
error is returned for each of the following cases:

• The log record type designated by logHdrType in SaLogRecordT does not corre-
spond to the type of log stream implied by logStreamHandle.

• The logSvcUsrName (see Section 3.3.5.3) is not provided and the
SA_AMF_COMPONENT_NAME environment variable is not properly set.

SA_AIS_ERR_NO_MEMORY - Either the Log Service library or the Log Service pro-
vider is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory), including the case that the destination log file associated with the stream
designated by logStreamHandle has reached maximum capacity and the
logFileFullAction policy is SA_LOG_FILE_FULL_ACTION_HALT.

SA_AIS_ERR_BAD_FLAGS - The ackFlags parameter is invalid.

See Also

saLogStreamOpen(), saLogStreamOpenAsync(), SaLogWriteLogCallbackT

3.5.4 SaLogWriteLogCallbackT

Prototype

typedef void (*SaLogWriteLogCallbackT)(

SaInvocationT invocation,

SaAisErrorT error

);

Parameters

invocation - [in] This parameter associates an invocation of saLogWriteLogAsync()
with a corresponding invocation of the SaLogWriteLogCallbackT() function.

error - [in] This parameter indicates whether the saLogWriteLogAsync() function was
successful. The values that can be returned are:

• SA_AIS_OK - The function completed successfully.
• SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library

(such as corruption). The library cannot be used anymore.
52 SAI-AIS-LOG-A.01.01 Section 3.5.4 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
• SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred
before the call could complete. It is unspecified whether the call succeeded or
whether it did not.

• SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

• SA_AIS_ERR_NO_MEMORY - Either the Log Service library or the Log Ser-
vice provider is out of memory and cannot provide the service.

• SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other
than memory), including the case that the destination log file associated with
the stream designated by logStreamHandle in the corresponding invocation of
the saLogWriteLogAsync() function has reached maximum capacity and the
logFileFullAction policy is SA_LOG_FILE_FULL_ACTION_HALT.

• SA_AIS_ERR_BAD_FLAGS - The ackFlags parameter is invalid.

Description

The Log Service calls this callback function when the operation requested by the
invocation of saLogWriteLogAsync() completes or fails, provided a desire for receiv-
ing such an acknowledgement was indicated by setting the
SA_LOG_RECORD_WRITE_ACK flag in the ackFlags field during the
saLogWriteLogAsync() function invocation.

This callback is invoked in the context of a thread issuing an saLogDispatch() call on
the handle logHandle, which was obtained by the invocation of saLogInitialize() func-
tion. If successful, the log record is written to the destination log file associated with
the log stream designated by logStreamHandle in saLogWriteLogAsync() function.

Return Values

None

See Also

saLogWriteLogAsync(), saLogDispatch(), saLogInitialize()
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.5.4 53

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
3.5.5 SaLogFilterSetCallbackT

Prototype

typedef void (*SaLogFilterSetCallbackT)(

SaLogStreamHandleT logStreamHandle,

SaLogSeverityFlagsT logSeverity

);

Parameters

logStreamHandle - [in] The handle that designates either the well-known system log
stream or one of the application log streams. This handle was obtained previously by
the invocation of the saLogStreamOpen() or saLogStreamOpenAsync() function.

logSeverity - [in] explains which log records are allowed to be forwarded from a log-
ger source. This is a bitmap that describes the severity levels at which logging is
enabled, i.e., only log records with severity levels enabled in the logSeverity will be
forwarded to the Log Service.

Description

The Log Service invokes this callback to request the process to log at only the levels
indicated in the bitmap designated by logSeverity for the log stream associated with
the logStreamHandle. Only the system and application log streams use logSeverity.
By default, log records with all severity levels are allowed and the Log Service does
not filter any log records based on the severity level.

Once the logSeverity bitmap arrives, loggers should not produce log records with
severities that are disabled. However, if a logger does produce such log records or
this logger did not provide this callback function, the Log Service always monitors the
severity levels of the log records introduced by way of saLogWriteLog() and will not
ignore log records that are not allowed on the log stream.

This callback may be invoked as a consequence of an administrative operation to set
a particular log steam at desired severity levels or as a matter of initial configuration,
which causes a pre-configured logSeverity to be pushed to the affected processes
that are link with the Log Service library.This callback can happen any time after a
successful completion of saLogStreamOpen() or the
(*SaLogStreamOpenCallbackT)() callback.

The most recent logSeverity is the one that is honored, i.e., the logSeverity delivered
by the last invocation of this callback displaces the logSeverity delivered in the previ-
ous callback.
54 SAI-AIS-LOG-A.01.01 Section 3.5.5 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
Return Values

None

See Also

saLogInitialize()

3.5.6 saLogStreamClose()

Prototype

SaAisErrorT saLogStreamClose(

SaLogStreamHandleT logStreamHandle

);

Parameters

logStreamHandle - [in] The handle that designates the log stream that needs to be
closed. The handle logStreamHandle must have been obtained previously by the
invocation of the saLogStreamOpen() or saLogStreamOpenAsync() function.

Description

The invocation of this API closes the log stream designated by logStreamHandle,
which was opened by an earlier invocation of the saLogStreamOpen() or
saLogStreamOpenAsync() function.

After this invocation, the handle logStreamHandle is no longer valid.

When the invocation of the saLogStreamClose() function completes successfully,
and if it is an application log stream, and no other process has that application log
stream open, then the log file associated with that application log stream is closed
and renamed with a <closetime> that indicates when the last user of the log stream
designated by logStreamHandle closed the stream (see 3.1.6.4).

Closing a log stream frees all resources allocated by the Log Service for this process.

If a process terminates, the Log Service implicitly closes all log streams that are open
for this process.

This call cancels all pending callbacks that refer directly or indirectly to the handle
logStreamHandle. Note that as the callback invocation is asynchronous, it is still pos-
sible that some callback calls are processed after this call returns successfully.
AIS Specification SAI-AIS-LOG-A.01.01 Section 3.5.6 55

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The pro-
cess may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle logStreamHandle is invalid, due to one
or both of the reasons below:

• It is corrupted, was not obtained via the saLogStreamOpen() or
saLogStreamOpenAsync() functions, or the corresponding log stream has
already been closed.

• The handle logHandle that was passed to the saLogStreamOpen() or
saLogStreamOpenAsync() functions has already been finalized.

See Also

saLogStreamOpen(), saLogStreamAsync()
56 SAI-AIS-LOG-A.01.01 Section 3.5.6 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
4 Administrative API

4.1 Log Service Administration API Model

4.1.1 Log Service Administration API Basics

This section describes the various administrative API functions that the IMM Service
exposes on behalf of the Log Service to a system administrator. These API functions
are described using a ‘C’ API syntax. The main clients of this administrative API are
system management applications, SNMP agents and CIM providers that typically
convert system administration commands (invoked from a management station) to
the correct administrative API sequence to yield the desired result that is expected
upon execution of the system administration command.

The Log Service administrative API functions are applicable to the entities that are
controlled by the Log Service such as the Log Stream object.

To date, there are no concurrent and potentially conflicting administrative operations
within the scope of the Log Service.

These API functions will be exposed by the IMM Service Object Management library.
Only synchronous versions of these API are documented in this version. Support for
asynchronous versions will be added later on an as-needed basis based on use
cases and requirements.

4.2 Include File and Library Name
The appropriate IMM Service header file and the Log Service header file must be in-
cluded in the source of an application using the Log Service administration API. For
the name of the IMM Service header file, see [3].

4.3 Type Definitions
The specification of Log Service Administration API requires the following types, in
addition to the ones already described.
AIS Specification SAI-AIS-LOG-A.01.01 Section 4 57

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
4.3.1 saLogAdminOperationIdT

typedef enum {

SA_LOG_ADMIN_CHANGE_FILTER = 1

} saLogAdminOperationIdT;

4.4 Log Service Administration API
As explained above, the administrative API shall be exposed by the IMM[3] Service
library. The IMM Service API saImmOmAdminOperationInvoke() or
saImmOmAdminOperationInvokeAsync() shall be invoked with the appropriate
operationId (see Section 4.3.1) and objectName to execute a particular administrative
operation. In the following section, the administrative APIs are described with the
assumption that the SA Forum Log Service is an object implementer for the various
administrative operations that will be initiated as a consequence of invoking the
saImmOmAdminOperationInvoke() or the saImmOmAdminOperationInvokeAsync()
function with the appropriate operationId (see Section 4.3.1) on the log stream object
designated by objectName.

The API syntax for the administrative APIs shall only use the corresponding enumer-
ation value for the operationId (see Section 4.3.1) for administrative operations on the
Log Service’s log stream objects along with objectName and the possible return val-
ues.
The return values explained in the section below shall be passed in the
operationReturnValue parameter, which is provided by the invoker of the
saImmOmAdminOperationInvoke() or the saImmOmAdminOperationInvokeAsync()
function to obtain return codes from the object implementer (Log Service in this case).

4.4.1 SA_LOG_ADMIN_CHANGE_FILTER

Parameters

operationId -[in] = SA_LOG_ADMIN_CHANGE_FILTER

objectName - [in] The LDAP name of the log stream object whose severity filter value
is to be changed. The initial RDN type must be “safLgStr’. See [4] for SA Forum nam-
ing conventions and rules.

param- [in] The severity filter bitmask value to apply to this log stream.

Description

This administrative operation changes the value of the severity filter used on this log
stream (see Section 3.3.2.2). The effect is that only log records of the allowed severi-
ties are permitted on to the given log stream.
58 SAI-AIS-LOG-A.01.01 Section 4.3.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The client
may retry later.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST - The logical entity, identified by objectName, does not
exist in the configuration repository.

SA_AIS_ERR_NOT_SUPPORTED - This administrative procedure is not supported
by the type of entity denoted by objectName.

SA_AIS_ERR_NO_OP - The invocation of this administrative operation has not effect
since the provided value is identical to the current value of this log stream severity fil-
ter.

SA_AIS_ERR_BAD_OPERATION - The operation was not successful because the
target entity is in locked instantiation administrative state.

See Also

SaLogFilterSetCallbackT
AIS Specification SAI-AIS-LOG-A.01.01 Section 4.4.1 59

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
60 SAI-AIS-LOG-A.01.01 Section 4.4.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
5 Alarms and Notifications
The Log Service produces certain alarms and notifications in order to convey impor-
tant information regarding its operational and functional state to an administrator or a
management system.

These reports vary in perceived severity and include alarms, which potentially require
an operator intervention and notifications that signify important state or object
changes. A management entity should regard notifications, but they do not necessar-
ily require an operator intervention.

The recommended vehicle to be used for producing alarms and notifications is the
Notification Service of the Service AvailabilityTM Forum (abbreviated to NTF, see [2]),
and hence the various notifications are partitioned into categories as described in this
service.

In some cases, this specification uses the word “Unspecified” for values of attributes,
which the vendor is at a liberty to set to whatever makes sense in the vendor’s con-
text, and the SA Forum has no specific recommendation regarding such values. Such
values are generally optional from the CCITT Recommendation X.733 perspective
(see [6])

5.1 Setting Common Attributes
The tables presented in Section 5.2 refer to the attributes in the following list, but do
not describe them, as these attributes are described in the list in a generic manner.
For each attribute in this list, the specification provides recommendations regarding
how to populate the attribute.

• Correlation Ids - They are supplied to correlate two notifications that have been
generated because of a related cause. This attribute is optional. But in case of
alarms that are generated to clear certain conditions, i.e., produced with a per-
ceived severity of SA_NTF_SEVERITY_CLEARED, the correlation id shall be
populated by the application with the notification Id that was generated by the
Notification Service while invoking the saNtfNotificationSend() API during the
production of the actual alarm.

• Event Time - The application might pass a timestamp or optionally pass an
SA_TIME_UNKNOWN value in which case the timestamp is provided by the
Notification Service.

• NCI Id - The vendorId portion of the SaNtfClassIdT data structure must be set to
SA_NTF_VENDOR_ID_SAF always. The majorId and minorId will vary based
on the specific SA Forum service and the particular notification. Every SA Forum
service shall have a majorId as described in the enumeration SaServicesT (see
[4]).
AIS Specification SAI-AIS-LOG-A.01.01 Section 5 61

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
• Notification Id - This attribute is obtained from the Notification Service when a
notification is generated, and hence need not be populated by an application.

• Notifying Object - DN of the entity generating the notification. This name must
conform to the SA Forum AIS naming convention and contain at least the safApp
RDN value portion of the DN set to the specified standard RDN value of the SA
Forum AIS service generating the notification, which in this case is
“safApp=safLogService". For details on the SA Forum AIS naming convention,
refer to the SA Forum Overview document.

5.2 Log Service Notifications
The following sections describe a set of notifications that a Log Service implementa-
tion shall produce.

The value of the majorId field within the Notification Class Identifier (SaNtfClassIdT)
should be set to as follows in all notifications generated by the Log Service.

majorId = SA_SVC_LOG

The minorId field within the Notification Class Identifier (SaNtfClassIdT) is set dis-
tinctly for each individual notification as described below. This field is range-bound,
and the used ranges are:

• Alarms: (0x01 - 0x64)
• State change notifications: (0x65 - 0xC8)
• Object change notifications: (0xC9 - 0x12C)
• Attribute change notifications: (0x12D - 0x190)

5.2.1 Log Service Alarms

5.2.1.1 LOG Service Impaired

Description

The Log Service is currently unable to provide service or is in a degraded state
because of certain issues with memory, resources, communication or other con-
straints.

Clearing Method

1) Manual after taking appropriate administrative action or

2) Issue an implementation-specific optional alarm with severity
SA_NTF_SEVERITY_CLEARED to convey that Log Service self-healed/recovered
62 SAI-AIS-LOG-A.01.01 Section 5.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
and is again providing service. This administrative action is outside of those provided
by the Log Service.

5.2.1.2 Capacity Alarm

Description

This alarm is issued if the ‘log file full action’ is halt and a ‘capacity alarm threshold’
percentage is configured and reached. The particulars of configuring such alarm
thresholds is an implementation option to be addressed in some future version of this
specification.

NTF Attribute Name

Parameter
Type (X.73Y

recommendat
ion or NTF)

SA Forum Recommended value

Event Type Mandatory SA_NTF_ALARM_COMMUNICATION

Notification Object Mandatory LOG service, same as Notifying object
as specified above.

Notification Class Identi-
fier

NTF internal minorId = 0x01

Additional Text Optional “LOG service impaired.”

Additional Information ID Optional Unspecified

Probable Cause Mandatory Application value from enum SaNtfProb-
ableCauseT in [2].

Specific Problems Optional Unspecified

Perceived Severity Mandatory Application value from enum SaNtfSe-
verityT in [2].

Trend Indication Optional Unspecified

Threshold Information Optional Unspecified

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified
AIS Specification SAI-AIS-LOG-A.01.01 Section 5.2.1 63

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
Clearing Method

1) Manual after taking appropriate administrative action (such as moving the offend-
ing file such that the Log Service automatically creates a new one) or

2) Issue an implementation-specific optional alarm with severity
SA_NTF_SEVERITY_CLEARED to indicate that the log file is now below the lowest
capacity threshold configured.

NTF Attribute Name

Parameter
Type (X.73Y

recommendat
ion or NTF)

SA Forum Recommended value

Event Type Mandatory SA_NTF_ALARM_PROCESSING

Notification Object Mandatory LOG service, same as Notifying object
as specified above.

Notification Class Identi-
fier

NTF internal minorId = 0x02

Additional Text Optional “<filename> approaching capacity.”

Additional Information ID Optional Unspecified

Probable Cause Mandatory Application value from enum SaNtfProb-
ableCauseT in [2].

Specific Problems Optional Unspecified

Perceived Severity Mandatory Application value from enum SaNtfSe-
verityT in [2].

Trend Indication Optional SA_NTF_TREND_MORE_SEVERE for
all alarms after the first alarm.
64 SAI-AIS-LOG-A.01.01 Section 5.2.1 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
5.2.2 Log Service Object Change Notifications

5.2.2.1 Log Stream Create

Description

This object notification announces the creation of a log stream. It also identifies the
location of the log stream’s associated log and configuration files so they can be
found and read.

This notification alerts an administrator that log records are now being stored and are
available for inspection. It also allows an administrator to be aware that this log

Threshold Information Optional field values of SaNtfThresholdInforma-
tionT[2] are:
thresholdId =
SA_LOG_NTF_LOGFILE_PERCENT_
FULL
thresholdValueType =
SA_NTF_VALUE_UINT32
thresholdValue = <configured percent
value>
thresholdHysteresis = <optional>
observedValue = <observed percent
value>

Monitored Attributes Optional Unspecified

Proposed Repair Actions Optional Unspecified

NTF Attribute Name

Parameter
Type (X.73Y

recommendat
ion or NTF)

SA Forum Recommended value
AIS Specification SAI-AIS-LOG-A.01.01 Section 5.2.2 65

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
stream is operational so that if so desired, the stream’s severity bitmask can be
adjusted through the SA_LOG_CHANGE_SEVERITY administrative operation.

Table 2 Log Stream Create

NTF Attribute Name

Parameter
Type (X.73Y

recommendat
ion or NTF)

SA Forum Recommended value

Event Type Mandatory SA_NTF_OBJECT_CREATION

Notification Object Mandatory LDAP DN of the log stream created.

Notification Class Identifier NTF internal minorId = 0xc9.

Additional Text Optional “Log stream <log stream name>
created”

Additional Information ID Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION

Attribute List Optional [0].attributeId =
SA_LOG_NTF_ATTR_LOG_STRE
AM_NAME
[0].attributeType =
SA_NTF_VALUE_STRING
[0].attributeValue = <stream name>
[1].attributeId =
SA_LOG_NTF_ATTR_LOGFILE_N
AME
[1].attributeType =
SA_NTF_VALUE_STRING
[1].attributeValue = <logfile name>
[2].attributeId =
SA_LOG_NTF_ATTR_LOGFILE_P
ATH_NAME
[2].attributeType =
SA_NTF_VALUE_STRING
[2].attributeValue = <path name>

Attribute Identifier Optional Unspecified
66 SAI-AIS-LOG-A.01.01 Section 5.2.2 AISSpecification

Service AvailabilityTM Application Interface Specification
Log Service

1

5

10

15

20

25

30

35

40
5.2.2.2 Log Stream Delete

Description

This object notification announces the deletion of a log stream. It also identifies the
location of the log stream’s associated log and configuration files so they can be
found and read.

This notification alerts an administrator that the log file associated with this log stream
is no longer active and perhaps cleanup or archiving chores should commence.

Table 3 Log Stream Delete

NTF Attribute Name

Parameter
Type (X.73Y

recommendat
ion or NTF)

SA Forum Recommended value

Event Type Mandatory SA_NTF_OBJECT_DELETION

Notification Object Mandatory LDAP DN of the log stream created.

Notification Class Identifier NTF internal minorId = 0xca.

Additional Text Optional “Log stream <log stream name>
deleted”

Additional Information ID Optional Unspecified

Source Indicator Mandatory SA_NTF_OBJECT_OPERATION
AIS Specification SAI-AIS-LOG-A.01.01 Section 5.2.2 67

Service AvailabilityTM Application Interface Specification

Log Service

1

5

10

15

20

25

30

35

40
Attribute List Optional [0].attributeId =
SA_LOG_NTF_ATTR_LOG_STRE
AM_NAME
[0].attributeType =
SA_NTF_VALUE_STRING
[0].attributeValue = <stream name>
[1].attributeId =
SA_LOG_NTF_ATTR_LOGFILE_N
AME
[1].attributeType =
SA_NTF_VALUE_STRING
[1].attributeValue = <logfile name>
[2].attributeId =
SA_LOG_NTF_ATTR_LOGFILE_P
ATH_NAME
[2].attributeType =
SA_NTF_VALUE_STRING
[2].attributeValue = <path name>

Attribute Identifier Optional Unspecified

Table 3 Log Stream Delete

NTF Attribute Name

Parameter
Type (X.73Y

recommendat
ion or NTF)

SA Forum Recommended value
68 SAI-AIS-LOG-A.01.01 Section 5.2.2 AISSpecification

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Log Service
	2.2 Log Streams
	2.3 Log Stream Handlers

	3 SA Log Service API
	3.1 Log Service Model
	3.1.1 Logger
	3.1.2 Log Stream
	3.1.2.1 Alarm, Notification, and System Log Streams
	3.1.2.2 Application Log Stream

	3.1.3 Log Record Properties
	3.1.4 Log Filtering
	3.1.5 Log Record Output Format
	3.1.5.1 Format Tokens
	3.1.5.2 Format Expressions
	3.1.5.3 Default Format Expressions

	3.1.6 Log File Properties
	3.1.6.1 Log File Configurable Attributes
	3.1.6.2 Log File Configuration File
	3.1.6.3 Log File Naming Rules
	3.1.6.4 Log File Behaviors

	3.1.7 Internationalization

	3.2 Include File and Library Names
	3.3 Type Definitions
	3.3.1 Handles
	3.3.1.1 SaLogHandleT
	3.3.1.2 SaLogStreamHandleT

	3.3.2 Log Types
	3.3.2.1 Log Stream Names
	3.3.2.2 SaLogSeverityT and SaLogSeverityFlagsT
	3.3.2.3 SaLogBufferT
	3.3.2.4 SaLogAckFlagsT
	3.3.2.5 SaLogStreamOpenFlagsT

	3.3.3 Log Service API and Notification Types
	3.3.4 Log Service as Notification Producer
	3.3.4.1 SaLogNtfIdentifiersT
	3.3.4.2 SaLogNtfAttributesT

	3.3.5 Log Record Types
	3.3.5.1 SaLogHeaderTypeT
	3.3.5.2 SaLogNtfLogHeaderT
	3.3.5.3 SaLogGenericLogHeaderT
	3.3.5.4 SaLogHeaderT
	3.3.5.5 SaLogRecordT

	3.3.6 Application Log Types
	3.3.6.1 SaLogFileFullActionT
	3.3.6.2 SaLogFileCreateAttributesT

	3.3.7 SaLogCallbacksT

	3.4 Library Life Cycle
	3.4.1 saLogInitialize()
	3.4.2 saLogSelectionObjectGet()
	3.4.3 saLogDispatch()
	3.4.4 saLogFinalize()

	3.5 Log Service Operations
	3.5.1 saLogStreamOpen() and saLogStreamOpenAsync()
	3.5.2 SaLogStreamOpenCallbackT
	3.5.3 saLogWriteLog() and saLogWriteLogAsync()
	3.5.4 SaLogWriteLogCallbackT
	3.5.5 SaLogFilterSetCallbackT
	3.5.6 saLogStreamClose()

	4 Administrative API
	4.1 Log Service Administration API Model
	4.1.1 Log Service Administration API Basics

	4.2 Include File and Library Name
	4.3 Type Definitions
	4.3.1 saLogAdminOperationIdT

	4.4 Log Service Administration API
	4.4.1 SA_LOG_ADMIN_CHANGE_FILTER

	5 Alarms and Notifications
	5.1 Setting Common Attributes
	5.2 Log Service Notifications
	5.2.1 Log Service Alarms
	5.2.2 Log Service Object Change Notifications

