Service Availability™ Forum
Application Interface Specification

Notification Service SAI-AIS-NTF-A.01.01

SERVICE
AVAILABILITY

FORUM

The Service Availability™ solution is high availability and more; it is the delivery of ultra-dependable
communication services on demand and without interruption.

This Service Availability™ Forum Application Interface Specification document might contain
design defects or errors known as errata, which might cause the product to deviate from
published specifications. Current characterized errata are available on request.

SERVICE Service Availabi/ityT'VI Application Interface Specification
AVAILABILITY Legal Notice

FORUM

SERVICE AVAILABILITY™ FORUM SPECIFICATION LICENSE AGREEMENT

The Service Availability™ Specification(s) (the "Specification") found at the URL http://www.saforum.org (the
"Site") is generally made available by the Service Availability Forum (the "Licensor") for use in developing products
that are compatible with the standards provided in the Specification. The terms and conditions, which govern the
use of the Specification are set forth in this agreement (this "Agreement").

IMPORTANT - PLEASE READ THE TERMS AND CONDITIONS PROVIDED IN THIS AGREEMENT BEFORE DOWN-
LOADING OR COPYING THE SPECIFICATION. IF YOU AGREE TO THE TERMS AND CONDITIONS OF THIS AGREE-
MENT, CLICK ON THE "ACCEPT" BUTTON. BY DOING SO, YOU AGREE TO BE BOUND BY THE TERMS AND
CONDITIONS STATED IN THIS AGREEMENT. IF YOU DO NOT WISH TO AGREE TO THESE TERMS AND CONDITIONS,
YOU SHOULD PRESS THE "CANCEL"BUTTON AND THE DOWNLOAD PROCESS WILL NOT PROCEED.

1. LICENSE GRANT. Subject to the terms and conditions of this Agreement, Licensor hereby grants you a non-
exclusive, worldwide, non-transferable, revocable, but only for breach of a material term of the license granted in
this section 1, fully paid-up, and royalty free license to:

a. reproduce copies of the Specification to the extent necessary to study and understand the
Specification and to use the Specification to create products that are intended to be compatible
with the Specification;

b. distribute copies of the Specification to your fellow employees who are working on a project or
product development for which this Specification is useful; and

c. distribute portions of the Specification as part of your own documentation for a product you have
built, which is intended to comply with the Specification.

2. DISTRIBUTION. If you are distributing any portion of the Specification in accordance with Section 1(c), your
documentation must clearly and conspicuously include the following statements:

a. Title to and ownership of the Specification (and any portion thereof) remain with Service Avail-
ability Forum ("SA Forum").

b. The Specification is provided "As Is." SA Forum makes no warranties, including any implied
warranties, regarding the Specification (and any portion thereof) by Licensor.

c. SA Forum shall not be liable for any direct, consequential, special, or indirect damages (includ-
ing, without limitation, lost profits) arising from or relating to the Specification (or any portion
thereof).

d. The terms and conditions for use of the Specification are provided on the SA Forum website.

3. RESTRICTION. Except as expressly permitted under Section 1, you may not (a) modify, adapt, alter, translate,
or create derivative works of the Specification, (b) combine the Specification (or any portion thereof) with another
document, (c) sublicense, lease, rent, loan, distribute, or otherwise transfer the Specification to any third party, or
(d) copy the Specification for any purpose.

4. NO OTHER LICENSE. Except as expressly set forth in this Agreement, no license or right is granted to you, by
implication, estoppel, or otherwise, under any patents, copyrights, trade secrets, or other intellectual property by
virtue of your entering into this Agreement, downloading the Specification, using the Specification, or building prod-
ucts complying with the Specification.

5. OWNERSHIP OF SPECIFICATION AND COPYRIGHTS. The Specification and all worldwide copyrights therein
are the exclusive property of Licensor. You may not remove, obscure, or alter any copyright or other proprietary
rights notices that are in or on the copy of the Specification you download. You must reproduce all such notices on
all copies of the Specification you make. Licensor may make changes to the Specification, or to items referenced

AIS Specification SAI-AIS-NTF-A.01.01 3

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Legal Notice FORUM

therein, at any time without notice. Licensor is not obligated to support or update the Specification.

6. WARRANTY DISCLAIMER. THE SPECIFICATION IS PROVIDED "AS IS." LICENSOR DISCLAIMS ALL
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MER-
CHANTABILITY, NONINFRINGEMENT OF THIRD-PARTY RIGHTS, FITNESS FOR ANY PARTICULAR PUR-
POSE, OR TITLE. Without limiting the generality of the foregoing, nothing in this Agreement will be construed as
giving rise to a warranty or representation by Licensor that implementation of the Specification will not infringe the
intellectual property rights of others.

7. PATENTS. Members of the Service Availability Forum and other third parties [may] have patents relating to the
Specification or a particular implementation of the Specification. You may need to obtain a license to some or all of
these patents in order to implement the Specification. You are responsible for determining whether any such
license is necessary for your implementation of the Specification and for obtaining such license, if necessary.
[Licensor does not have the authority to grant any such license.] No such license is granted under this Agreement.

8. LIMITATION OF LIABILITY. To the maximum extent allowed under applicable law, LICENSOR DISCLAIMS
ALL LIABILITY AND DAMAGES, INCLUDING DIRECT, INDIRECT, CONSEQUENTIAL, SPECIAL, AND INCI-
DENTAL DAMAGES, ARISING FROM OR RELATING TO THIS AGREEMENT, THE USE OF THE SPECIFICA-
TION OR ANY PRODUCT MANUFACTURED IN ACCORDANCE WITH THE SPECIFICATION, WHETHER
BASED ON CONTRACT, ESTOPPEL, TORT, NEGLIGENCE, STRICT LIABILITY, OR OTHER THEORY. NOT-
WITHSTANDING ANYTHING TO THE CONTRARY, LICENSOR’S TOTAL LIABILITY TO YOU ARISING FROM
OR RELATING TO THIS AGREEMENT OR THE USE OF THE SPECIFICATION OR ANY PRODUCT MANU-
FACTURED IN ACCORDANCE WITH THE SPECIFICATION WILL NOT EXCEED ONE HUNDRED DOLLARS
($100). YOU UNDERSTAND AND AGREE THAT LICENSOR IS PROVIDING THE SPECIFICATION TO YOU AT
NO CHARGE AND, ACCORDINGLY, THIS LIMITATION OF LICENSOR'’S LIABILITY IS FAIR, REASONABLE,
AND AN ESSENTIAL TERM OF THIS AGREEMENT.

9. TERMINATION OF THIS AGREEMENT. Licensor may terminate this Agreement, effective immediately upon
written notice to you, if you commit a material breach of this Agreement and do not cure the breach within ten (30)
days after receiving written notice thereof from Licensor. Upon termination, you will immediately cease all use of
the Specification and, at Licensor’s option, destroy or return to Licensor all copies of the Specification and certify in
writing that all copies of the Specification have been returned or destroyed. Parts of the Specification that are
included in your product documentation pursuant to Section 1 prior to the termination date will be exempt from this
return or destruction requirement.

10. ASSIGNMENT. You may not assign, delegate, or otherwise transfer any right or obligation under this Agree-
ment to any third party without the prior written consent of Licensor. Any purported assignment, delegation, or
transfer without such consent will be null and void.

11. GENERAL. This Agreement will be construed in accordance with, and governed in all respects by, the laws of
the State of Delaware (without giving effect to principles of conflicts of law that would require the application of the
laws of any other state). You acknowledge that the Specification comprises proprietary information of Licensor and
that any actual or threatened breach of Section 1 or 3 will constitute immediate, irreparable harm to Licensor for
which monetary damages would be an inadequate remedy, and that injunctive relief is an appropriate remedy for
such breach. All waivers must be in writing and signed by an authorized representative of the party to be charged.
Any waiver or failure to enforce any provision of this Agreement on one occasion will not be deemed a waiver of
any other provision or of such provision on any other occasion. This Agreement may be amended only by binding
written instrument signed by both parties. This Agreement sets forth the entire understanding of the parties relating
to the subject matter hereof and thereof and supersede all prior and contemporaneous agreements, communica-
tions, and understandings between the parties relating to such subject matter.

4 SAI-AIS-NTF-A.01.01 AIS Specification

10

15

20

25

30

35

40

SERVICE . Service Availability™ Application Interface Specification

AVAIFI.ni\uBMII.IT\’ Table of Contents
Table of Contents Notification Service
1 Document Introductioncciitiiiiiiiiiinrenrenronrsnssnssnssnsnnsns 9
[.1 Document PUrpOSEttt e 9
1.2 AIS Documents Organizationuutt et oottt 9
L 3 HIS O Y oottt e 9
L4 R OIENCES . . .ttt e 9
1.5 How to Provide Feedback on the Specification 10
1.6 How to Join the Service Availability™ Forum 10
1.7 Additional Informationt e 10
1.7.1 Member COMPANIESot vttt ettt e ettt ettt ettt ettt 10
1.7.2 Press Materialst e e e 10
2 OVEIVIEW & iitiitintnntensensensensessessesssssnsonssnssnsonsonsensassnsons 11
2.1 Users of the Notification Library 13
2.0 ProdUCer ..o 13
2.1.2 CONSUMET . o vt e ettt ettt ettt e et e e e e e et e et et e 13
2.1.2.1 SUDSCIIDT . ..ot 13
2.1.2.2 Readero e e 13
22 SNMP Interface e 13
23 CIM/WBEM Interface e e e 14
2.4 Notification SEIVICEottt ettt e et e et et e 14
2.4.1 Notification Library i e e 14
2.4.2 NOtification SeIVETttt e e e et e e 14
2. 4.3 Transport SETVICEottt ettt ettt e et et e et e e e e e e e 14
2.5 LogEING SETVICE . . o ottt et e e 15
3 Notification Service AP ittt iiiiiitteteerenrsssessessnnnns 17
3L NOUEICAIONS . . oottt 17
3.2 Notification Filters e 17
3.3 Notification TYPesot t 17
3.3.1 Alarm Notificationot 17
3.3.2 State Change Notificationttt 18
3.3.3 Object Create / Delete and Attribute Change Notifications 18
3.3.4 Security Alarm Notificationouininin ittt 18
3.4 Common Parametersot 18
B4 L EVENt TyPe .ottt e 19
3.4.2 Notification ODJeCtttt e e e e 20
343 Notifying ObJECt . ..o\ttt ettt e e e e e e e e 20
3.4.4 Notification Class Identifier i 20
3.4.5 Notification Identifier i e e 21
3.4.6 Correlated NoOtifications oottt e et e et et 21
34T Event TIMEttt e e e e 21

AIS Specification SAI-AIS-NTF-A.01.01

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Table of Contents AVAIFI.ni\uBMII.IT\’

3.4.8 Additional TeXtottt 21
3.4.9 Additional Information i e 21

3.5 Notification-specific Parameters i 22
35 Alarm . . e 22
3.5.1.1 Probable Causettt e 22

3.5.1.2 Specific Problems 22

3.5.1.3 Perceived SeVerity . ..o ut i e 22

3.5.1.4 Trend Indicationttt e 23

3.5.1.5 Threshold Informationt et 23

3.5.1.6 Monitored AtriDULESottt e 23

3.5.1.7 Proposed Repair ACLIONS\ttt e e e et 23
3.5.28tate Changeottt et e e e 23
3.5.2.1 Source INdiCatorttt 24

3.5.2.2 Changed State Attribute List e e 24

3.5.3 Object Creation/Deletionottt e et et e e 24
3.5.3.1 Source Indicatort 24

3.5.3.2 Atribute LiSt . ..ottt 24

3.5.4 Attribute Value Changeottt e e et et e 25
3.5.4.1 Source INdicatorttt 25

3.5.4.2 Changed Attribute List 25

3.5.5 Security Alarm e 26
3.5.5.1 Security Alarm CaUuSettt 26

3.5.5.2 Security Alarm SEVerityottt 26

3.5.5.3 Security Alarm Detectorttt 26

3.5.5:4 Service USCT ...ttt e 26

3.5.5.5 Service Provider 26

3.6 Notification Delivery Characteristicsttt 27
3.6.1 Discarded Notificationso vttt e e e e e 29

3.7 Integration of HPL Events i 30
3.8 Semantic Identification of Notification Elements 30
3.9 Internationalization ISSUES i e 31
3. 10 API Design Goalsot 33
3.11 Include File and Library Namettt et 33
312 Type Definitionsot e 34
302 0 Handles . ..ot e 34
3.12.1.1 SaNtfHandleT 34

3.12.1.2 SaNtfNotificationHandleT i 34

3.12.1.3 SaNtfNotificationFilterHandleT 34

3.12.1.4 SaNtfReadHandleT e 34

3022 Callbacks ..o ot e 34
3.12.2.1 SaNtfCallbacksTt e e 34

3.12.3 SaNtfNotificationTypeT i i et e 35
3.12.4 SaNHEventTypeTo 35
3.12.5 Notification ObJectottt e et e e e 36
3.12.6 Notifying ODbJectottt e e e e e 36
3.12.7 SaNtCIassIdT . ..o 37
30128 SaSerVICES T . . ottt 37

SAI-AIS-NTF-A.01.01 AIS Specification

SERVICE Service Availability™ Application Interface Specification
AVAIFI.ni\uBMII.IT\’ Table of Contents
3.12.9 SaNtfElementIdT e 37
3.12.10 SaNtfldentifierTt e 38
3201 Event TIME . ..ot e e e e e e e e 38
3.12.12 SaNtfValueTypeTo e e e e 38
3.12.13 SaNtfValueT e 39
3.12.14 Additional TeXt . ..ottt 40
3.12.15 SaNtfAdditionalInfoTt e e e 40
3.12.16 SaNtfProbableCauseT e 41
3.12.17 SaNtfSpecificProblemT e 43
31218 SaNtfSeverityTt 43
3.12.19 SaNtfSeverityTrendT e 44
3.12.20 SaNtfThresholdInformationTot 44
3.12.21 SaNtfProposedRepairActionT o e e e 45
3.12.22 SaNtfSourcelndicatorT e 45
3.12.23 SaNtfStateChangeT i e e e 45
3.12.24 SaNtfArIDULETo 46
3.12.25 SaNtfAttributeChangeT e 46
3.12.26 SaNtfServiceUserT e 46
3.12.27 SaNtfSecurityAlarmDetectorT it 47
3.12.28 SaNtfNotificationHeaderT i 47
3.12.29 SaNtfObjectCreateDeleteNotificationT, 48
3.12.30 SaNtfAttributeChangeNotificationT 49
3.12.31 SaNtfStateChangeNotificationT 49
3.12.32 SaNtfAlarmNotificationT e 50
3.12.33 SaNtfSecurityAlarmNotificationT it 51
3.12.34 Default variable notification data sizet 51
3.12.35 SaNtfSubscriptionldT e 51
3.12.36 SaNtfNotificationFilterHeaderT 52
3.12.37 SaNtfObjectCreateDeleteNotificationFilterT 53
3.12.38 SaNtfAttributeChangeNotificationFilterT 53
3.12.39 SaNtfStateChangeNotificationFilterT 54
3.12.40 SaNtfAlarmNotificationFilterT i 55
3.12.41 SaNtfSecurityAlarmNotificationFilterT 56
3.12.42 SaNtfSearchModeT e e e 57
3.12.43 SaNtfSearchCriteriaT e e e 57
3.12.44 SaNtfSearchDirectionT ittt 57
3.12.45 SaNtfNotificationTypeFilterHandlesT 58
3.12.46 SaNtfNotificationsT e 58
3.3 Library Life Cycle e 59
3.13.1 saNtfInitialize()ot e 59
3.13.2 saNtfSelectionObjectGet()v'vr ittt et 61
3.13.3 saNtfDispatch() ... oot e 63
3134 saNtFINalize()o o e 64
3.14 Operations of the Producer APL 65
3.14.1 saNtfObjectCreateDeleteNotificationAllocate() i, 65
3.14.2 saNtfAttributeChangeNotificationAllocate()ccoiiiiinnon... 68

AIS Specification SAI-AIS-NTF-A.01.01 7

Service Availability™ Application Interface Specification SERVICE
Table of Contents AVAIFI.ni\uBMII.IT\’

3.14.3 saNtfStateChangeNotificationAllocate()ccoiiiiiiiiiininninnnn... 70

3.14.4 saNtfAlarmNotificationAllocate()c..iririi i 72

3.14.5 saNtfSecurityAlarmNotificationAllocate() i, 74

3.14.6 saNtPtrValAIIocate() oo ittt e e e e 76

3.14.7 saNtfArrayValAllocate()ottt 78

3.14.8 saNtfNotificationSend() i e 80

3.14.9 saNtfNotificationFree() 84

3.15 Consumer OPErations vu ittt ettt et e ettt 85

35T FIEring . . oot e 85

3.15.2 Common Consumer OPerationsueuenen ettt 86

3.15.2.1 saNtfLocalizedMessageGet() ovvtttr ettt ettt 86

3.15.2.2 saNtfLocalizedMessageFree()ottt e e 88

3.15.2.3 saNHPrValGet()ot 89

3.15.2.4 saNtfArrayValGet() oottt e e 91

3.15.2.5 saNtfObjectCreateDeleteNotificationFilterAllocate()covin.... 93

3.15.2.6 saNtfAttributeChangeNotificationFilterAllocate(), .. 95

3.15.2.7 saNtfStateChangeNotificationFilterAllocate()virireinienninen.... 97

3.15.2.8 saNtfAlarmNotificationFilterAllocate()coiiiiiinin .. 99

3.15.2.9 saNtfSecurityAlarmNotificationFilterAllocate(), 101

3.15.2.10 saNtfNotificationFilterFree() i 103

3.15.3 Operations of the Subscriber API i, 104

3.15.3.1 saNtfNotificationSubscribe()itiiniir et 104

3.15.3.2 saNtfNotificationUnsubscribe() it 106

3.15.3.3 SaNtfNotificationCallbackT i 108

3.15.3.4 SaNtfNotificationDiscardedCallbackT 109

3.15.4 Operations of the Reader APL i, 111

3.15.4.1 saNtfNotificationReadInitialize() 111

3.15.4.2 saNtfNotificationReadNext()ttt 114

3.15.4.3 saNtfNotificationReadFinalize()o 116

3.16 Notification SUPPIESSION vttt t ettt e e e et e e e et 117

4Configurationcoiiiiiiiiiiiitiiiitiittttttttestttttoeseteasansas 119

4.1 Trap OID Mappingo ottt et e e e e e e e 119

4.2 Internationalizationttt 119

Appendix A API Usage Examplescoitiiitiiiiiiiiiiinnrennscnnscnnnas 123

Producer Side (example function) — Object Create Delete Notification................. 123

Producer Side (example function) — Attribute Change Notification 127

Producer Side (example function) — State Change Notification 131

Producer Side (example function) — Alarm Notification 135

Producer Side (example function) — Security Alarm Notification 141

Consumer Side (example function) — Subscribe for Notifications 145

Consumer Side (example function) — Read Logged Notifications 154
8 SAI-AIS-NTF-A.01.01 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Document Introduction

FORUM

1 Document Introduction

1.1 Document Purpose

This document defines the Notification Service of the Application Interface
Specification (AIS) of the Service Availability™ Forum. It is intended for use by
implementers of the Application Interface Specification and Hardware Platform
Interface (HPI) as well as application developers who use the Application Interface
Specification to develop applications. The specification is defined in the C
programming language, and requires substantial knowledge of the C programming
language.

Typically, the Service Availability™ Forum Application Interface Specification will be
used in conjunction with the Service Availability™ Forum Hardware Platform Interface
(HPI) and with the Service Availability™ Forum System Management Specification
(SMS).

1.2 AIS Documents Organization

The Application Interface Specification is organized into several volumes. For a list of
all Application Interface Specification documents, refer to the SA Forum Overview
document [5].

1.3 History
SAI-AIS-NTF-A.01.01 is the first release of the NTF Service specification.

1.4 References

The following documents contain information that is relevant to this specification:

[11 CCITT Recommendation X.730 | ISO/IEC 10164-1, Object Management
Function

[2] CCITT Recommendation X.731 | ISO/IEC 10164-2, State Management Function
[3] CCITT Recommendation X.733 | ISO/IEC 10164-4, Alarm Reporting Function

[4] CCITT Recommendation X.736 | ISO/IEC 10164-7, Security Alarm Reporting
Function

[5] Service Availability™ Forum, Application Interface Specification, Overview,
SAI-Overview-B.02.01

[6] Service Availability™ Forum, Application Interface Specification, Event Service,
SAI-AIS-EVT-B.02.01

[71 SNMP enterprise numbers, http://www.iana.org/assignments/enterprise-numbers

AIS Specification SAI-AIS-NTF-A.01.01 Section 1 9

Service Availability™ System Management SERVICE
AVAILABILITY

Document Introduction FORUM

References to these documents are made by putting the number of the document in
brackets.

1.5 How to Provide Feedback on the Specification

If you have a question or comment about this specification, you may submit feedback
online by following the links provided for this purpose on the Service Availability™
Forum website (http://www.saforum.org).

You can also sign up to receive information updates on the Forum or the Specifica-
tion.

1.6 How to Join the Service Availability™ Forum

The Promoter Members of the Forum require that all organizations wishing to
participate in the Forum complete a membership application. Once completed, a
representative of the Service Availability™ Forum will contact you to discuss your
membership in the Forum. The Service Availability™ Forum Membership Application
can be completed online by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).

You can also submit information requests online. Information requests are generally
responded to within three business days.

1.7 Additional Information

1.7.1 Member Companies

A list of the Service Availability™ Forum member companies can also be viewed
online by using the links provided on the Forum’s website
(http://lwww.saforum.org).

1.7.2 Press Materials

The Service Availability™ Forum has available a variety of downloadable resource
materials, including the Forum Press Kit, graphics, and press contact information.

Visit this area often for the latest press releases from the Service Availability™ Forum
and its member companies by following the pertinent links provided on the Forum’s
website (http://www.saforum.org).

10

SAI-AIS-NTF-A.01.01 Section 1.5 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availabi/ityT'VI Application Interface Specification
AVAILABILITY’ Overview

FORUM

2 Overview

ITU-T recommendations X.700 - X.799 deal with the area of system management
and how it may be applied to a communications system. ITU-T broadly classifies the
management domain into the famous FCAPS model that segregates the overall man-
agement into five areas, with the "F" standing for Fault Management. The Notification
service is based on these Fault management recommendations to a great degree,
but also needs many other supportive recommendations that include, for example,
the concepts of Managed objects, which are covered in Structure of Management
Information. There are also normative references to ITU-T defined agents and man-
agers that are extensively used in the definition of the current notification standards.

Adapting the definition from ITU-T X.710 to the present SA Forum context, lead to the
following definition:

The Notification Service is used by a service-user to report an event to a peer ser-
vice-user. It is defined as a non-confirmed service.

Event here means the same as in commonly understood English - an incident, or sim-
ply, a change of status.

Note: In order to avoid confusion with the Event Service (which is specified in [6]), this
document instead uses the term notification.

The entities related to the Notification Service are shown in the following figure.

AIS Specification SAI-AIS-NTF-A.01.01 Section 2 1

10

15

20

25

30

35

40

Service AvailabilityT'VI Application Interface Specification

Overview

SERVICE
AVAILABILITY’

FORUM

CIM/WBEM
Client

CIM Indications (™)
Read logged w
notifications

Subscriber/
Reader
CIM Provider

SNMP

Manager

- SNMP Traps
% Read logged
notifications

Subscriber
Applications
Alarm Mgr

Reader
Applications
Alarm Mgr

Subscriber/
Reader
SNMP Agent

Producer
AlS Services,
Applications

AN

Producer API Subscriber API Reader API

‘ Notification Library (public C API) ‘

t Transport API

| Transport Service (e.g. MSG or EVT Service) ‘

;

Notification
Server

Forwarding

ﬂLogging API

Logging Service

Persistent
Log

Notification Service

Legend

Notification
Service user:

Public Interface:

Figure 1: Notification Entities

12

SAI-AIS-NTF-A.01.01 Section 2

AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availabi/ityT'VI Application Interface Specification
AVAILABILITY’ Overview

FORUM

2.1 Users of the Notification Library

Users of the Notification Library run on the nodes of a SA Forum cluster.

2.1.1 Producer

A notification producer generates notifications (using the producer API of the Notifica-
tion Service).

2.1.2 Consumer

A consumer consumes notifications that were generated by producers. If not inter-
ested in all notifications, filter criteria can be specified. A consumer can be one of the
following types or both. A consumer can also be a producer.

2.1.2.1 Subscriber

A subscriber for notifications gets notifications forwarded as they occur (push inter-
face).

2.1.2.2 Reader

A reader retrieves historical notification entries from the persistent notification log
(pull interface).

2.2 SNMP Interface

The Notification MIB is currently not defined but may be defined in the future. Exam-
ples for possible functionality via SNMP by the Notification MIB are:

. Forward notifications of the Notification Service as SNMP traps (or SNMP
informs)

Read logged notifications

The MIBs for the AlS services and AMF provide the schemas that allow for the follow-
ing functionality via SNMP:

. Forward notifications of the AIS service and AMF as SNMP traps

The SNMP agents implementing these MIBs are not part of the Notification Service.
They are users of the Notification Library and behave like subscribers and readers.

Note: The MIBs of the AIS services and AMF are not part of this document.

AIS Specification SAI-AIS-NTF-A.01.01 Section 2.1 13

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Overview EORUM

2.3 CIM/WBEM Interface

The Notification MOF as well as the MOFs for the AIS services and AMF are currently
not defined but may be defined in the future. Examples for possible functionality via
CIM/WBEM by these MOFs are:

Forward notifications of the Notification Service as CIM indications
Read logged notifications
Forward notifications of the AlS service and AMF as CIM indications

2.4 Notification Service

Similar to the AIS services, the Notification Service mainly consists of a client library
and a server. There are no assumptions made as to how server instances are distrib-
uted across the nodes of a SA Forum cluster. In an implementation the server even
could be part of the library.

2.4.1 Notification Library
The Notification Library provides the following public C APlIs:
. Producer API
. Subscriber API
. Reader API
2.4.2 Notification Server

The server applies the filtering criteria on notifications for delivery to subscribed con-
sumers and performs the logging into persistent storage.

2.4.3 Transport Service

The Transport Service links the Notification Library and the Notification Server. It is
currently not specified.

SAI-AIS-NTF-A.01.01 Section 2.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availabi/ityT'VI Application Interface Specification
AVAILABILITY’ Overview

FORUM

2.5 Logging Service

Alarm notifications and security alarm notifications are logged persistently. An imple-
mentation may also support persistent logging for the other notification types (object
creation / deletion, attribute value change, state change notifications). It is recom-
mended that the Notification Service use the API of the SA Forum Logging Service to
write notifications into persistent storage. Likewise, the Notification Reader APl may
also use the log files of the Logging Service.

AIS Specification SAI-AIS-NTF-A.01.01 Section 2.5 15

10

15

20

25

30

35

40

Service AvailabilityT'VI Application Interface Specification

Overview

SERVICE
AVAILABILITY’

FORUM

16

SAI-AIS-NTF-A.01.01 Section 2.5

AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3 Notification Service API

3.1 Notifications

Notifications are those data objects that are generated using the Producer API. The
same objects are forwarded to users of the Subscriber API and returned to users of
the Reader APIs. Notifications have attributes that are closely related to those
specified in the ITU-T recommendations. The notification attributes are described in
subsequent sections.

3.2 Notification Filters

Notification filters are used with the Subscriber and Reader API. Their purpose is to
reduce the number of notifications that are returned by these APIs and to allow a user
application to specify the notifications in which it is interested. Notification filters have
a subset of the attributes specified for notifications.

3.3 Notification Types

As seen earlier, notification (or event) means an incident, or simply, a change of
status. Notifications are grouped into notification types. The following types of
notifications can be produced and consumed in a SA Forum cluster:

Alarm

State Change

Object Create / Delete
Attribute Change
Security alarm

3.3.1 Alarm Notification

An alarm report is a notification of a specific event that may or may not represent an
error. This is defined in ITU X.733 [3].

In the context of SA Forum, AIS services, AMF, applications, HPI listener and proxies
for non-SA applications can send alarm notifications. An application detecting a
communication failure, operating system reaching some threshold of maximum
number of files opened, AlS services or AMF running into internal errors are some
examples of alarm notifications.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3 17

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

3.3.2 State Change Notification

A state change report is a notification to report change of state of a managed object
that results through either the internal operation of the managed object or via
management operation. This is defined in X.731 [2].

AMF would send such notifications in the SA Forum context. The changes of
Presence state, Readiness state, HA state etc. of service units and components
performed by AMF can be reported to management applications using these
notifications.

3.3.3 Object Create / Delete and Attribute Change Notifications

These notifications report creation and deletion of managed objects and attribute
changes of configuration data on a managed object. This is defined in X.730 [1].

AMF instantiates and terminates service units and components in the cluster. Also,
AMF configuration data may be changed. AMF can report such events to
management applications (including Subscribers to the Notification Service) using
this type of notifications. Application-specific information like threads created, users
added/ deleted, modifications to default configuration data etc. can also be reported
to management applications using this notification.

3.3.4 Security Alarm Notification

This notification is used to report an event indicating an attack or potential attack on
system security has been detected. This is defined in X.736 [4].

Applications would be the primary generators of this notification. Repeated login
attempt failures, occurrence of an event at unexpected or prohibited time, illegal
modification of data are some examples.

3.4 Common Parameters

This section describes the common parameters that are included in a notification.

Name X.73x recommendation| Default Value

Event Type Mandatory Parameter -

Notification Object | Mandatory Parameter -

Notifying Object - Notification Object

Notification Class - -
Identifier

Event Time Mandatory Parameter -

SAI-AIS-NTF-A.01.01 Section 3.3.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Notification Service

FORUM

Name X.73x recommendation| Default Value

Notification Identifier| Optional Parameter -

Correlated Optional Parameter NULL, shows this is either a first time occurrence, or
Notifications that no correlation need be applied.

Additional Text Optional Parameter -

Additional Optional Parameter -

Information

3.4.1 Event Type
Event type is different for each type of notifications.

For Alarm notifications, this field broadly classifies the type of error encountered as:
. Communication link failure
. QOS alarm: degradation in QOS
. Processing alarm: software or processing fault
. Equipment alarm: caused by an equipment fault
. Environment alarm: conditions of the enclosure.

For state change notifications, event type can only be a state change event.

Possible values of event type for object change notification are:
. Object creation event
. Object deletion event
. Attribute addition event
. Attribute deletion event
. Attribute change event
. Attribute reset to default event.

For security alarm notifications, the possible event types are:

. Integrity violation: information may have been illegally modified, inserted or
deleted

. Operational violation: unavailability, malfunction or incorrect invocation of a ser-
vice

. Physical violation: violation of a physical managed object

. Security service violation: security service has detected a security attack

. Time domain violation: an event has occurred at an unexpected or prohibited
time.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.4.1 19

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

It is possible to derive the Notification Type from the Event Type parameter.

3.4.2 Notification Object

This is a logical entity about which the notification is generated, identified by its LDAP
DN.

3.4.3 Notifying Object
This is a logical entity that is sending the notification, identified by its LDAP DN.

3.4.4 Notification Class Identifier

The notification class identifier has been introduced for users of the Subscriber and
Reader APIs in order to have a single (filter) criterion for uniquely identifying classes
of similar notifications.

Notifications that are issued at runtime can be grouped into notification classes
(NCs), where each class contains notifications for similar situations with certain
varying parameter values. In other words, notifications are runtime instances of NCs.
(Note that the term class here is used only to group runtime notifications dealing with
the same kind of situation. In particular, class does not imply an inheritance
mechanism as in object oriented programming languages.)

These are two examples for NCs, taken from the AIS:
. Message Service: Destination message queue <name> full.
. AMF: The HA state of SI <name> assigned to SU <name> changed.

In the first example, the above mentioned varying parameter values could be the
notification object, i.e., the message queue name. In the second example, the varying
parameter values could be the notification object (service instance name) and the
attribute list (service unit name). Note that although the parameter values may differ
for instances of these notification classes, they will always be of the same kind. In the
first example, for instance, the notification object parameter will always contain a
message queue name and in the second example the first parameter will always be a
Sl name and the second parameter will always be a SU name.

For identification purposes, each NC is assigned a unique numeric notification class
identifier (NCI). In order to avoid conflicts between identifier values from different
vendors and applications, the NCI is explicitly divided into a vendor identifier and a
vendor specific part.

20

SAI-AIS-NTF-A.01.01 Section 3.4.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.4.5 Notification Identifier

This parameter, when present, provides an identifier for a specific notification
instance, which may be carried in the Correlated notifications parameter of future
notifications. Notification identifiers must be chosen to be unique across all
notifications of a particular managed object throughout the time that correlation is
significant.

In a SA Forum system, this parameter shall be unique within the cluster, but it need
not be cluster-wide monotonically increasing. This parameter shall be an OUT
parameter i.e., the logical entity sending the notification shall not be burdened with
the generation of cluster-wide unique identifier.

3.4.6 Correlated Notifications

This is a set of notifications generated earlier and that is related to this notification.
Management applications can use this field as a hint for identifying all the
notifications that may have caused this notification or all the notifications that may be
modified (say cleared) due to this notification.

In SA Forum system, this parameter shall be able to carry none, one or more
notification identifiers.

3.4.7 Event Time

This field contains the time at which an event is detected and this may not be same
as the time at which it is reported.

3.4.8 Additional Text

This field allows a free form text description to be reported.

3.4.9 Additional Information

This is a data structure that may carry more data not covered by the standard fields in
the report. This parameter is opaque and is intended to carry Producer-Consumer
specific parameters.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.4.5 21

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.5 Notification-specific Parameters

This section describes the additional parameters that are specific to each type of
notification.

3.5.1 Alarm

Specific parameters for this report are:

Name X.73x recommendation| Default Value

Probable Cause Mandatory Parameter -

Specific Problems Optional Parameter -

Perceived Severity | Mandatory Parameter “Maijor”
Trend Indication Optional Parameter “No Change”
Threshold Optional Parameter -
Information

Monitored Attributes | Optional Parameter -

Proposed Repair Optional Parameter -
Actions

3.5.1.1 Probable Cause

This parameter augments the information provided by the event type field and further
qualifies the actual cause of alarms. Probable cause is a behavioral aspect of the
logical entity and most specific probable causes shall be chosen for a logical entity. A
list of generic probable causes is given in the X.733 standard.

3.5.1.2 Specific Problems

This is a further refinement to the probable cause field.

3.5.1.3 Perceived Severity
This is the severity of the notification, as seen by the entity reporting it. Six levels of
severity are defined:

. Cleared: This means a previously reported alarm is cleared. Clearing of alarms
can be done based on matching event types, probable cause and specific prob-
lem. Or it may be based on the parameters in correlated notifications.

. Indeterminate: Severity cannot be determined by the reporting entity.
. Critical: A service affecting condition

. Major: An urgent corrective action is required to avoid a service affecting condi-
tion

22

SAI-AIS-NTF-A.01.01 Section 3.5 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

Minor: A non-service affecting condition. But corrective actions are needed to
avoid more problems

Warning: A potential service affecting condition, before any significant effects
are felt

3.5.1.4 Trend Indication

Trend indication is important when a logical entity already has outstanding alarms
and more alarms are reported on the same logical entity. The trend indication field
indicates whether the severity of the logical entity error is getting worse, remaining
the same, or improving. This field is useful for notification filtering based on severity.

3.5.1.5 Threshold Information

If the alarm is based on a parameter exceeding a threshold, this field may be utilized
to capture that information. Threshold information encapsulates the threshold
identifier, the actual threshold value, threshold hysteresis (important to avoid
repeated alarms), observed value of the parameter and time of last threshold
crossing.

3.5.1.6 Monitored Attributes

This field is useful in reporting any changing attributes of the logical entity, which may
be of interest in relation to this alarm. This field uses the same syntax as the attribute
list in object creation/deletion notifications (Attribute List).

3.5.1.7 Proposed Repair Actions

If the cause of the alarm is known, one or more repair actions may be proposed using

this field.
3.5.2 State Change
Specific parameters for this report are:
Name X.73x recommendation| Default Value
Source Indicator Optional Parameter AMF
Changed State Mandatory Parameter -

Attribute List

Attribute Identifier | Mandatory Parameter -

Old Attribute Value | Optional Parameter -

New Attribute Mandatory Parameter -
Value

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.5.1.4 23

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.5.2.1 Source Indicator

This indicates whether the state change was initiated by an internal operation of the
logical entity, by a management operation or by an unknown source.

3.5.2.2 Changed State Attribute List

This is a list of attribute identifiers. Multiple types of state changes (for instance,
Lifecycle, Readiness, HA) can be carried in this list. However, multiple state changes
of the same type within one notification are not supported.

3.5.2.2.1 Attribute Identifier

This is an identifier for the state attribute that is being modified, for instance,
Lifecycle, Readiness, HA.

3.5.2.2.2 Old Attribute Value

This is the value of the state attribute before the change.

3.5.2.2.3 New Attribute Value

This is the value of the state attribute after the change.

3.5.3 Object Creation/Deletion

Specific parameters for this report are:

Name X.73x recommendation| Default Value
Source Indicator Optional Parameter -
Attribute List Optional Parameter -

Attribute Identifier; Optional Parameter -

Attribute Value Optional Parameter -

3.5.3.1 Source Indicator

This field is the same as Source Indicator.

3.5.3.2 Attribute List

This parameter is a set of attributes and their current values at the time the logical
entity was created or deleted.

3.5.3.2.1 Attribute Identifier

This is an identifier for an attribute.

SAI-AIS-NTF-A.01.01 Section 3.5.2.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.5.3.2.2 Attribute Value

This is the value of the attribute at the time of creation/ deletion.

3.5.4 Attribute Value Change

Specific parameters for this report are:

Name X.73x recommendation| Default Value

Source Indicator Optional Parameter -

Changed Attribute List

Mandatory Parameter -

Attribute ldentifier

Mandatory Parameter

Old Attribute Value

Optional Parameter

New Attribute
Value

Mandatory Parameter -

3.5.4.1 Source Indicator

This field is the same as Source Indicator.

3.5.4.2 Changed Attribute List

This is a list of changed attributes. Multiple attributes can be carried in this list.
However, multiple values of same attribute shall not be supported.

3.5.4.2.1 Attribute Identifier

This is an identifier for the attribute that is being modified.

3.5.4.2.2 Old Attribute Value

This is the value of the attribute before the change.

3.5.4.2.3 New Attribute Value

This is the value of the attribute after the change.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.5.3.2.2 25

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.5.5 Security Alarm

Specific parameters for this report are:

Name X.73x recommendation| Default Value
Cause Mandatory Parameter -
Severity Mandatory Parameter -
Detector Mandatory Parameter -
User Mandatory Parameter -
Provider Mandatory Parameter -

3.5.5.1 Security Alarm Cause

This field is similar to the Probable Cause field in alarm notifications (3.5.1.1 on page
22). A list of generic severity alarm causes is given in the X.736 standard.

3.5.5.2 Security Alarm Severity

Same as the severity field in alarm notifications (Perceived Severity).

3.5.5.3 Security Alarm Detector

This field indicates the detector of this security alarm.

3.5.5.4 Service User

The service user whose request for service led to the generation of this security alarm
is indicated in this field.

3.5.5.5 Service Provider

The intended service provider of the service, which led to this security alarm, is
indicated in this field.

26

SAI-AIS-NTF-A.01.01 Section 3.5.5 AIS Specification

10

15

20

25

30

35

40

SERVIC

Service AvailabilityTM Application Interface Specification

AVAILABILITY Notification Service

FORUM

3.6 Notification Delivery Characteristics

The following are the delivery characteristics for notifications generated by producers
to all subscribers with matching filter criteria.

Guaranteed delivery

In general, the Notification Service guarantees the delivery of alarm and security
alarm notifications to subscribers. An implementation may provide lower quality
of service for object creation / deletion, attribute value change and state change
notifications. The following error scenarios try to specify the guaranteed delivery
in more detail.

If the producer fails while it (or one thread of it) is calling saNtfNotificationSend
then the notification is forwarded either to all subscribers or to no subscriber.
Note that it is not intended to block the call of saNtfNotificationSend until the
notification is forwarded to all subscribers; rather the API function should
return as soon as possible after the notification has been passed to the under-
lying forwarding layer.

If an implementation of the Notification Service has one or more instances of
separate server processes and the notification library fails to forward a pro-
duced notification then the notification library will use temporary storage to
avoid that the notification is lost. In error situations like communication outage
between library and server or failure of the server either the library of the
server or both will make sure that notifications in the temporary storage are
forwarded as soon as possible.

If an implementation of the Notification Service has one or more instances of
separate server processes and one of them fails while it is forwarding a notifi-
cation to subscribers then the process of forwarding is completed either when
this server process has been restarted or failed over to another instance of the
server process. Put in other words, the notification will be forwarded to all sub-
scribers even though a server process fails in the middle of forwarding the
notification.

If an implementation of the Notification Service has one or more instances of
separate server processes and there is a notification generated by a producer
while one of the server processes has failed, the notification will be forwarded
to all subscribers when the server process has been restarted or failed over to
another instance.

If a notification cannot be forwarded to the logging service then the instance
that does the forwarding to the logging service (depending on the implementa-
tion this could be either the notification library or a notification server process)
will use temporary storage to avoid that the notification is lost and will retry for-
warding the notification to the logging service.

Note that an implementation that does not have a notification server process

AIS Specification

SAI-AIS-NTF-A.01.01 Section 3.6 27

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

has to provide the retry functionality inside the library. If an application is a pro-
ducer, but not a subscriber at the same time, then it need not call
saNtfDispatch. Under these conditions retry attempts might occur only when
the application calls saNtfNotificationSend the next time. This might lead to
substantial delay in logging the notification.

If a subscriber is too slow in reading the notifications that were forwarded to it,
the information about the notifications that could not be delivered are for-
warded to it by the SaNtfNotificationDiscardedCallbackT callback. For alarm
notifications and security alarm notifications the list of notification identifiers is
provided. The subscriber can use the Reader API to retrieve these notifica-
tions by their notification identifier. For other notification types only the amount
of notifications that could not be delivered is provided.

For dropped notifications for which the Notification Service provides the notifi-
cation identifiers (alarm notifications and security alarm notifications) it is
important that the SaNtfNotificationDiscardedCallbackT callback is called in
the correct chronological order with respect to the regular notification callback
(i.e., SaNtfNotificationCallbackT). This allows the subscriber to get all of these
notifications (i.e., the delivered ones and the dropped ones) in the correct
chronological order. For the other notification types, an implementation of the
Notification Service may choose to provide the amount of dropped notifications
by calling the SaNftfNotificationDiscardedCallbackT callback at any time.

If an implementation of the Notification Service has one or more instances of
separate server processes and one of them is temporarily too slow in forward-
ing notifications to subscribers or the communication channel that is used
internally by a Notification Service implementation (and which is currently not
specified) is temporarily not available or congested, the service implementa-
tion must use mechanisms (like re-transmission of notifications) to avoid lost
notifications.

If a subscriber fails, its subscription for notifications is automatically canceled.
If not all forwarded notifications have been delivered to notification callbacks
(i.e., SaNtfNotificationCallbackT) these remaining notifications are implicitly
discarded by the Notification Service. It is the responsibility of the subscriber to
checkpoint on the delivered notifications. When it is restarted after failure or
failed over to another instance it can use the Reader API to retrieve alarm noti-
fications or security alarm notifications that have occurred after the sub-
scriber’s latest checkpoint.

The automatic subscription cancellation also implies that no new notifications
can be forwarded to the failed subscriber before it restarts and subscribes
again.

If a cluster node fails while a notification is being forwarded, its delivery to the
subscribers is not guaranteed.

28

SAI-AIS-NTF-A.01.01 Section 3.6 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

At most once delivery
The Notification Service must not deliver a notification to the same subscriber
multiple times.

. Ordering
For a given notification type the notifications are received by subscribers in the
same order they were generated by the producer. Likewise, a user of the Reader
APl when reading logged notifications in chronological order retrieves the notifi-
cations of a given notification type in the same order as they were generated by
the producer. Since an implementation could use separate communication chan-
nels for the different notification types the same order across different notifica-
tion types cannot be guaranteed.
Note that an implementation need not guarantee that notifications generated by
multiple producers will always be forwarded to subscribers or logged in the exact
chronological order in which they were generated. In a distributed implementa-
tion, when more than one producer generates notifications at the same time it is
not predictable in which order they will arrive at the subscriber. Under certain
conditions, e.g., due to extremely different load levels of the communication
layer on different cluster nodes it might happen that a notification generated at
time t + x arrives earlier at a subscriber than another notification created at time
t, but by a different producer on another node with currently extremely high load.
The same is true also for discarded notifications, i.e., the invocation of
SaNtfNotificationDiscardedCallbackT callback need not be in the exact chrono-
logical order in which the notifications were generated.

Completeness

Only complete notifications are delivered to a subscriber or a reader. For exam-
ple, if the producer crashes while it (or one thread of it) is calling
saNtfNotificationSend then either the complete notification or no notification is
forwarded to the subscribers.

Persistence

Alarm notifications and security alarm notifications must be stored persistently
(while object creation / deletion, attribute value change and state change notifi-
cations need not be stored persistently). The Reader API allows to retrieve the
logged notifications. This is particularly important for some of the above
described error scenarios where a subscriber needs to recover missed notifica-
tions.

3.6.1 Discarded Notifications

Normally all notifications matching the filter criteria specified at subscription time are
forwarded to a subscriber. For the following reasons related to abnormal behavior of
a subscriber or specific runtime conditions notifications are discarded:

(1) The subscriber is too slow in reading notifications via SaNtfNotificationCallbackT.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.6.1 29

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

Notification Service FORUM

(2) The subscriber process fails (crashes).

(3) The subscriber process unsubscribes without having processed all notifications
that were already forwarded to it.

Among the above cases (1) is the only situation where it makes sense to inform the
subscriber about discarded notifications. This is done by the
SaNtfNotificationDiscardedCallbackT callback that may be specified by the
subscriber. When this callback is invoked the subscriber may recover either the
notifications by using the Reader API (in case of discarded alarm or security alarm
notifications) or by retrieving object information (in case of discarded notifications of
another notification type).

In case (2) the subscriber does no longer exist. After restart or failover to another
process, the new subscriber process can synchronize with the list of notifications
using the Reader API or by retrieving object information.

In case (3), when the subscriber is no longer interested in receiving notifications,
discarding those notifications that have not been processed by the subscriber while it
unsubscribes will do no harm. Otherwise, if the intention actually is to change filter
criteria of a subscription, then the subscriber should first subscribe with the new filter
criteria and then unsubscribe from the previous subscription (with the old filter
criteria).

3.7 Integration of HPI Events

Integration of HPI events is achieved by a dedicated “listener” that acts as an HPI
user and receives HPI events via the HPI AP| saHpiEventGet() and converts the
event contents into a format appropriate for the Producer API of the Notification
Service, i.e., the contents are transferred from the HPI event structure to a notification
structure.

The specification of the HPI integration is not within the scope of this document.

3.8 Semantic Identification of Notification Elements

A subset of the above notification parameters are generic containers for elements of
varying data type and meaning. As an example the additional information parameter
of one notification instance may contain a string representing a file name, while the
additional information parameter of another notification instance may contain a string
representing a user name. Thus, not only the data type — in this case ‘string’ — but
also the meaning of the parameter element has to be specified in the additional
information parameter in order to enable subscribers to interpret this element
correctly. Such a semantic identifier is needed for the following notification
parameters (elements):

30

SAI-AIS-NTF-A.01.01 Section 3.7 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

Additional Information element (all notification types)
Specific Problems element (alarm notifications)
Threshold Information (alarm notifications)
Proposed Repair Actions element (alarm notifications)
Monitored Attributes element (alarm notifications)
Attribute List element (object create/delete notifications)
Changed Attribute List element (attribute value change notifications)
Changed State Attribute List element (state change notifications)
The semantic identifier is called Notification Element Identifier (NEI) from now on, and

it is defined to be specific for a notification class and a parameter. Thus, a simple and
small numeric identifier will be sufficient in most cases.

Uniqueness of identifiers for each parameter in a notification class is a minimum
requirement; a user of the producer APl may apply a more restrictive numbering
scheme, for instance, with a global numbering scheme where identifiers are unique
over all parameters in all notification classes.

The specific problems elements (see SaNifSpecificProblemT) need a special
handling concerning the Notification Element Identifier.

3.9 Internationalization Issues

The structure of notifications is suitable for analysis by automated computer-based
tools, but it is ill suited for interpretation by human beings. A human reader prefers a
concise textual description of the situation in the human language of his choice. In
order to support simultaneous use of different languages by different users,
localization to the specific language cannot be carried out directly in the notification
producer APl but must be delayed until the chosen language of the human user is
known.

Presenting notification contents at a human interface can certainly be achieved in a
generic way, where fixed textual templates are used for each event type, for instance,
“New object created” for object creation notifications. A more user-friendly interface
uses specific texts for each kind of situation that is shown. This is here achieved by
using the notification class identifier as a starting point, defining a specific text for
each NCI. In order to get a concise textual description of the situation, each specific
text may then reference those notification parameters that are most important for
describing that situation. The detailed syntax can be found in 4.2 on page 119.

Note that the internationalization mechanism provided by the Notification Service
does not translate any of the notification parameter values (e.g., the additional text
parameter or other character string parameters). Rather it provides a link between a

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.9 31

10

15

20

25

30

35

40

Service AvailabilityT'VI Application Interface Specification
Notification Service

SERVICE
AVAILABILITY’

FORUM

NCI and localized text related to that NCIl. However, the localized text can contain

variable parts, which are references to notification parameter values.

32

SAI-AIS-NTF-A.01.01 Section 3.9

AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.10 API Design Goals

The following design goals were followed when the API of the Notification Service
was specified:

ITU-T X.7xx recommendations

Most of the attributes specified by the related ITU-T recommendations X.730,
X.731, X.733 and X.736 are part of the C structures in this API. The guideline
was to “follow in spirit, not in word”. Some attributes were added, such as notify-
ing object or the functionality of internationalization.

. Easy handling of array parameters with variable length

The data structures of the Notification Service API are quite complex, which is a
consequence of the relationship with the ITU-T recommendations. In particular,
there are several attributes that are in fact arrays of variable length, for some of
them each array element even is a generic data container. Data structures like
these are not at all easy to handle in a C program. Therefore, a set of allocation
and free functions exists for notifications and notification filters making the pro-
grammer’s life easier.

. PDU-Readiness
Having complex, hierarchical and nested C structures at the API level is one part
of reality. The other one is that an implementation has to transport the data effi-
ciently between communication partners. Typically this transport is done using
message buffers or PDUs (processing data units), i.e., actually an array of bytes.
Making conversion from nested structures to a byte stream easier was yet
another reason for providing allocation and free functions. They allow an under-
lying implementation to let the application program directly operate (read, write)
on the internally allocated PDUs.

3.11 Include File and Library Name

The following statement containing declarations of data types and function prototypes
must be included in the source of an application using the Notification Service API:

#include <saNtf.h>

To use the Notification Service API, an application must be bound with the
Notification Service library. On Unix/Linux systems it is recommended to use the
following library:

libSaNTtf.so

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.10 33

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.12 Type Definitions
3.12.1 Handles

3.12.1.1 SaNtfHandleT
typedef Salint64T SaNtfHandleT;

The type of the handle supplied by the Notification Service to a process during
initialization of the Notification Service library and used by a process when it invokes
functions of the Notification Service API so that the Notification Service can recognize
the process.

3.12.1.2 SaNtfNotificationHandleT
typedef SaUint64T SaNtfNotificationHandleT;

The type of a handle to the internal notification structure that is used in API calls.

3.12.1.3 SaNtfNotificationFilterHandleT
typedef SaUint64T SaNftfNotificationFilterHandleT;

The type of a handle to the internal notification filter structure that is used in API calls.

3.12.1.4 SaNtfReadHandleT
typedef SaUint64T SaNtfReadHandleT;
The type of a handle that is used in the Reader API.

3.12.2 Callbacks

3.12.2.1 SaNtfCallbacksT
typedef struct {

SaNtfNotificationCallbackT
saNftfNotificationCallback;

SaNtfNotificationDiscardedCallbackT
saNtfNotificationDiscardedCallback;

} SaNtfCallbacksT;

The type of the callbacks structure supplied by a process to the Notification Service
that contains the callback functions that the Notification Service can invoke.

34

SAI-AIS-NTF-A.01.01 Section 3.12 AIS Specification

10

15

20

25

30

35

40

SERVIC
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification

Notification Service

3.12.3 SaNtfNotificationTypeT
typedef enum {

SA_NTF_TYPE_OBJECT_CREATE_DELETE = 0x1000,
SA_NTF_TYPE_ATTRIBUTE_CHANGE = 0x2000,
SA_NTF_TYPE_STATE_CHANGE = 0x3000,
SA_NTF_TYPE_ALARM = 0x4000,
SA_NTF_TYPE_SECURITY_ALARM = 0x5000

} SaNtfNotificationTypeT;

This is the enumeration of all notification types.

3.12.4 SaNtfEventTypeT
#define SA_NTF_NOTIFICATIONS_TYPE_MASK OxF000

This mask can be used to determine the notification type of an event type easily by

binary ANDing the event type with SA_NTF_NOTIFICATIONS_TYPE_MASK.

/* Event types enum, these are only generic *
* types as defined by the X.73x standards */
typedef enum {

SA_NTF_OBJECT _NOTIFICATIONS START =
SA_NTF_TYPE_OBJECT CREATE DELETE,

SA_NTF_OBJECT_CREATION,

SA_NTF_OBJECT DELETION,

SA NTF_ATTRIBUTE NOTIFICATIONS START =
SA_NTF_TYPE ATTRIBUTE CHANGE,

SA NTF_ATTRIBUTE_ADDED,

SA_NTF_ATTRIBUTE_REMOVED,

SA_NTF_ATTRIBUTE_CHANGED,

SA_NTF_ATTRIBUTE RESET,

SA_NTF_STATE_CHANGE_NOTIFICATIONS_START =
SA_NTF_TYPE_STATE_CHANGE,
SA_NTF_OBJECT _STATE_CHANGE,

SA_NTF_ALARM_NOTIFICATIONS_START = SA_NTF_TYPE_ALARM,
SA_NTF_ALARM_COMMUNICATION,

SA_NTF_ALARM_QOS,

SA_NTF_ALARM_PROCESSING

AIS Specification

SAI-AIS-NTF-A.01.01 Section 3.12.3

35

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

SA_NTF_ALARM_EQUIPMENT,
SA_NTF_ALARM_ENVIRONMENT,

SA NTF_SECURITY ALARM_NOTIFICATIONS START =

SA_NTF_TYPE_SECURITY ALARM,
SA_NTF_INTEGRITY_VIOLATION,
SA_NTF_OPERATION_VIOLATION,
SA_NTF_PHYSICAL_VIOLATION,
SA_NTF_SECURITY_SERVICE_VIOLATION,
SA_NTF_TIME_VIOLATION

} SaNtfEventTypeT;

SaNtfEventTypeT defines all event types that are allowed in notifications.

3.12.5 Notification Object

Use SaNameT. This will typically be LDAP DNs defined by AlS, e.g., for an AMF
component or a message queue of the Message Service or other AlS objects.
Currently, the Notification Service does not define a naming scheme for non-AlS
objects such as resources of the operating system, HPI objects or application-specific
objects. The value of the notification object is interpreted by the Notification Service
only for those cases defined in Filtering on page 85.

3.12.6 Notifying Object

Use SaNameT. This will typically be the LDAP DN of an AMF logical entity producing
the notification. If the notifying object is not an AMF logical entity an application spe-
cific notation may be used instead. Currently, the Notification Service does not define
a naming scheme for notifying objects, which are not AMF components. The value of
the notification object is interpreted by the Notification Service only for those cases
defined in Filtering on page 85.

SAI-AIS-NTF-A.01.01 Section 3.12.5 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.12.7 SaNtfClassIdT
typedef struct {

SaUint32T vendorld;
Sauint16T majorld;
SaUint16T minorld;

} SaNtfClassldT;

This is the notification class identifier, which uniquely identifies the kind of situation
that caused the notification. This identifier alone is sufficient to identify the kind of
situation, no other information from the notification is necessary. For vendorld it is
suggested to use the SNMP enterprise number as listed in [7]. The majorld and
minorld values can be arbitrarily assigned to a NCI by a vendor.

#define SA_NTF_VENDOR_ID_SAF 18568

This is a predefined vendorld for those NCls specified by SA Forum. The SNMP
enterprise number of SA Forum is taken here. See SaServicesT in the SA Forum
Overview document [5] for the pre-defined values of majorld of the SA Forum
services.

3.12.8 SaServicesT

Defined in the SA Forum Overview document [5]. This enumeration defines the
values for the SA Forum services as used for majorld in SaNtfClassldT, i.e., the
values used for majorld when vendorld is SA_NTF_VENDOR_ID_SAF.

3.12.9 SaNtfElementldT
typedef SaUint16T SaNtfElementldT;

This is the data type of the Notification Element Identifier (NEI). A value is scoped to
a Notification Class Identifier (NCI).

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.12.7 37

10

15

20

25

30

35

40

Service AvailabilityT'VI Application Interface Specification

Notification Service

SERVICE
AVAILABILITY’

FORUM

3.12.10 SaNtfldentifierT
typedef SaUint64T SaNftfldentifierT;

This type is used for notification identifiers.

#define SA_NTF_IDENTIFIER_UNUSED ((SaNtfldentifierT) 0)

The special value of SA_NTF_IDENTIFIER_UNUSED has to be used to indicate that
a variable of the type SaNtfldentifierT does not contain a valid notification identifier.

3.12.11 Event Time
Use SaTimeT.

3.12.12 SaNtfValueTypeT

typedef enum {

SA_NTF_VALUE_UINTS,
SA_NTF_VALUE_INTS,
SA_NTF_VALUE_UINT16,
SA_NTF_VALUE_INT16,
SA_NTF_VALUE_UINT32,
SA_NTF_VALUE_INT32,
SA_NTF_VALUE_FLOAT,
SA_NTF_VALUE_UINT64,
SA_NTF_VALUE_INT64,
SA_NTF_VALUE_DOUBLE,

SA_NTF_VALUE_LDAP_NAME,

SA_NTF_VALUE_STRING,

SA_NTF_VALUE_IPADDRESS,

SA_NTF_VALUE_BINARY,

SA NTF_VALUE_ARRAY,

} SaNtfValueTypeT;

/* A byte long - unsigned int */

/* A byte long - signed int */

/* 2 bytes long - unsigned int */

/* 2 bytes long - signed int */

/* 4 bytes long - unsigned int */

/* 4 bytes long - signed int */

/* 4 bytes long - float */

/* 8 bytes long - unsigned int */

/* 8 bytes long - signed int */

/* 8 bytes long - double */

/* SaNameT type ¥/

/*°\0’ terminated char array (UTF-8
encoded) */

/* IPv4 or IPv6 address as '\O’ terminated
char array */

/* Binary data stored in bytes - number of
bytes stored separately */

/* Array of some data type - size of elements

and number of elements stored separately */

SaNtfValue TypeT defines the possible types of those values within a structure of type

SaNtfValueT.

38 SAI-AIS-NTF-A.01.01 Section 3.12.10

AIS Specification

10

15

20

25

30

35

40

SERVIC
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification

Notification Service

3.12.13 SaNtfValueT
typedef union {

/* The first few are fixed size data types™/

SaUint8T uint8Val; /*SA_NTF_VALUE _UINTS8 */
Salnt8T int8Val; /*SA_NTF_VALUE_INTS8 */
SaUint16T uint16Val; /*SA_NTF_VALUE_UINT16 */
Salnt16T int16Val; /*SA_NTF_VALUE_INT16 */
SaUint32T uint32Val; /*SA_NTF_VALUE_UINT32 */
Salnt32T int32Val; /*SA_NTF_VALUE INT32 %/
SaFloatT floatVal; /*SA_NTF_VALUE _FLOAT ¥/
SaUint64T uint64Val; /*SA_NTF_VALUE_UINT64 */
Salnt64T int64Val; /*SA_NTF_VALUE_INT64 */
SaDoubleT doubleVal, /*SA _NTF_VALUE DOUBLE */

/* This struct can represent variable length fields like*
* LDAP names, strings, IP addresses and binary data. *
* It may only be used in conjunction with the data type values *
*SA_NTF_VALUE LDAP_NAME, SA_NTF_VALUE_STRING, *
*SA_NTF_VALUE IPADDRESS and SA_NTF_VALUE_BINARY.
* This field shall not be directly accessed. *
* To initialize this structure and to set a pointer to the real data*
* use saNtfPtrValAllocate(). The function saNtfPtrValGet() shall be used *
* for retrieval of the real data.
Y/
struct {

SaUint16T dataOffset;

SaUint16T dataSize;

} ptrVal;

/* This struct represents sets of data of identical type*
* like notification identifiers, attributes etc. *
* It may only be used in conjunction with the data type value *
*SA _NTF_VALUE ARRAY. Functions *
* SaNtfArrayValAllocate() or SaNtfArrayValGet() shall be used to*
* get a pointer for accessing the real data. Direct access is not allowed. */
struct {
Sauint16T arrayOffset;
SaUint16 T numElements;

AIS Specification

SAI-AIS-NTF-A.01.01 Section 3.12.13

39

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

SaUint16T elementSize;
} arrayVal;

} SaNtfValueT;

SaNtfValueT defines a structure that is used in notifications for parameters or
parameter elements that may be of varying data type. A value could be one of the
types specified by SaNtfValueTypeT.

SaNtfValueT defines fields for several simple data types, like

SA_NTF_VALUE INT16 or SA_ NTF_VALUE _DOUBLE. These simple data types
can be stored directly in the SaNtfValueT union. However, for other data types, e.g.,
SA_NTF_VALUE_STRING or SA_NTF_VALUE_ARRAY, SaNtfValueT cannot hold
the memory needed to store the actual data; for those data types rather additional
memory outside from SaNtfValueT has to be reserved. This is done by either
saNtfPtrValAllocate or saNtfArrayValAllocate. These allocation functions use the
ptrVal or arrayVal field in SaNtfValueT respectively to store reference and size infor-
mation related to the reserved memory.

An application may not interpret the contents of the ptrVal or arrayVal fields in
SaNtfValueT in order to access the memory directly. Rather an application is sup-
posed to only access memory via the data pointers returned from the allocation func-
tions (saNtfPtrValAllocate or saNtfArrayValAllocate) or the related get functions
(saNtfPtrValGet or saNtfArrayValGet).

3.12.14 Additional Text

Use SaStringT. A string consists of UTF-8 encoded characters and is terminated by
the \O’ character.

3.12.15 SaNtfAdditionallnfoT

typedef struct {

SaNtfElementIdT infold;
/* APl user is expected to define this field*/

SaNitfValueTypeT infoType;
SaNtfValueT infoValue;
} SaNtfAdditionallnfoT;

This structure represents a single element in the additional information parameter of
a notification.

40

SAI-AIS-NTF-A.01.01 Section 3.12.14 AIS Specification

10

15

20

25

30

35

40

SERVIC

Service AvailabilityTM Application Interface Specification

AVAILABILITY’

FORUM

Notification Service

3.12.16 SaNtfProbableCauseT

This is the enumeration of probable causes as described in X.733 [3] and X.736 [4].

typedef enum {

SA_NTF_ADAPTER_ERROR,
SA_NTF_APPLICATION_SUBSYSTEM_FAILURE,
SA_NTF_BANDWIDTH_REDUCED,
SA_NTF_CALL_ESTABLISHMENT ERROR,
SA_NTF_COMMUNICATIONS PROTOCOL_ERROR,
SA_NTF_COMMUNICATIONS_SUBSYSTEM_FAILURE,

SA_NTF_CONFIGURATION_OR_CUSTOMIZATION_ERROR,

SA_NTF_CONGESTION,
SA_NTF_CORRUPT _DATA,
SA_NTF_CPU_CYCLES_LIMIT _EXCEEDED,
SA_NTF_DATASET_OR_MODEM_ERROR,
SA_NTF_DEGRADED_SIGNAL,
SA NTF D T E,
SA_NTF_ENCLOSURE_DOOR_OPEN,
SA_NTF_EQUIPMENT _MALFUNCTION,
SA_NTF_EXCESSIVE_VIBRATION,
SA_NTF_FILE_ERROR,
SA_NTF_FIRE_DETECTED,
SA_NTF_FLOOD_DETECTED,
SA_NTF_FRAMING_ERROR,
SA_NTF_HEATING_OR_VENTILATION_OR_COOLING _
SYSTEM_PROBLEM,
SA_NTF_HUMIDITY_UNACCEPTABLE,
SA_NTF_INPUT_OUTPUT DEVICE_ERROR,
SA_NTF_INPUT_DEVICE ERROR,
SA_NTF_L_A_N_ERROR,
SA_NTF_LEAK DETECTED,
SA_NTF_LOCAL_NODE_TRANSMISSION_ERROR,
SA_NTF_LOSS_OF FRAME,
SA_NTF_LOSS_OF SIGNAL,
SA_NTF_MATERIAL_SUPPLY EXHAUSTED,
SA_NTF_MULTIPLEXER_PROBLEM,
SA_NTF_OUT_OF MEMORY,
SA_NTF_OUTPUT DEVICE _ERROR,
SA_NTF_PERFORMANCE_DEGRADED,
SA_NTF_POWER _PROBLEM,
SA_NTF_PRESSURE_UNACCEPTABLE,
SA_NTF_PROCESSOR_PROBLEM,

AIS Specification

SAI-AIS-NTF-A.01.01 Section 3.12.16

41

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

SA_NTF_PUMP_FAILURE,
SA_NTF_QUEUE_SIZE EXCEEDED,

SA_NTF_RECEIVE FAILURE,

SA_NTF_RECEIVER FAILURE,
SA_NTF_REMOTE_NODE_TRANSMISSION_ERROR,
SA_NTF_RESOURCE AT _OR_NEARING_CAPACITY,
SA_NTF_RESPONSE_TIME_EXCESSIVE,
SA_NTF_RETRANSMISSION_RATE_EXCESSIVE,
SA_NTF_SOFWARE_ERROR,
SA_NTF_SOFWARE_PROGRAM_ABNORMALLY TERMINATED,
SA_NTF_SOFTWARE _PROGRAM_ERROR,

SA_NTF_STORAGE _CAPACITY PROBLEM,
SA_NTF_TEMPERATURE_UNACCEPTABLE,
SA_NTF_THRESHOLD_ CROSSED,
SA_NTF_TIMING_PROBLEM,
SA_NTF_TOXIC_LEAK_DETECTED,

SA_NTF_TRANSMIT FAILURE,

SA_NTF_TRANSMITTER _FAILURE,
SA_NTF_UNDERLYING_RESOURCE_UNAVAILABLE,
SA_NTF_VERSION_MISMATCH,

SA_NTF_AUTHENTICATION_FAILURE,
SA_NTF_BREACH_OF CONFIDENTIALITY,
SA_NTF_CABLE TAMPER,
SA_NTF_DELAYED_INFORMATION,
SA_NTF_DENIAL_OF SERVICE,
SA_NTF_DUPLICATE_INFORMATION,
SA_NTF_INFORMATION_MISSING,
SA_NTF_INFORMATION_MODIFICATION_DETECTED,
SA_NTF_INFORMATION_OUT_OF SEQUENCE,
SA_NTF_INTRUSION_DETECTION,
SA_NTF_KEY_EXPIRED,
SA_NTF_NON_REPUDIATION_FAILURE,
SA_NTF_OUT_OF _HOURS_ACTIVITY,
SA_NTF_OUT_OF SERVICE,
SA_NTF_PROCEDURAL_ERROR,
SA_NTF_UNAUTHORIZED ACCESS_ATTEMPT,
SA_NTF_UNEXPECTED_INFORMATION,
SA_NTF_UNSPECIFIED_REASON

} SaNtfProbableCauseT;

42

SAI-AIS-NTF-A.01.01 Section 3.12.16 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.12.17 SaNtfSpecificProblemT
typedef struct {

SaNtfElementldT problemld;
/* APl user is expected to define this field”/

SaNtfClassldT problemClassld;
/* optional field to identify problemld values from other NCls,
needed for correlation between clear and non-clear alarms */

SaNtfValueTypeT problemType;
SaNtfValueT problemValue;
} SaNtfSpecificProblemT;

This structure represents a single element in the specific problem parameter of a
notification. The field problemClassld is optional. If it is not specified (all fields of
problemClassld are 0), the problemld value is local to the NCI of the notification. If it
is specified, the given problemld value is taken from the NCI given by
problemClassld. If an alarm notification of perceived severity
SA_NTF_SEVERITY_CLEARED contains a non-empty specificProblems parameter,
then the field problemClassld of each element in that parameter must be filled in to
reference the notification element identifier of the alarm that is to be cleared.

3.12.18 SaNtfSeverityT

This is the enumeration for severities used by alarm notifications and security alarm
notifications. Security alarm notifications use a subset of the values, only.

typedef enum {

SA_NTF_SEVERITY_CLEARED, /* alarm notification, only */
SA _NTF_SEVERITY_INDETERMINATE,
SA_NTF_SEVERITY_WARNING,
SA_NTF_SEVERITY_MINOR,

SA NTF_SEVERITY_MAJOR,

SA _NTF_SEVERITY_CRITICAL

} SaNtfSeverityT;

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.12.17 43

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.12.19 SaNtfSeverityTrendT

This is the enumeration for trend indication of severity.
typedef enum {

SA NTF_TREND MORE_SEVERE,
SA_NTF_TREND NO_CHANGE,
SA_NTF_TREND LESS SEVERE

} SaNtfSeverity TrendT;

3.12.20 SaNtfThresholdinformationT
typedef struct {

SaNtfElementldT thresholdld;
/* APl user is expected to define this field*/

SaNitfValueTypeT thresholdValueType;
SaNtfValueT thresholdValue;

SaNtfValueT thresholdHysteresis;
/* This has to be of the same type as threshold */

SaNitfValueT observedValue;
SaTimeT armTime;
} SaNtfThresholdInformationT;

This structure contains information about a triggered threshold. The thresholdValue,
thresholdHystereris and the observedValue have to be of the same data type, defined
by the field thresholdValue Type.

44

SAI-AIS-NTF-A.01.01 Section 3.12.19 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.12.21 SaNtfProposedRepairActionT
typedef struct {

SaNtfElementldT actionld;
/* APl user is expected to define this field”/

SaNtfValueTypeT actionValueType;

SaNtfValueT actionValue;
} SaNtfProposedRepairActionT;
Structure to represent a single proposed repair action in an alarm notification.
Currently, SA Forum does not specify any mechanism to define an association
between a single proposed repair action and a single specific problem.

3.12.22 SaNtfSourcelndicatorT

typedef enum {

SA NTF_OBJECT_OPERATION = 1,
SA_NTF_MANAGEMENT OPERATION = 2,
SA_NTF_UNKNOWN_OPERATION = 3

} SaNtfSourcelndicatorT;

This is the source indicator for state change, object create/delete and attribute value
change notifications.

3.12.23 SaNtfStateChangeT

typedef struct {
SaNtfElementldT stateld;

SaBoolT oldStatePresent;
SaUint16T oldState;

SaUint16T newState;
} SaNtfStateChangeT;

Structure to represent state changes as part of a notification. The oldState and
newState fields contain the old and new state value and the stateld field identifies the
kind of state that has changed. The values of stateld are defined in the scope of a
NCI. The value of the optional field oldState is relevant only when oldStatePresent is
SA TRUE.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.12.21 45

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.12.24 SaNtfAttributeT
typedef struct {

SaNtfElementIdT attributeld;
/* APl user is expected to define this field”/

SaNtfValueTypeT attribute Type;
SaNtfValueT attributeValue;
} SaNtfAttributeT;
This is the structure to represent object attributes in an object creation or deletion
notification.
3.12.25 SaNtfAttributeChangeT
typedef struct {

SaNtfElementldT attributeld;
/* APl user is expected to define this field”/

SaNtfValueTypeT attribute Type;

SaBoolT oldAttributePresent;
SaNtfValueT oldAttribute Value;

SaNtfValueT newAttributeValue;
} SaNtfAttributeChangeT;

This is the structure to represent attribute changes in a notification. The values of
attributeld are defined in the scope of a NCI. The value of the optional field
oldAttribute Value is relevant only when oldAttributePresent is SA_TRUE.
3.12.26 SaNtfServiceUserT
typedef struct {
SaNtfValueTypeT valueType;
SaNtfValueT value;
} SaNtfServiceUserT;

This is the structure to represent the service user and service provider in a security
alarm notification.

46

SAI-AIS-NTF-A.01.01 Section 3.12.24 AIS Specification

10

15

20

25

30

35

40

SERVIC

AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification

Notification Service

3.12.27 SaNtfSecurityAlarmDetectorT
typedef struct {

SaNtfValueTypeT valueType;
SaNitfValueT value;

} SaNtfSecurityAlarmDetectorT;

This is the structure to represent the security alarm detector in a security alarm

notification.

3.12.28 SaNtfNotificationHeaderT

This structure has pointers pointing to the common fields in the internal notification

structure.

typedef struct {

SaNtfEventTypeT *eventType;
/* This points to the event type in*
* the internal notification structure®/

SaNameT *notificationObject;
/* This points to the notification object*
* in the internal notification structure®

SaNameT *notifyingObject;
/* This points to the notifying object
*in the internal notification structure %/

SaNtfClassldT *notificationClassld;
/* This points to the notification class identifier */

*

SaTimeT *eventTime;
/* Points to eventTime®/

SaUint16 T numCorrelatedNotifications;
/* Number of correlated notifications in the notification™/

Sauint16T lengthAdditional Text;
/* Length of additional text in bytes (including terminating \0’)*/

SaUint16 T numAdditionallnfo;
/* Number of additional info fields®/

SaNtfldentifierT *notificationld;
/* Points to the notification ID in*
* the internal notification structure®/

AIS Specification

SAI-AIS-NTF-A.01.01 Section 3.12.27

47

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

SaNitfldentifierT *correlatedNotifications;
/* Points to the correlated™
* notification identifiers array™/

SaStringT additional Text;
/* Points to the additional text in*
* the internal notification structure(\0 terminated, UTF-8 encoded) */

SaNftfAdditionallnfoT *additionallnfo;
/* Points to the additional info array in*
* the internal notification structure™/

} SaNtfNotificationHeaderT;

3.12.29 SaNtfObjectCreateDeleteNotificationT
This structure contains pointers to the fields in an object create/delete notification.

typedef struct {

SaNtfNotificationHandleT notificationHandle;
* A handle to the internal notification structure®/

SaNtfNotificationHeaderT notificationHeader;
/* Notification header®/

Sauint16T numAttributes;
/* Number of object attributes in the notification™/

SaNitfSourcelndicatorT *sourcelndicator;
/* Points to the source indicator*
* field in the internal notification structure®/

SaNftfAttribute T *objectAttributes;
/* Pointer to attributes array in the internal notification structure®/

} SaNtfObjectCreateDeleteNotificationT;

SAI-AIS-NTF-A.01.01 Section 3.12.29

AIS Specification

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Notification Service

FORUM

3.12.30 SaNtfAttributeChangeNotificationT
This structure contains pointers to the fields in an attribute change notification.

typedef struct {

SaNtfNotificationHandleT notificationHandle;
/* A handle to the internal notification structure®/

SaNitfNotificationHeaderT notificationHeader;
/* Notification header®/

SaUint16T numAttributes;
/* Number of changed attributes in the notification™/

SaNtfSourcelndicatorT *sourcelndicator;
/* Points to the source indicator*
* field in the internal notification structure®/

SaNtfAttributeChangeT *changedAttributes;
/* Points to changed attributes*
*array in the internal notification structure™/

} SaNtfAttribute ChangeNotificationT;

3.12.31 SaNtfStateChangeNotificationT
This structure has pointers to the fields in a state change notification.

typedef struct {

SaNitfNotificationHandleT notificationHandle;
/* A handle to the internal notification structure®/

SaNtfNotificationHeaderT notificationHeader;
/* Notification header®/

Sauint16T numStateChanges;
/* Number of state changes in the notification™/

SaNitfSourcelndicatorT *sourcelndicator;
/* Points to the source indicator*
* field in the internal notification structure®/

SaNtfStateChangeT *changedStates;
/* Points to changed states array in the internal notification structure®/

} SaNtfStateChangeNotificationT;

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.12.30 49

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.12.32 SaNtfAlarmNotificationT

This structure contains pointers to the fields in an alarm notification.
typedef struct {

SaNtfNotificationHandleT notificationHandle;
/* A handle to the internal notification structure */

SaNitfNotificationHeaderT notificationHeader;
/* Notification header®/

SaUint16T numSpecificProblems;
/* Number of specific problems*/

SaUint16 T numMonitoredAttributes;
/* Number of monitored attributes®/

Sauint16T numProposedRepairActions;
/* Number of proposed repair actions”/

SaNtfProbableCauseT *probableCause;
/* Points to the probable cause field”/

SaNtfSpecificProblemT *specificProblems;
/* Points to the array of specific problems™/

SaNitfSeverityT *perceivedSeverity;
/* Points to perceived severity”/

SaNtfSeverityTrendT *trend;
/* Points to trend of severity*/

SaNtfThresholdInformationT *thresholdInformation;
/* Points to the threshold information field*/

SaNtfAttribute T *monitoredAttributes;
/* Monitored attributes array®/

SaNtfProposedRepairActionT *proposedRepairActions;
/ * Proposed repair actions array */

} SaNtfAlarmNotificationT;

SAI-AIS-NTF-A.01.01 Section 3.12.32 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Notification Service

FORUM

3.12.33 SaNtfSecurityAlarmNotificationT
This structure contains pointers to the fields in security alarm notification.

typedef struct {

SaNtfNotificationHandleT notificationHandle;
/* A handle to the internal notification structure */

SaNitfNotificationHeaderT notificationHeader;
/* Notification header®/

SaNtfProbableCauseT *probableCause;
/* Points to the probable cause field”/

SaNtfSeverityT *severity;
/* Points to severity field*/

SaNitfSecurityAlarmDetectorT *securityAlarmDetector;
/* Pointer to the alarm detector field™/

SaNtfServiceUserT*serviceUser;
/* Pointer to the service user field”/

SaNtfServiceUserT *serviceProvider;
/* Pointer to the service user field*/

} SaNtfSecurityAlarmNotificationT;

3.12.34 Default variable notification data size

/* Default for APl user when not sure how much memory is in total needed to
accommodate the variable size data */

#define SA_ NTF_ALLOC_SYSTEM_LIMIT(-1)

Default value for maximum number of bytes to be specified for accommodating
variable size notification data. It can be used when not sure how much memory is in
total needed to accommodate the variable size data.

3.12.35 SaNtfSubscriptionldT
typedef SaUint32T SaNtfSubscriptionldT;

The type of an identifier for a particular subscription for notifications by a particular
process with a particular notification filter. This identifier is used to associate delivery
of notifications for that subscription to the process.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.12.33 51

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.12.36 SaNtfNotificationFilterHeaderT

This structure contains filter elements common to all notification types.
typedef struct {

Sauint16T numEventTypes;
/* number of event types ¥/

SaNtfEventTypeT *eventTypes;
/* the array of event types ¥/

Sauint16T numNotificationObjects;
/* number of notification objects */

SaNameT *notificationObjects;
/* the array of notification objects */

SaUint16 T numNotifyingObjects;

/* number of notifying objects */
SaNameT *notifyingObjects;

/* the array of notifying objects */
SaUint16T numNotificationClasslds;
/* number of notification class ids */

SaNitfClassldT *notificationClasslds;
/* the array of notification class ids */

} SaNtfNotificationFilterHeaderT;

52

SAI-AIS-NTF-A.01.01 Section 3.12.36

AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Notification Service

FORUM

3.12.37 SaNtfObjectCreateDeleteNotificationFilterT
This structure contains filter elements for an object create/delete notification filter.

typedef struct {

SaNtfNotificationFilterHandleT notificationFilterHandle;
/* a handle to the internal notification filter structure */

SaNtfNotificationFilterHeaderT notificationFilterHeader;
/* the notification filter header */

SaUint16 T numSourcelndicators;
/* number of source indicators */

SaNtfSourcelndicatorT *sourcelndicators;
/* the array of source indicators */

} SaNtfObjectCreateDeleteNotificationFilterT;

3.12.38 SaNtfAttributeChangeNotificationFilterT
This structure contains filter elements for an attribute change notification filter.

typedef struct {

SaNtfNotificationFilterHandleT notificationFilterHandle;
/* a handle to the internal notification filter structure */

SaNtfNotificationFilterHeaderT notificationFilterHeader;
/* the notification filter header */

SaUint16 T numSourcelndicators;
/* number of source indicators */

SaNtfSourcelndicatorT *sourcelndicators;
/* the array of source indicators */

} SaNtfAttributeChangeNotificationFilterT;

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.12.37 53

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.12.39 SaNtfStateChangeNotificationFilterT
This structure contains filter elements for a state change notification filter.

typedef struct {

SaNtfNotificationFilterHandleT notificationFilterHandle;
/* a handle to the internal notification filter structure */

SaNtfNotificationFilterHeaderT notificationFilterHeader;
/* the notification filter header */

SaUint16 T numSourcelndicators;
/* number of source indicators */

SaNtfSourcelndicatorT *sourcelndicators;
/* the array of source indicators */

SaUint16T numStateChanges;
/* number of state changes */

SaNitfStateChangeT *changedStates;
/* the array of changed states */

} SaNtfStateChangeNotificationFilterT;

54

SAI-AIS-NTF-A.01.01 Section 3.12.39 AIS Specification

10

15

20

25

30

35

40

SERVIC
AVAILABI

FORUM

E Service AvailabilityTM Application Interface Specification

LITY

Notification Service

3.12.40 SaNtfAlarmNotificationFilterT

This structure contains filter elements for an alarm notification filter.

typedef struct {

SaNtfNotificationFilterHandleT notificationFilterHandle;
/* a handle to the internal notification filter structure */

SaNtfNotificationFilterHeaderT notificationFilterHeader;
/* the notification filter header */

SaUint16T numProbableCauses;
/* number of probable causes ¥/

SaUint16 T numPerceivedSeverities;
/* number of perceived severities */

Sauint16T numTrends;
/* number of severity trends ¥/

SaNtfProbableCauseT “probableCauses;
/* the array of probable causes */

SaNtfSeverityT *perceivedSeverities;
/* the array of perceived severities */

SaNitfSeverityTrendT *trends;
/* the array of severity trends ¥/

} SaNtfAlarmNotificationFilterT;

AIS Specification

SAI-AIS-NTF-A.01.01 Section 3.12.40 55

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.12.41 SaNtfSecurityAlarmNotificationFilterT

This structure contains filter elements for a security alarm notification filter.
typedef struct {

SaNtfNotificationFilterHandleT notificationFilterHandle;
/* a handle to the internal notification filter structure */

SaNtfNotificationFilterHeaderT notificationFilterHeader;

/* the notification filter header */

SaUint16 T numProbableCauses;
/* number of probable causes ¥/

SaUint16T numSeverities;
/* number of severities */

Sauint16T numSecurityAlarmDetectors;
/* number of security alarm detectors ¥/

SaUint16T numServiceUsers;
/* number of service users */

Sauint16T numServiceProviders;
/* number of service providers */

SaNtfProbableCauseT *probableCauses;
/* the array of probable causes */

SaNtfSeverityT *severities;
/* the array of severities */

SaNtfSecurityAlarmDetectorT *securityAlarmDetectors;

/* the array of security alarm detectors */

SaNtfServiceUserT *serviceUsers;
/* the array of service users */

SaNtfServiceUserT *serviceProviders;
/* the array of service providers */

} SaNtfSecurityAlarmNotificationFilterT;

SAI-AIS-NTF-A.01.01 Section 3.12.41

AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.12.42 SaNtfSearchModeT

typedef enum {

SA_NTF_SEARCH_BEFORE_OR_AT_TIME =1,
SA_NTF_SEARCH_AT TIME = 2,
SA_NTF_SEARCH_AT_OR_AFTER_TIME = 3,
SA_NTF_SEARCH_BEFORE_TIME = 4,
SA_NTF_SEARCH_AFTER_TIME = 5,
SA_NTF_SEARCH_NOTIFICATION_ID = 6,
SA_NTF_SEARCH_ONLY FILTER =7

} SaNtfSearchModeT;

This enumeration defines the search modes for the Reader API.

3.12.43 SaNtfSearchCriteriaT

typedef struct {

SaNtfSearchModeT searchMode;
/* indicates the search mode */

SaTimeT eventTime;
/* event time (relevant only if searchMode is one of
SA NTF_SEARCH_* TIME) */

SaNftfldentifierT notificationld;
/* notification ID (relevant only if searchMode is
SA NTF_SEARCH_NOTIFICATION_ID) ¥/

} SaNtfSearchCriteriaT;

This structure contains the search criteria for the Reader API.

3.12.44 SaNtfSearchDirectionT

typedef enum {

SA NTF_SEARCH_OLDER = 1,
SA_NTF_SEARCH_YOUNGER = 2

} SaNtfSearchDirectionT;

This enumeration defines the search directions for the Reader API.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.12.42 57

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.12.45 SaNtfNotificationTypeFilterHandlesT

This structure aggregates fields for notification filter handles of all notification types.
typedef struct {

SaNtfNotificationFilterHandleT objectCreateDeleteFilterHandle;
SaNtfNotificationFilterHandleT attribute ChangeFilterHandle;
SaNitfNotificationFilterHandleT stateChangeFilterHandle;
SaNtfNotificationFilterHandleT alarmFilterHandle,
SaNtfNotificationFilterHandleT securityAlarmFilterHandle;

} SaNtfNotification TypeFilterHandlesT;

Unused handles in SaNtfNotificationTypeFilterHandlesT shall be set to
SA_NTF_FILTER_HANDLE_NULL.

#define SA_NTF_FILTER_HANDLE_NULL((SaNftfNotificationFilterHandleT) NULL)

3.12.46 SaNtfNotificationsT

typedef struct {

SaNtfNotificationTypeT notificationType;
union

{

SaNtfObjectCreateDeleteNotification T objectCreateDeleteNotification;
SaNtfAttributeChangeNotificationT attribute ChangeNotification;
SaNtfStateChangeNotificationT stateChangeNotification;
SaNtfAlarmNotificationT alarmNotification;
SaNtfSecurityAlarmNotificationT securityAlarmNotification;

} notification;
} SaNtfNotificationsT;

This structure contains a union of all notification type specific structures.

SAI-AIS-NTF-A.01.01 Section 3.12.45 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.13 Library Life Cycle

3.13.1 saNftflnitialize()

Prototype

SaAisErrorT saNffinitialize(
SaNtfHandleT *ntfHandle,
const SaNtfCallbacksT *ntfCallbacks,
SaVersionT *version

Parameters

ntfHandle - [out] A pointer to the handle designating this particular initialization of the
Notification Service that is to be returned by the Notification Service.

ntfCallbacks - [in] If ntfCallbacks is set to NULL, no callback is registered; otherwise,
it is a pointer to a SaNitfCallbacksT structure, containing the callback functions of the
process that the Notification Service may invoke. Only non-NULL callback functions
in this structure will be registered.

version - [infout] As an input parameter, version is a pointer to the required
Notification Service version. In this case, minorVersion is ignored and should be set
to 0x00. As an output parameter, the version actually supported by the Notification
Service is delivered.

Description

This function initializes the Notification Service for the invoking process and registers
the various callback functions. This function must be invoked prior to the invocation
of any other Notification Service functionality. The handle ntfHandle is returned as the
reference to this association between the process and the Notification Service. The
process uses this handle in subsequent communication with the Notification Service.
If the implementation supports the required releaseCode, and a major version >= the
required majorVersion, SA_AIS_OK is returned. In this case, the version parameter is
set by this function to:

. releaseCode = required release code

. majorVersion = highest value of the major version that this implementation can-
support for the required releaseCode

minorVersion = highest value of the minor version that this implementation can
support for the required value of releaseCode and the returned value of
majorVersion

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.13 59

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

Notification Service FORUM

If the above mentioned condition cannot be met, SA_AlS ERR _VERSION is
returned, and the version parameter is set to:

if (implementation supports the required releaseCode)
releaseCode = required releaseCode
else {

if (implementation supports releaseCode higher than the required
releaseCode)

releaseCode = the least value of the supported release codes that is
higher than the required releaseCode

else

releaseCode = the highest value of the supported release codes that is
less than the required releaseCode

}

majorVersion = highest value of the major versions that this implementation can
support for the returned releaseCode

minorVersion = highest value of the minor versions that this implementation can
support for the returned values of releaseCode and majorVersion

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Notification Service library or the provider
of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_VERSION - The version parameter is not compatible with the version
of the Notification Service implementation.

60

SAI-AIS-NTF-A.01.01 Section 3.13.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Notification Service

FORUM

See Also

saNtfSelectionObjectGet(), saNtfDispatch(), saNtfFinalize()

3.13.2 saNtfSelectionObjectGet()

Prototype

SaAisErrorT saNtfSelectionObjectGet(
SaNtfHandleT ntfHandle,
SaSelectionObjectT *selectionObject

Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

selectionObject - [out] A pointer to the operating system handle that the invoking
process can use to detect pending callbacks.
Description

This function returns the operating system handle, selectionObject, associated with
the handle ntfHandle. The invoking process can use this handle to detect pending
callbacks, instead of repeatedly invoking saNtfDispatch() for this purpose.

In a POSIX environment, the operating system handle is a file descriptor that is used
with the poll() or select() system calls to detect incoming callbacks.

The selectionObject returned by saNtfSelectionObjectGet() is valid until
saNftfFinalize() is invoked on the same handle ntfHandle.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.13.2 61

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ntfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Notification Service library or the provider
of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

See Also

saNffinitialize(), saNtfDispatch(), saNtfFinalize()

62

SAI-AIS-NTF-A.01.01 Section 3.13.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.13.3 saNtfDispatch()

Prototype

SaAisErrorT saNtfDispatch(
SaNtfHandleT ntfHandle,
SaDispatchFlagsT dispatchFlags

Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

dispatchFlags - [in] Flags that specify the callback execution behavior of the
saNtfDispatch() function, which have the values SA_DISPATCH_ONE,

SA DISPATCH_ALL, or SA DISPATCH_BLOCKING, as defined in the SA Forum
Overview document.

Description

This function invokes, in the context of the calling thread, pending callbacks for the
handle ntfHandle in a way that is specified by the dispatchFlags parameter.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA _AIS _ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA _AIS ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA AIS ERR_BAD_ HANDLE - The handle ntfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SA_AIS_ERR_INVALID_PARAM - The dispatchFlags parameter is invalid.

See Also

saNfflnitialize(), saNtfFinalize()

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.13.3 63

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.13.4 saNtfFinalize()

Prototype

SaAisErrorT saNtfFinalize(
SaNtfHandleT ntfHandle

);
Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

Description

The saNftfFinalize() function closes the association, represented by the ntfHandle
parameter, between the invoking process and the Notification Service. The process
must have invoked saNiffinitialize() before it invokes this function. A process must
invoke this function once for each handle it acquired by invoking saNffinitialize().

If the saNtfFinalize() function returns successfully, the saNtfFinalize() function
releases all resources acquired when saNiffinitialize() was called. Moreover, it closes
all notification channels that are open for the particular handle. Furthermore, it
cancels all pending callbacks related to the particular handle. Note that because the
callback invocation is asynchronous, it is still possible that some callback calls are
processed after this call returns successfully.

After saNtfFinalize() is called, the selection object is no longer valid.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle ntfHandle is invalid, since it is corrupted,
uninitialized, or has already been finalized.

SAI-AIS-NTF-A.01.01 Section 3.13.4 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

See Also

saNftflnitialize()

3.14 Operations of the Producer API

This section describes the API functions that enable the caller to generate
notifications. Generation of notifications is divided into four steps:

1. Allocating memory for the notification contents with one of the allocation func-
tions described in 3.14 on page 65

2. Filling in the notification fields of the structure allocated in the previous step

3. Calling the function saNtfNotificationSend() with the notification handle returned
in step 1

4. Releasing the allocated memory with the saNtfNotificationFree() function

The second and third step may be repeated together multiple times, allowing for
reuse of the allocated notification memory structure. Note that for subsequent uses of
a notification structure, the number of elements in the arrays may be less, but must
not be greater than the number that was specified with the allocate function. It is the
responsibility of the Notification Service implementation to keep track of the number
of array elements that once was allocated. Likewise, the used size of nested data
section that were allocated with saNtfPtrValAllocate or saNtfArrayValAllocate may be
less, but must not be greater than the size that was specified with the allocate
function.

3.14.1 saNtfObjectCreateDeleteNotificationAllocate()

Prototype

SaAisErrorT saNtfObjectCreateDeleteNotificationAllocate(
SaNtfHandleT ntfHandle,
SaNtfObjectCreateDeleteNotificationT *notification,
SaUint16 T numCorrelatedNotifications,

SaUint16T lengthAdditional Text,
SaUint16 T numAdditionallnfo,
SaUint16T numAttributes,
Salnt16T variableDataSize

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.14 65

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

notification - [out] This variable can be on the stack or heap, i.e., it has to be
allocated by the invoking process.

numCorrelatedNotifications - [in] Number of correlated notifications in the notification
lengthAdditionalText - [in] Length of additional text in bytes (including terminating \0’)
numAdditionallnfo - [in] Number of additional info fields

numAttributes - [in] Number of object attributes in the notification

variableDataSize - [in] The maximum number of bytes that are to accommodate
variable size notification data. In subsequent calls to the saNtfPtrValAllocate() and
saNtfArrayValAllocate() functions, memory can be reserved up to variableDataSize
for elements of a notification structure. Implementations of the Notification Service
may use this size to preallocate memory in order to get PDU-ready notifications.
Notification Service system limit is allocated if SA_NTF_ALLOC_SYSTEM_LIMIT is
passed.

Description

This APl internally allocates memory for an object create delete notification and
initializes the notification structure. The values of the function parameters indicating a
length or the number of array elements are copied to the related attributes in the
notification structure. The pointers in notification are initialized to point to fields in the
internal data structure. The returned notification structure also contains the
notification handle that is used for subsequent calls of functions like
saNtfPtrValAllocate(), saNtfArrayValAllocate(), saNtfNotificationSend(), and
saNtfNotificationFree().

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

66

SAI-AIS-NTF-A.01.01 Section 3.14.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS ERR_INVALID PARAM - A parameter is invalid.

SA_AIS_ERR_NO_MEMORY - Either the service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR _TOO_BIG - The variableDataSize is larger than the maximum
permitted value.

See Also

saNitfinitialize(), saNtfNotificationSend(), saNtfNotificationFree()

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.14.1 67

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.14.2 saNtfAttributeChangeNotificationAllocate()

Prototype

SaAisErrorT saNtfAttribute ChangeNotificationAllocate(
SaNtfHandleT ntfHandle,
SaNtfAttributeChangeNotificationT *notification,
SaUlint16T numCorrelatedNotifications,
Sauint16T lengthAdditional Text,

SaUint16 T numAdditionallnfo,
SaUint16T numAttributes,
Salnt16T variableDataSize

);
Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

notification - [out] This variable can be on the stack or heap, i.e., it has to be allocated
by the invoking process.

numCorrelatedNotifications - [in] Number of correlated notifications in the notification
lengthAdditionalText - [in] Length of additional text in bytes (including terminating \0’)
numAdditionallnfo - [in] Number of additional info fields

numAttributes - [in] Number of changed attributes in the notification

variableDataSize - [in] The maximum number of bytes that are to accommodate
variable size notification data. In subsequent calls to the saNtfPtrValAllocate() and
saNtfArrayValAllocate() functions, memory can be reserved up to variableDataSize
for elements of a notification structure. Implementations of the Notification Service
may use this size to preallocate memory in order to get PDU-ready notifications.
Notification Service system limit is allocated if SA_NTF_ALLOC_SYSTEM_LIMIT is
passed.

Description

This APl internally allocates memory for an attribute change notification and initializes
the notification structure. The values of the function parameters indicating a length or
the number of array elements are copied to the related attributes in the notification
structure. The pointers in notification are initialized to point to fields in the internal
data structure. The returned notification structure also contains the notification
handle, which is used for subsequent calls of functions like saNtfPtrValAllocate(),
saNtfArrayValAllocate(), saNtfNotificationSend() and saNftfNotificationFree().

68

SAI-AIS-NTF-A.01.01 Section 3.14.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS _ERR_INVALID PARAM - A parameter is invalid.

SA_AIS_ERR_NO_MEMORY - Either the service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR _TOO_BIG - The variableDataSize is larger than the maximum
permitted value.

See Also

saNitfinitialize(), saNtfNotificationSend(), saNtfNotificationFree()

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.14.2 69

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.14.3 saNtfStateChangeNotificationAllocate()

Prototype

SaAisErrorT saNtfStateChangeNotificationAllocate(
SaNtfHandleT ntfHandle,
SaNitfStateChangeNotificationT *notification,
SaUlint16T numCorrelatedNotifications,
Sauint16T lengthAdditional Text,

SaUint16 T numAdditionallnfo,
SaUint16 T numStateChanges,
Salnt16T variableDataSize

);
Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

notification - [out] This variable can be on the stack or heap, i.e., it has to be allocated
by the invoking process.

numCorrelatedNotifications - [in] Number of correlated notifications in the notification
lengthAdditionalText - [in] Length of additional text in bytes (including terminating \0’)
numAdditionallnfo - [in] Number of additional info fields

numStateChanges - [in] Number of changed states in the notification

variableDataSize - [in] The maximum number of bytes that are to accommodate
variable size notification data.In subsequent calls to the saNtfPtrValAllocate() and
saNtfArrayValAllocate() functions, memory can be reserved up to variableDataSize
for elements of a notification structure. Implementations of the Notification Service
may use this size to preallocate memory in order to get PDU-ready notifications.
Notification Service system limit is allocated if SA_NTF_ALLOC_SYSTEM_LIMIT is
passed.

Description

This API internally allocates memory for a state change notification and initializes the
notification structure. The values of the function parameters indicating a length or the
number of array elements are copied to the related attributes in the notification
structure. The pointers in notification are initialized to point to fields in the internal
data structure. The returned notification structure also contains the notification
handle, which is used for subsequent calls of functions like saNtfPtrValAllocate(),
saNtfArrayValAllocate(), saNtfNotificationSend() and saNtfNotificationFree().

70

SAI-AIS-NTF-A.01.01 Section 3.14.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS _ERR_INVALID PARAM - A parameter is invalid.

SA_AIS_ERR_NO_MEMORY - Either the service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR _TOO_BIG - The variableDataSize is larger than the maximum
permitted value.

See Also

saNitfinitialize(), saNtfNotificationSend(), saNtfNotificationFree()

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.14.3 7

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.14.4 saNtfAlarmNotificationAllocate()

Prototype

SaAisErrorT saNtfAlarmNotificationAllocate(
SaNtfHandleT ntfHandle,
SaNtfAlarmNotificationT *notification,
SaUint16 T numCorrelatedNotifications,
Sauint16T lengthAdditional Text,
SaUint16 T numAdditionallnfo,

SaUint16 T numSpecificProblems,
SaUint16T numMonitoredAttributes,
SaUint16T numProposedRepairActions,
Salnt16T variableDataSize

Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

notification - [out] This variable can be on the stack or heap, i.e., it has to be allocated
by the invoking process.

numCorrelatedNotifications - [in] Number of correlated notifications in the notification
lengthAdditionalText - [in] Length of additional text in bytes (including terminating \0’)
numAdditionallnfo - [in] Number of additional info fields

numSpecificProblems - [in] Number of specific problems

numMonitoredAttributes - [in] Number of monitored attributes
numProposedRepairActions - [in] Number of proposed repair actions

variableDataSize - [in] The maximum number of bytes that are to accommodate
variable size notification data. In subsequent calls to the saNtfPtrValAllocate() and
saNtfArrayValAllocate() functions, memory can be reserved up to variableDataSize
for elements of a notification structure. Implementations of the Notification Service
may use this size to preallocate memory in order to get PDU-ready notifications.
Notification Service system limit is allocated if SA_NTF_ALLOC_SYSTEM_LIMIT is
passed.

72

SAI-AIS-NTF-A.01.01 Section 3.14.4 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

Description

This APl internally allocates memory for an alarm notification and initializes the
notification structure. The values of the function parameters indicating a length or the
number of array elements are copied to the related attributes in the notification
structure. The pointers in notification are initialized to point to fields in the internal
data structure. The returned notification structure also contains the notification
handle, which is used for subsequent calls of functions like saNtfPtrValAllocate(),
saNtfArrayValAllocate(), saNtfNotificationSend() and saNftfNotificationFree().

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS _ERR_INVALID PARAM - A parameter is invalid.

SA_AIS_ERR_NO_MEMORY - Either the service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR _TOO_BIG - The variableDataSize is larger than the maximum
permitted value.

See Also

saNitfinitialize(), saNtfNotificationSend(), saNtfNotificationFree()

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.14.4 73

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.14.5 saNtfSecurityAlarmNotificationAllocate()

Prototype

SaAisErrorT saNtfSecurityAlarmNotificationAllocate(
SaNtfHandleT ntfHandle,
SaNtfSecurityAlarmNotificationT *notification,
Sauint16 T numCorrelatedNotifications,
Sauint16T lengthAdditional Text,

SaUuint16T numAdditionalinfo,
Salnt16T variableDataSize

Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

notification - [out] This variable can be on the stack or heap, i.e., it has to be allocated
by the invoking process.

numCorrelatedNotifications - [in] Number of correlated notifications in the notification
lengthAdditionalText - [in] Length of additional text in bytes (including terminating \0’)
numAdditionallnfo - [in] Number of additional info fields

variableDataSize - [in] The maximum number of bytes that are to accommodate
variable size notification data. In subsequent calls to the saNtfPtrValAllocate() and
saNtfArrayValAllocate() functions, memory can be reserved up to variableDataSize
for elements of a notification structure. Implementations of the Notification Service
may use this size to preallocate memory in order to get PDU-ready notifications.
Notification Service system limit is allocated if SA_NTF_ALLOC_SYSTEM_LIMIT is
passed.

Description

This APl internally allocates memory for a security alarm notification and initializes
the notification structure. The values of the function parameters indicating a length or
the number of array elements are copied to the related attributes in the notification
structure. The pointers in notification are initialized to point to fields in the internal
data structure. The returned notification structure also contains the notification
handle, which is used for subsequent calls of functions like saNtfPtrValAllocate(),
saNtfArrayValAllocate(), saNtfNotificationSend(), and saNtfNotificationFree().

74

SAI-AIS-NTF-A.01.01 Section 3.14.5 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS _ERR_INVALID PARAM - A parameter is invalid.

SA_AIS_ERR_NO_MEMORY - Either the service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR _TOO_BIG - The variableDataSize is larger than the maximum
permitted value.

See Also

saNitfinitialize(), saNtfNotificationSend(), saNtfNotificationFree()

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.14.5 75

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.14.6 saNtfPtrValAllocate()

Prototype

SaAisErrorT saNtfPtrValAllocate(
SaNtfNotificationHandleT notificationHandle,

SaUint16T dataSize,
void **dataPtr,
SaNtfValueT *value
);
Parameters

notificationHandle - [in] The handle, obtained through one of the saNtf<notification
type>NotificationAllocate() functions, identifying the particular notification instance for
which memory is to be reserved.

dataSize - [in] The number of bytes to be reserved.
dataPtr - [out] Pointer to the memory location that will be reserved with this function.

value - [in/out] An element of the notification structure has to be passed in, for which
the function shall reserve memory. Implementations of the Notification Service are
free to allocate memory in the preceding call to one of the saNtf<notification
type>NotificationAllocate() functions or to allocate memory through this function.
Memory allocated with this function is implicitly freed when saNtfNotificationFree is
called. The offset and length of the reserved memory space is stored in value.

Description

This function reserves memory for an element of the notification structure in an
internal structure and returns the pointer to the reserved memory region in dataPtr.
This function may only be used with the ptrVal structure field in the SaNtfValueT
union, i.e., for these data types: SA NTF_VALUE LDAP_NAME,

SA _NTF_VALUE_STRING, SA_NTF_VALUE IPADDRESS and

SA NTF_VALUE BINARY.

The corresponding function in the Consumer APl is saNtfPtrValGet().

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

76

SAI-AIS-NTF-A.01.01 Section 3.14.6 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS _ERR_INVALID PARAM - A parameter is invalid.

SA_AIS_ERR_NO_MEMORY - Either the service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NO_SPACE - The requested memory cannot be reserved in the
variable data area of the notification as there is not enough space left.

See Also

saNtfObjectCreateDeleteNotificationAllocate(),

saNftfAttribute ChangeNotificationAllocate(),
saNtfStateChangeNotificationAllocate(), saNtfAlarmNotificationAllocate(),
saNtfSecurityAlarmNotificationAllocate(),saNtfPtrValGet()

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.14.6 77

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.14.7 saNtfArrayValAllocate()

Prototype

SaAisErrorT saNtfArrayValAllocate(
SaNtfNotificationHandleT notificationHandle,

SaUint16 T numElements,
SaUint16T elementSize,
void **arrayPitr,
SaNitfValueT *value

)’.

Parameters

notificationHandle - [in] The handle, obtained through one of the saNtf<notification
type>NotificationAllocate() functions, identifying the particular notification instance for
which memory is to be reserved.

numElements - [in] Number of elements to be reserved.
elementSize - [in] Size of each element in the array in bytes.
arrayPtr - [out] Pointer to the memory location that will be reserved with this function.

value - [in/out] An element of the notification structure has to be passed in, for which
the function shall reserve memory. Implementations of the Notification Service are
free to allocate memory in the preceding call to one of the saNtf<notification
type>NotificationAllocate() functions or to allocate memory through this function.
Memory allocated with this function is implicitly freed when saNtfNotificationFree is
called. The offset, size and field width of the memory reserved for the array is stored
in value.

Description

This function reserves memory for an element of the notification structure of array
type in an internal structure and returns the pointer to the reserved memory region in
dataPtr. This function may only be used with the arrayVal structure field in the
SaNtfValueT union, i.e., for the data type SA_ NTF_VALUE ARRAY.

The corresponding function in the Consumer APl is saNifArrayValGet().

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

78

SAI-AIS-NTF-A.01.01 Section 3.14.7 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS _ERR_INVALID PARAM - A parameter is invalid.

SA_AIS_ERR_NO_MEMORY - Either the service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NO_SPACE - The requested memory cannot be reserved in the
variable data area of the notification as there is not enough space left.

See Also

saNtfObjectCreateDeleteNotificationAllocate(),

saNftfAttribute ChangeNotificationAllocate(), saNtfState ChangeNotificationAllocate(),
saNtfAlarmNotificationAllocate(), saNtfSecurityAlarmNotificationAllocate(),
saNtfArrayValGet()

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.14.7 79

10

15

20

25

30

35

40

Service AvailabilityT'VI Application Interface Specification

Notification Service

SERVICE
AVAILABILITY’

FORUM

3.14.8 saNtfNotificationSend()

Prototype

SaAisErrorT saNtfNotificationSend(
SaNtfNotificationHandleT notificationHandle

)

Parameters

notificationHandle — [in] The handle, obtained through one of the
saNitf<notification type>NotificationAllocate() functions, designating this particular

notification instance.

Description

This method is used to send a notification. The notification is identified by the
notification handle that is returned in the notification structure created with a
preceding call to one of the saNtf<notification type>NotificationAllocate() functions.

The following table indicates which of the header elements in the notification
referenced by notificationHandle are mandatory, optional, or implicit:

Name Mandatory / Optional / Implicit Default Value for Optional
Parameters (if not set)

eventType mandatory -

notificationObject mandatory -

notifyingObject optional notificationObject

notificationClassld mandatory -

eventTime

optional — must be set to a valid
timestamp or to
SA_TIME_UNKNOWN

current system time (if
SA_TIME_UNKNOWN is set)

notificationld

implicit

generated value

correlatedNotifications

optional — number of elements
must be consistent with
numCorrelatedNotifications

additionalText

optional — length must be consis-
tent with lengthAdditionalText

additionallnfo

optional — number of elements
must be consistent with
numAdditionallnfo

80

SAI-AIS-NTF-A.01.01 Section 3.14.8

AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification
Notification Service

In case notificationHandle refers to an object create/delete notification, the follow-
ing table indicates which of the related elements are mandatory or optional:

Name

Mandatory / Optional / Implicit Default Value for Optional
Parameters (if not set)

notificationHandle

mandatory (returned by allocate -
function)

sourcelndicator

optional SA_NTF_UNKNOWN_OPERATION

objectAttributes

optional — number of elements -
must be consistent with
numAttributes

In case notificationHandle refers to an attribute value change notification, the fol-
lowing table indicates which of the related elements are mandatory or optional:

Name

Mandatory / Optional / Implicit Default Value for Optional
Parameters (if not set)

notificationHandle

mandatory (returned by allocate -
function)

sourcelndicator

optional SA_NTF_UNKNOWN_OPERATION

changedAttributes

mandatory (the sub-element oldAt-| —
tributeValue is optional)

In case notificationHandle refers to a state change notification, the following table
indicates which of the related elements are mandatory or optional:

Name

Mandatory / Optional / Implicit | Default Value for Optional
Parameters (if not set)

notificationHandle

mandatory (returned by allocate | —
function)

sourcelndicator

optional SA_NTF_UNKNOWN_OPERATION

changedStates

mandatory (the sub-element old-| —
State is optional)

AIS Specification

SAI-AIS-NTF-A.01.01 Section 3.14.8 81

10

15

20

25

30

35

40

Service AvailabilityT'VI Application Interface Specification

Notification Service

SERVICE
AVAILABILITY’

FORUM

In case notificationHandle refers to an alarm notification, the following table
indicates which of the related elements are mandatory or optional:

Name

Mandatory / Optional / Implicit

Default Value for Optional
Parameters (if not set)

notificationHandle

mandatory (returned by allocate
function)

probableCause

mandatory

specificProblems

optional — number of elements
must be consistent with
numSpecificProblems

perceivedSeverity mandatory -
trend optional SA_NTF_TREND_NO_CHANGE
thresholdInformation optional -

monitoredAttributes

optional — number of elements
must be consistent with
numMonitoredAttributes

proposedRepairActions

optional — number of elements
must be consistent with
numProposedRepairActions

In case notificationHandle refers to a security alarm notification, the following table
indicates which of the related elements are mandatory or optional:

Name

Mandatory / Optional / Implicit

Default Value for Optional
Parameters (if not set)

notificationHandle

mandatory (returned by allocate
function)

probableCause mandatory -
severity mandatory -
securityAlarmDetector mandatory -
serviceUser mandatory -
serviceProvider mandatory -

If successful, the notification identifier is written to the field pointed to by notificationld
in the SaNftfNotificationHeaderT part of the notification referenced by
notificationHandle. It can later be used for referencing preceding notification

instances.

82

SAI-AIS-NTF-A.01.01 Section 3.14.8

AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS _ERR_INVALID PARAM - A parameter is invalid.

SA_AIS_ERR_NO_MEMORY - Either the service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

See Also

saNtfObjectCreateDeleteNotificationAllocate(),
saNtfAttribute ChangeNotificationAllocate(), saNtfState ChangeNotificationAllocate(),
saNtfAlarmNotificationAllocate(), saNtfSecurityAlarmNotificationAllocate()

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.14.8 83

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.14.9 saNtfNotificationFree()

Prototype

SaAisErrorT saNtfNotificationFree(
SaNtfNotificationHandleT notificationHandle
)

Parameters

notificationHandle — [in] The handle, obtained through one of the
saNitf<notification type>NotificationAllocate() functions, designating this particular
notification instance.

Description

Frees the memory previously allocated for a notification.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA _AIS ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA _AIS ERR _BAD_ HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

See Also

saNtfObjectCreateDeleteNotificationAllocate(),

saNftfAttribute ChangeNotificationAllocate(),
saNtfStateChangeNotificationAllocate(),saNtfAlarmNotificationAllocate(),
saNtfSecurityAlarmNotificationAllocate(), saNtfNotificationSend()

SAI-AIS-NTF-A.01.01 Section 3.14.9 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.15 Consumer Operations

3.15.1 Filtering

There are functions to allocate filters specific for all notification types. Functions of the
Subscriber APl and Reader API take a SaNtfNotificationTypeFilterHandlesT
parameter that contains handles for all notification type specific filters. (Filter handles
are returned by the filter allocation functions.) For each notification type the caller is
interested in filter criteria have to be specified (i.e., a filter handle has to be set in the
SaNtfNotification TypeFilterHandlesT parameter). If the caller is not interested in
notifications of a particular type the special handle
SA_NTF_FILTER_HANDLE _NULL has to be set.

When allocating a filter for a particular notification type, several filter elements may be
specified. For instance, for alarm notifications there are filter elements for Probable
Cause, Perceived Severity etc. Each such filter element can be a set of explicit
values or an empty set. If not empty, then the filter element matches for a particular
notification if one of the specified explicit values match. This means that for one filter
element all values are logically ORed. If a filter element is an empty set, then all
values of a notification for that particular element match (pass through). All filter
elements for a notification type are logically ANDed. This means that a notification
matches the filter if it matches all filter elements, respectively.

When filtering is done, in most cases the values of a filter element are checked for
equality against the related value of a notification. This can be called low level
filtering, since there is no interpretation done on the meaning of a particular value of a
filter element. However, for Notification Object and Notifying Object filter elements
there is also high level filtering provided in these two specific cases:

. If the value of a filter element contains the LDAP DN of an AMF service unit, then
any AMF component belonging to that service unit matches.

Likewise, if the value of a filter element contains the LDAP DN of an AMF service
instance, then any AMF component service instance belonging to that service
instance matches that filter element.

Note that the above described filtering for Notification Object and Notifying Object
does not create a dependency on the AMF service. The AMF LDAP DNs directly
contains the information about the relationship between service units and
components as well as that between service instances and component service
instances. This is because the DN of a component has the full DN of the containing
service unit and the DN of a component service instance has the full DN of the
containing service instance in it.

The same notification filters can be used for multiple reads or subscriptions. It is the
responsibility of the process to free the notification filters by invoking the

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15 85

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

saNtfNotificationFilterFree() function if the notification filters are no longer needed
after calls to functions of the Subscriber or Reader API.

3.15.2 Common Consumer Operations

This section contains functions, which are common to the subscriber and reader
interface. This comprises a function to retrieve the localized notification message
text, functions to access the contents of nested notification elements and filter
allocation functions for the various notification types.

3.15.2.1 saNtfLocalizedMessageGet()

Prototype

SaAisErrorT saNtfLocalizedMessageGet(
SaNtfNotificationHandleT notificationHandle,
SaStringT *message

Parameters

notificationHandle - [in] notification handle

message — [out] — A pointer to the buffer for the localized message that is to be
returned. Message may not be NULL. If the function returns successfully then
*message points to memory allocated by the function, which contains the localized
message. The calling application is responsible to free this memory when it is no
longer needed using saNtfLocalizedMessageFree(). If the function returns an error
then there has no memory been allocated for *message.

Description

Returns a localized textual description of the situation that resulted in the notification
referenced by the given notification handle. The localized message text consists of
UTF-8 encoded characters and is terminated by the \0’ character.

This function is intended to be used after a notification has been retrieved either by
the SaNtfNotificationCallbackT callback or saNtfNotificationReadNext. If there are no
localization data available for the notification class identifier in the notification
referenced by notificationHandle this function returns SA_AIS ERR _NOT_EXIST.
Localization data are optional and need not be provided for all notification class
identifiers. In case an implementation of the Notification Service does not support
internationalization this function returns SA_AIS ERR_NOT_SUPPORTED.

The format string of localization data related to the notification may contain
references to data elements in the notification. In the returned message usually these

86

SAI-AIS-NTF-A.01.01 Section 3.15.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

references are replaced by the referenced values. In case the referenced value is not
contained in the notification the returned message keeps the reference as it is in the
format string. Refer to 4.2 on page 119 for details about the format string.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS ERR_NOT_EXIST — There is no localization data available for the
notification class identifier in the notification referenced by notificationHandle.

SA AIS ERR_NOT_SUPPORTED - The implementation of the Notification Service
does not support the optional functionality of internationalization.

SA_AIS _ERR_INVALID PARAM - A parameter is invalid.

SA_AIS_ERR_NO_MEMORY - Either the service library or the provider of the
service is out of memory and cannot provide the service.

SA_AIS ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.2.1 87

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

See Also

SaNtfNotificationCallbackT, saNtfLocalizedMessageFree(),
saNtfNotificationSubscribe(), saNtfNotificationReadlnitialize(),
saNtfNotificationReadNext()

3.15.2.2 saNtfLocalizedMessageFree()

Prototype

SaAisErrorT saNtfLocalizedMessageFree(
SaStringT message
)

Parameters

message — [in] The message buffer, obtained through the
saNtfLocalizedMessageGet() function.

Description

Frees the memory previously allocated for a localized message by
saNftfLocalizedMessageGet().

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

See Also

saNtfLocalizedMessageGet()

88

SAI-AIS-NTF-A.01.01 Section 3.15.2.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.15.2.3 saNtfPtrValGet()

Prototype

SaAisErrorT saNtfPtrValGet(
SaNtfNotificationHandleT notificationHandle,
const SaNtfValueT *value,
void **dataPtr,

SaUint16T *dataSize

Parameters

notificationHandle - [in] The notification handle is obtained through the notification
structure passed to one of the callbacks of the Subscriber API or returned from one of
the functions of the Reader API.

value - [in] Element of the notification structure, the data of which is to be returned in
dataPtr. The offset and length of the reserved memory space is taken from value.

dataPtr - [out] Pointer to the returned data. Since the returned pointer points to the
internal data structure it is no longer valid after the enclosing notification has been
freed with saNtfNotificationFree().

dataSize - [out] The size of the data associated with the given value.

Description

This function gets the pointer to a memory location allocated in an internal structure
associated with the notification instance that is reserved for the given element of the
notification structure. It may only be used with the ptrVal structure in the SaNtfValueT
union.

This function is the counterpart of saNtfPtrVValAllocate() in the Producer API.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA _AIS ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.2.3 89

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS ERR_INVALID PARAM - A parameter is invalid.

See Also

saNtfObjectCreateDeleteNotificationAllocate(),

saNtfAttribute ChangeNotificationAllocate(),
saNtfStateChangeNotificationAllocate(), saNtfAlarmNotificationAllocate(),
saNtfSecurityAlarmNotificationAllocate(), saNtfPtrValAllocate()

90

SAI-AIS-NTF-A.01.01 Section 3.15.2.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.15.2.4 saNtfArrayValGet()

Prototype

SaAisErrorT saNtfArrayValGet(
SaNtfNotificationHandleT notificationHandle,
const SaNtfValueT *value,
void **arrayPitr,

SaUint16T *numElements,
Sauint16T *elementSize

);
Parameters

notificationHandle - [in] The notification handle is obtained through the notification
structure passed to one of the callbacks of the Subscriber API or returned from one of
the functions of the Reader API.

value - [in] Element of notification structure, the data of which is to be returned in
arrayPtr. The offset, size and field width of the reserved array space is taken from
value.

arrayPtr - [out] Pointer to the returned array. Since the returned pointer points to the
internal data structure it is no longer valid after the enclosing notification has been
freed with saNtfNotificationFree().

numElements - [out] Number of elements in the array.

elementSize - [out] Size of each element in the array.

Description

This function gets the pointer to a memory location allocated in an internal structure
associated with the notification instance that is reserved for the given array type
element of the notification structure. It may only be used with the arrayVal structure
field in the SaNtfValueT union.

This function is the counterpart of saNtfArrayValAllocate() in the Producer API.

Return Values

SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.2.4 91

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS _ERR_INVALID PARAM - A parameter is invalid.

See Also

saNtfObjectCreateDeleteNotificationAllocate(),

saNtfAttribute ChangeNotificationAllocate(), saNtfState ChangeNotificationAllocate(),
saNtfAlarmNotificationAllocate(), saNtfSecurityAlarmNotificationAllocate(),
saNtfArrayValAllocate()

92

SAI-AIS-NTF-A.01.01 Section 3.15.2.4 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.15.2.5 saNtfObjectCreateDeleteNotificationFilterAllocate()

Prototype

SaAisErrorT saNtfObjectCreateDeleteNotificationFilterAllocate(
SaNtfHandleT ntfHandle,
SaNtfObjectCreateDeleteNotificationFilterT *notificationFilter,
Sauint16T numEventTypes,

SaUint16 T numNotificationObjects,
Sauint16 T numNotifyingObjects,
SaUint16 T numNotificationClasslds,
SaUint16 T numSourcelndicators

Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

notificationFilter - [out] This variable can be on the stack or heap, i.e., it has to be
allocated by the invoking process.

numEventTypes - [in] Number of event types in the notification filter
numNotificationObjects - [in] Number of notification objects in the notification filter
numNotifyingObjects - [in] Number of notifying objects in the notification filter
numNotificationClasslds - [in] Number of notification class IDs in the notification filter

numSourcelndicators - [in] Number of source indicators in the notification filter

Description

This APl internally allocates memory for an object create delete notification filter and
initializes the notificationFilter structure. The values of the function parameters
indicating a length or the number of array elements are copied to the related
attributes in the notificationFilter structure. The pointers in notificationFilter are
initialized to point to fields in the internal data structure. The returned notificationFilter
structure also contains the notification filter handle, which is used for subsequent
calls of functions like saNtfNotificationSubscribe(), saNtfNotificationReadInitialize(),
saNtfNotificationReadNext() or saNtfNotificationFilterFree().

Return Values

SA_AIS_OK - The function completed successfully.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.2.5 93

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

Notification Service FORUM

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ ERR _BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Notification Service library or the provider
of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

See Also

saNftfinitialize(), saNtfNotificationSubscribe(), saNtfNotificationReadlnitialize(),
saNtfNotificationReadNext(), saNtfNotificationFilterFree()

94

SAI-AIS-NTF-A.01.01 Section 3.15.2.5 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.15.2.6 saNtfAttributeChangeNotificationFilterAllocate()

Prototype

SaAisErrorT saNtfAttribute ChangeNotificationFilterAllocate(
SaNtfHandleT ntfHandle,
SaNftfAttributeChangeNotificationFilterT *notificationFilter,
Sauint16T numEventTypes,

SaUint16 T numNotificationObjects,
Sauint16 T numNotifyingObjects,
SaUint16 T numNotificationClasslds,
Sauint16T numSourcelndicators

Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

notificationFilter - [out] This variable can be on the stack or heap, i.e., it has to be
allocated by the invoking process.

numEventTypes - [in] Number of event types in the notification filter
numNotificationObjects - [in] Number of notification objects in the notification filter
numNotifyingObjects - [in] Number of notifying objects in the notification filter
numNotificationClasslds - [in] Number of notification class IDs in the notification filter

numSourcelndicators - [in] Number of source indicators in the notification filter

Description

This APl internally allocates memory for an attribute change notification filter and
initializes the notificationFilter structure. The returned notificationFilter structure also
contains the notification filter handle, which is used for subsequent calls of functions
like saNtfNotificationSubscribe(), saNtfNotificationReadInitialize(),
saNtfNotificationReadNext(), or saNtfNotificationFilterFree().

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.2.6 95

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

Notification Service FORUM

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Notification Service library or the provider
of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

See Also

saNftfinitialize(), saNtfNotificationSubscribe(), saNtfNotificationReadlnitialize(),
saNtfNotificationReadNext(), saNtfNotificationFilterFree()

96

SAI-AIS-NTF-A.01.01 Section 3.15.2.6 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.15.2.7 saNtfStateChangeNotificationFilterAllocate()

Prototype

SaAisErrorT saNtfStateChangeNotificationFilterAllocate(
SaNtfHandleT ntfHandle,
SaNitfStateChangeNotificationFilterT *notificationFilter,
Sauint16T numEventTypes,

SaUint16 T numNotificationObjects,
Sauint16 T numNotifyingObjects,
SaUint16 T numNotificationClasslds,
Sauint16 T numSourcelndicators,
Sauint16 T numChangedStates

);
Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

notificationFilter - [out] This variable can be on the stack or heap, i.e., it has to be
allocated by the invoking process.

numEventTypes - [in] Number of event types in the notification filter
numNotificationObjects - [in] Number of notification objects in the notification filter
numNotifyingObjects - [in] Number of notifying objects in the notification filter
numNotificationClasslds - [in] Number of notification class IDs in the notification filter
numSourcelndicators - [in] Number of source indicators in the notification filter

numChangedStates - [in] Number of changed states in the notification filter

Description

This APl internally allocates memory for an attribute change notification filter and
initializes the notificationFilter structure. The values of the function parameters
indicating a length or the number of array elements are copied to the related
attributes in the notificationFilter structure. The pointers in notificationFilter are
initialized to point to fields in the internal data structure. The returned notificationFilter
structure also contains the notification filter handle, which is used for subsequent
calls of functions like saNtfNotificationSubscribe(), saNtfNotificationReadlnitialize(),
saNtfNotificationReadNext(), or saNtfNotificationFilterFree().

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.2.7 97

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

Notification Service FORUM

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Notification Service library or the provider
of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

See Also

saNftfinitialize(), saNtfNotificationSubscribe(), saNtfNotificationReadlnitialize(),
saNtfNotificationReadNext(), saNtfNotificationFilterFree()

98

SAI-AIS-NTF-A.01.01 Section 3.15.2.7 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.15.2.8 saNtfAlarmNotificationFilterAllocate()

Prototype

SaAisErrorT saNtfAlarmNotificationFilterAllocate(
SaNtfHandleT ntfHandle,
SaNtfAlarmNotificationFilterT *notificationFilter,
Sauint16T numEventTypes,

SaUint16 T numNotificationObjects,
Sauint16 T numNotifyingObjects,
SaUint16 T numNotificationClasslds,
SaUlint16 T numProbableCauses,
SaUlint16T numPerceivedSeverities,
SaUint16T numTrends

Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

notificationFilter - [out] This variable can be on the stack or heap, i.e., it has to be
allocated by the invoking process.

numEventTypes - [in] Number of event types in the notification filter.
numNotificationObjects - [in] Number of notification objects in the notification filter.
numNotifyingObjects - [in] Number of notifying objects in the notification filter.
numNotificationClasslds - [in] Number of notification class IDs in the notification filter.
numProbableCauses - [in] Number of probable causes in the notification filter.
numPerceivedSeverities - [in] Number of perceived severities in the notification filter.

numTrends - [in] Number of trends in the notification filter.

Description

This APl internally allocates memory for an alarm notification filter and initializes the
notificationFilter structure. The values of the function parameters indicating a length
or the number of array elements are copied to the related attributes in the
notificationFilter structure. The pointers in notificationFilter are initialized to point to
fields in the internal data structure. The returned notificationFilter structure also
contains the notification filter handle, which is used for subsequent calls of functions
like saNtfNotificationSubscribe(), saNtfNotificationReadlnitialize(),
saNtfNotificationReadNext(), or saNtfNotificationFilterFree().

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.2.8 99

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

Notification Service FORUM

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Notification Service library or the provider
of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

See Also

saNftfinitialize(), saNtfNotificationSubscribe(), saNtfNotificationReadlnitialize(),
saNtfNotificationReadNext(), saNtfNotificationFilterFree()

100

SAI-AIS-NTF-A.01.01 Section 3.15.2.8 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.15.2.9 saNtfSecurityAlarmNotificationFilterAllocate()

Prototype

SaAisErrorT saNtfSecurityAlarmNotificationFilterAllocate(
SaNtfHandleT ntfHandle,
SaNtfSecurityAlarmNotificationFilterT *notificationFilter,
Sauint16T numEventTypes,

SaUint16 T numNotificationObjects,
Sauint16 T numNotifyingObjects,
SaUint16 T numNotificationClasslds,
SaUlint16 T numProbableCauses,
SaUlint16T numSeverities,

Sauint16 T numSecurityAlarmDetectors,
SaUlint16T numServiceUsers,
SaUlint16T numServiceProviders

);
Parameters

ntfHandle - [in] The handle, obtained through the saNftfinitialize() function,
designating this particular initialization of the Notification Service.

notificationFilter - [out] This variable can be on the stack or heap, i.e., it has to be
allocated by the invoking process.

numEventTypes - [in] Number of event types in the notification filter
numNotificationObjects - [in] Number of notification objects in the notification filter
numNotifyingObjects - [in] Number of notifying objects in the notification filter
numNotificationClasslds - [in] Number of notification class IDs in the notification filter
numProbableCauses - [in] Number of probable causes in the notification filter
numSeverities - [in] Number of severities in the notification filter

numSecurityAlarmDetectors - [in] Number of security alarm detectors in the
notification filter

numServiceUsers - [in] Number of service users in the notification filter

numServiceProviders - [in] Number of service providers in the notification filter

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.2.9 101

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

Description

This APl internally allocates memory for a security alarm notification filter and
initializes the notificationFilter structure. The values of the function parameters
indicating a length or the number of array elements are copied to the related
attributes in the notificationFilter structure. The pointers in notificationFilter are
initialized to point to fields in the internal data structure. The returned notificationFilter
structure also contains the notification filter handle, which is used for subsequent
calls of functions like saNtfNotificationSubscribe(), saNtfNotificationReadlnitialize(),
saNtfNotificationReadNext(), or saNtfNotificationFilterFree().

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA _AIS ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - The handle notificationHandle is invalid, since it is
corrupted, uninitialized, or has already been freed.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Notification Service library or the provider
of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

See Also

saNitfinitialize(), saNtfNotificationSubscribe(), saNtfNotificationReadlnitialize(),
saNTtfNotificationReadNext(), saNtfNotificationFilterFree()

SAI-AIS-NTF-A.01.01 Section 3.15.2.9 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.15.2.10 saNtfNotificationFilterFree()

Prototype

SaAisErrorT saNtfNotificationFilterFree(
SaNtfNotificationFilterHandleT notificationFilterHandle
)

Parameters

notificationFilterHandle — [in] notification filter handle

Description

Frees the memory previously allocated for a notification filter.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS _ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS _ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA AIS ERR _BAD HANDLE - The handle notificationFilterHandle is invalid, since it
is corrupted, uninitialized, or has already been freed.

See Also

saNtfObjectCreateDeleteNotificationFilterAllocate(),

saNtfAttribute ChangeNotificationFilterAllocate(),
saNtfStateChangeNotificationFilterAllocate(), saNtfAlarmNotificationFilterAllocate(),
saNtfSecurityAlarmNotificationFilterAllocate()

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.2.10 103

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

3.15.3 Operations of the Subscriber API

This section describes the API functions that enable the caller to receive notifications
as they occur. The procedure for receiving notifications is divided into several steps:

1. Registering at the Notification Service with the saNifflnitialize() function and sup-
plying callback functions for handling received notifications

2. Allocating memory for the notification filter contents with one or several of the
allocation functions described in Filtering on page 85

3. Filling in the notification filter fields of the structure or structures allocated in the
previous step

4. Calling saNtfNotificationSubscribe() with the filter handles returned in step 2
5. Releasing the allocated memory with the saNtfNotificationFilterFree() function

Steps 3 and 4 may be repeated multiple times for reuse of the allocated notification
filter structures. Note that for subsequent uses of a filter structure, the number of
elements in the arrays may be less, but must not be greater than the number that was
specified with the allocate function. It is the responsibility of the Notification Service
implementation to keep track about the number of array elements that once was
allocated.

3.15.3.1 saNtfNotificationSubscribe()

Prototype

SaAisErrorT saNtfNotificationSubscribe(
const SaNtfNotificationTypeFilterHandlesT *notificationFilterHandles,
SaNtfSubscriptionldT subscriptionld

Parameters

notificationFilterHandles - [in] A pointer to the handles of the notification type specific
filters previously returned by the alloc functions. At least for one notification type a
filter must have been allocated. If more than one handle is used in the structure, then
all handles must have been generated for the same instance of the Notification
Service (i.e., with the same SaNtfHandleT value). Notification types for which no
subscription is to be made must have set their corresponding field in
notificationFilterHandles to SA_ NTF_FILTER _HANDLE NULL.

subscriptionld — [in] Used to identify a particular subscription within the context of the
subscriber application. It must be unique for all subscriptions made for the instance of
the Notification Service, which is indirectly referenced by all handles set in
notificationFilterHandles. It is also passed to subsequent invocations of the
notification callback. In the context of the notification callback it is useful when the

104

SAI-AIS-NTF-A.01.01 Section 3.15.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

application has made several subscriptions. The subscription ID has to be used when
unsubscribing with saNtfNotificationUnsubscribe.

Description

The saNtfNotificationSubscribe() function enables a process to subscribe for
notifications by registering one or more filters referenced by notificationFilterHandles.

Notifications are delivered via the invocation of the notification type specific callback
function, which must have been supplied when the process called the saNffinitialize()
function.

This function consumes the filters. After a call to this function, the process may safely
free the filters with saNtfNotificationFilterFree() or use them for other calls of the
Consumer APIs (i.e., saNtfNotificationReadInitialize or saNtfNotificationSubscribe()).
It is the responsibility of the process to free the notification filters by invoking the
saNtfNotificationFilterFree() function if the notification filters are no longer needed.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - One of the handles in notificationFilterHandles is
invalid, since it is corrupted, uninitialized, or has already been freed or not all handles
refer to the same instance of the Notification Service.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ ERR_NO_MEMORY - Either the Notification Service library or the provider
of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_EXIST — A subscription with the value of subscriptionld already exists
for this instance of the Notification Service (i.e., the SaNtfHandleT value that was
used to allocate the filters).

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.3.1 105

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

Notification Service FORUM

See Also

saNftfinitialize(), saNtfDispatch(), saNtfNotificationUnsubscribe(),
saNtfObjectCreateDeleteNotificationFilterAllocate(),

saNtfAttribute ChangeNotificationFilterAllocate(),
saNtfStateChangeNotificationFilterAllocate(), saNtfAlarmNotificationFilterAllocate(),
saNtfSecurityAlarmNotificationFilterAllocate()

3.15.3.2 saNtfNotificationUnsubscribe()

Prototype

SaAisErrorT saNtfNotificationUnsubscribe(
SaNtfSubscriptionldT subscriptionld

);
Parameters

subscriptionld — [in] Subscription identifier, which was passed to
saNtfNotificationSubscribe before.

Description

The saNtfNotificationUnsubscribe() function deletes the subscription previously made
with a call to saNtfNotificationSubscribe().

Queued notifications matching the filter settings passed at subscription time and that
have not been delivered to the subscriber by one of the notification callbacks are
implicitly discarded. If the subscriber wants to avoid this it must make a new
subscription before it deletes the old one.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA _AIS ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_NO_MEMORY - Either the Notification Service library or the provider
of the service is out of memory and cannot provide the service.

106

SAI-AIS-NTF-A.01.01 Section 3.15.3.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS ERR_NOT_EXIST — A subscription with the value of subscriptionld does not
exist for this instance of the Notification Service (i.e., the SaNtfHandleT value, which
was used to allocate the filters used for the subscription).

See Also

saNtfNotificationSubscribe()

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.3.2 107

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.15.3.3 SaNtfNotificationCallbackT

Prototype

typedef void (*SaNtfNotificationCallbackT)(
SaNtfSubscriptionldT subscriptionld,
const SaNtfNotificationsT *notification

);
Parameters

subscriptionld — [in] An identifier that the subscriber supplied in a
saNtfNotificationSubscribe() invocation that enables the subscriber to determine
which subscription resulted in the delivery of the notification.

notification - [in] The notification delivered by this callback.

Description

The Notification Service invokes this callback function to deliver a notification to the
subscriber. This callback is invoked in the context of a thread issuing a
saNtfDispatch() call.

It is the responsibility of the process to free the notification by invoking the
saNtfNotificationFree() function.

Return Values

None.

See Also

saNtfNotificationSubscribe(), saNtfNotificationFree(), saNtfDispatch()

SAI-AIS-NTF-A.01.01 Section 3.15.3.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.15.3.4 SaNtfNotificationDiscardedCallbackT

Prototype

typedef void (*SaNtfNotificationDiscardedCallbackT)(
SaNtfSubscriptionldT subscriptionld,
SaNtfNotificationTypeT notificationType,
SaUint32T numberDiscarded,
const SaNitfldentifierT *discardedNotificationldentifiers

Parameters

subscriptionld — [in] An identifier that a process supplied in a
saNtfNotificationSubscribe() invocation that enables it to determine for which
subscription notifications have been discarded.

notificationType - [in] The notification type of the discarded notifications.
numberDiscarded - [in] The number of discarded notifications.

discardedNotificationldentifiers - [in] The list of notification identifiers of the discarded
notifications. For notification types other than SA_NTF_TYPE_ALARM or
SA_NTF_TYPE_SECURITY_ALARM this pointer may be NULL. If not NULL this
array contains as many elements as indicated by numberDiscarded.

Description

The Notification Service invokes this callback function to notify a subscriber that one
or more notifications of a particular notification type have been discarded. This
callback is invoked in the context of a thread issuing a saNtfDispatch() call. Unless
discardedNotificationldentifiers is NULL the subscriber can use the Reader API to
retrieve the notifications.

If the subscriber wants to keep the contents of discardedNotificationldentifiers for
processing after it has returned from this callback it has to make a copy of it before
returning. discardedNotificationldentifiers and its contents are fully controlled by the
Notification Service library. In particular, the subscriber must not change the contents
of or call free() for discardedNotificationldentifiers.

Refer also to ,Discarded Notifications*

Return Values

None.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.3.4 109

10

15

20

25

30

35

40

Service AvailabilityT'VI Application Interface Specification
Notification Service

SERVICE
AVAILABILITY’

FORUM

See Also

saNtfNotificationSubscribe(), saNtfDispatch(), saNtfNotificationReadInitialize(),

saNtfNotificationReadNext()

110

SAI-AIS-NTF-A.01.01 Section 3.15.3.4

AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.15.4 Operations of the Reader API

This section describes the API functions, which enable the caller to read logged
notifications. Reading logged natifications is divided into several steps:

1. Allocating memory for the notification filter contents with one or several of the
allocation functions in Filtering on page 85

2. Filling in the natification filter fields of the structure or structures allocated in the
previous step

3. Calling saNtfNotificationReadInitialize() with the filter handles returned from step
1 to obtain a read handle

4. Releasing the memory allocated for the filters with the
saNtfNotificationFilterFree() function (if not needed otherwise)

5. Calling saNtfNotificationReadNext() with the read handle returned from step 3
and specifying the search direction

6. Releasing the memory allocated for the read handle with the
saNtfNotificationReadFinalize() function

Step 5 may be repeated multiple times.

3.15.4.1 saNtfNotificationReadlnitialize()

Prototype

SaAisErrorT saNtfNotificationReadlnitialize(
SaNtfSearchCriteriaT searchCriteria,
const SaNtfNotificationTypeFilterHandlesT *notificationFilterHandles,
SaNtfReadHandleT *readHandle

);
Parameters

searchCriteria — [in] In addition to the filter criteria, this parameter may specify that the
search should be started based on event time or notification identifier. If the search
mode is set to SA_NTF_SEARCH_ONLY_FILTER then the search will start with the
oldest notification that exists.

notificationFilterHandles - [in] A pointer to the handles of the notification type specific
filters previously generated by the filter allocate functions. At least for one notification
type a filter must have been allocated. If more than one handle is used in the
structure, then all handles must have been generated for the same instance of the
Notification Service (i.e., with the same SaNtfHandleT value). Notification types that
are not to be read must have set their corresponding field in notificationFilterHandles
to SA NTF_FILTER_HANDLE NULL.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.4 111

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

readHandle — [out] The read handle returned by the function. The read handle is to be
used for subsequent calls of saNtfNotificationReadNext(). When no more
notifications are to be read for the given filter criteria the application must free its
related resources with saNtfNotificationReadFinalize().

Description

This method is used to initialize reading logged notifications according to the search
criteria specified by searchCriteria and filters referenced by notificationFilterHandles.

The search criteria are optional. They can be used to specify a point in time or a
notification identifier where reading of notifications should start when
saNtfNotificationReadNext() is called the first time with the new read handle. The
typical way to read a chronologically ordered list of notifications is to specify a starting
point and filter criteria with saN{fNotificationReadInitialize() and to read notifications
with a sequence of calls to saNtfNotificationReadNext().

The filters referenced by notificationFilterHandles may specify additional filter criteria.
For each notification type the caller is interested in filter criteria have to be specified
(i.e., a filter handle has to be set in notificationFilterHandles). An implementation
need not support notification types other than alarm notifications and security alarm
notifications in this function. If a reader application sets a filter handle for a notification
type that is not supported by the implementation, SA_AIS ERR_NOT_SUPPORTED
is returned.

This function consumes the filters. After a call to this function the process may safely
free the filters with saNtfNotificationFilterFree() or use them for other calls of the
Consumer APIs (i.e., saNtfNotificationReadInitialize or saNtfNotificationSubscribe()).
It is the responsibility of the process to free the notification filters by invoking the
saNtfNotificationFilterFree() function if the notification filters are no longer needed.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

112

SAI-AIS-NTF-A.01.01 Section 3.15.4.1 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

SA_AIS_ERR_BAD_HANDLE - One of the handles in notificationFilterHandles is
invalid, since it is corrupted, uninitialized, or has already been freed or not all handles
refer to the same instance of the Notification Service.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Notification Service library or the provider
of the service is out of memory and cannot provide the service.

SA AIS ERR_NOT_SUPPORTED - In notificationFilterHandles at least one handle
has been set for a notification type, which is not supported by this implementation.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

See Also

saNtfNotificationReadNext(), saNtfNotificationReadFinalize(),
saNtfObjectCreateDeleteNotificationFilterAllocate(),

saNtfAttribute ChangeNotificationFilterAllocate(),
saNtfStateChangeNotificationFilterAllocate(), saNtfAlarmNotificationFilterAllocate(),
saNtfSecurityAlarmNotificationFilterAllocate()

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.4.1 113

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

3.15.4.2 saNtfNotificationReadNext()

Prototype

SaAisErrorT saNtfNotificationReadNext(
SaNtfReadHandleT readHandle,
SaNtfSearchDirectionT searchDirection,
SaNftfNotificationsT *notification

Parameters

readHandle — [in] The read handle, which was previously obtained by a call to
saNtfNotificationReadlnitialize().

searchDirection — [in] Indicates if the notification to be read should be in ascending
(SA_NTF_SEARCH_OLDER) or descending (SA_NTF_SEARCH_YOUNGER)
chronological order with respect to the previously read notification. For the first
invocation of this function after saNtfNotificationReadlnitialize(), this parameter is
ignored.

notificationFilterHandles - [in] A pointer to the handles of the notification type specific
filters previously generated by the alloc functions. At least for one notification type a
filter must have been allocated. If more than one handle is used in the structure, then
all handles must have been generated for the same instance of the Notification
Service (i.e., with the same SaNtfHandleT value). Notification types which are not to
be read must have set their corresponding field in notificationFilterHandles to
SA_NTF_FILTER_HANDLE_NULL.

notification — [out] The notification returned by the function. The notificationType field
determines which of the fields in the union is valid, i.e., which field actually contains
the notification. This variable can be on the stack or heap, i.e. it has to be allocated by
the invoking process. After the notification is no longer used the application must free
its related resources with saNtfNotificationFree().

Description

This method is used to read chronologically ordered logged notifications. Reading
must have been initialized with saNtfNotificationReadInitialize(). As many as desired
notifications may then be read with a sequence of calls to
saNtfNotificationReadNext().

When this function is called the first time after the read handle has been obtained
from saNitfNotificationReadInitialize() it will ignore the searchDirection parameter and
will use only the search and filter criteria passed to saNtfNotificationReadInitialize().
For subsequent invocations with the same read handle, this function uses

114

SAI-AIS-NTF-A.01.01 Section 3.15.4.2 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

searchDirection and the filter criteria previously passed to
saNtfNotificationReadlnitialize().

If successful, a call to this function stores internally context information about the
found notification. The context information is bound to the read handle. In a
subsequent call to saNtfNotificationReadNext(), this context information is used to
retrieve the chronologically next (or previous) notification.

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - readHandle is invalid, since it is corrupted,
uninitialized, or has already been freed.

SA_AIS_ERR_INVALID_PARAM - A parameter is not set correctly.

SA_AIS_ERR_NO_MEMORY - Either the Notification Service library or the provider
of the service is out of memory and cannot provide the service.

SA_AIS_ERR_NO_RESOURCES - There are insufficient resources (other than
memory).

SA_AIS_ERR_NOT_EXIST — There is no notification matching the given criteria.

See Also

saNtfNotificationReadlnitialize(), saNtfNotificationReadFinalize(),
saNtfObjectCreateDeleteNotificationFilterAllocate(),
saNtfAttribute ChangeNotificationFilterAllocate(),

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.15.4.2 115

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

Notification Service FORUM

saNtfStateChangeNotificationFilterAllocate(), saNtfAlarmNotificationFilterAllocate(),
saNtfSecurityAlarmNotificationFilterAllocate()

3.15.4.3 saNtfNotificationReadFinalize()

Prototype

SaAisErrorT saNtfNotificationReadFinalize(
SaNtfReadHandleT readHandle

Parameters

readHandle — [in] The read handle previously obtained by
saNtfNotificationReadlnitialize()

Description

This function is used to release any resources bound to the passed read handle. The
read handle may no longer be used for calls to saNtfNotificationReadNext().

Return Values
SA_AIS_OK - The function completed successfully.

SA_AIS_ERR_LIBRARY - An unexpected problem occurred in the library (such as
corruption). The library cannot be used anymore.

SA_AIS_ERR_TIMEOUT - An implementation-dependent timeout occurred before
the call could complete. It is unspecified whether the call succeeded or whether it did
not.

SA_AIS_ERR_TRY_AGAIN - The service cannot be provided at this time. The
process may retry later.

SA_AIS_ERR_BAD_HANDLE - readHandle is invalid, since it is corrupted,
uninitialized, or has already been freed.

See Also

saNtfNotificationReadNext(), saNtfNotificationReadlnitialize(),
saNtfObjectCreateDeleteNotificationFilterAllocate(),

saNtfAttribute ChangeNotificationFilterAllocate(),
saNtfStateChangeNotificationFilterAllocate(), saNtfAlarmNotificationFilterAllocate(),
saNtfSecurityAlarmNotificationFilterAllocate()

116

SAI-AIS-NTF-A.01.01 Section 3.15.4.3 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

3.16 Notification Suppression

This is the description of the suppression API of the Notification Service. Currently,
the Notification service does not provide an explicit mechanism for suppressing
notifications. Such a mechanism is expected to be included in a future version of this
specification. It is possible that the future specification of a suppression mechanism
will potentially involve administrative as well as runtime API specification to enable
suppression.This section examines certain suppression mechanisms that could be
possibly integrated in a future release.

The mechanism of notification suppression is essential to avoid situations where
floods of unimportant/dispensable notifications are generated. These are typical
reasons why it makes sense to have an administrative API to suppress notifications:

Notification floods may contain many notifications reflecting only tiny changes in
the system or repeated notifications informing about the same situation.

If the structure of managed objects or object attributes is fine-grained and a noti-
fication is generated for each object creation and deletion and attribute value
change, a notification flood may be the result.

Errors in the programming logic of a software package may cause repeated noti-
fications that inform about the same situation. As absolutely bug-free software is
an illusion, the Notification Service has to protect itself and its subscribers (and
thus the human end user) against uses of the producer API that would resultin a
flood of notifications.

Some of the object create/delete or attribute value change notifications could be
quite important when system integration and test takes place but could be of little
interest on a productive system.

The above described situations for notification floods need different handling: For
example in the first case, suppression of all notifications about those insignificant
changes may be needed, in the second case, the first notification informing about a
noteworthy situation must certainly be generated but all subsequent notifications
about the same situation should be suppressed.

Notification floods would overload the Notification Service, burden a notification
subscriber program with additional filtering of the received notifications and burden a
human operator, who is responsible for monitoring the notifications, with the
additional work of extracting the important information from the flood of notifications.

There are two different types of suppression:

. Static suppression
No notification matching the suppression filter criteria for static suppression will
be forwarded to subscribers or logged.

AIS Specification SAI-AIS-NTF-A.01.01 Section 3.16 117

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

Notification Service FORUM

Dynamic suppression

For each produced notification matching the filter criteria for dynamic suppres-
sion, a maximum number of instances per time interval is not exceeded. For
instance, 2 instances of a particular notification produced within 60 seconds
would be forwarded and logged as usual, but more instances within the same
time interval would be suppressed.

The Notification Service provides close-to-source suppression. This is important for
the suppression to be most efficient. Close-to-source suppression has two aspects:

If a producer knows that particular notifications are currently suppressed, the
producer can save even those efforts necessary to construct a currently sup-
pressed notification.

The producer API part of the notification library suppresses notifications match-
ing the current suppression settings.

Notification suppression is only possible for object create/delete notifications,
attribute value change notifications and state change notifications. It is not possible to
suppress alarms and security alarms. As an optimization an implementation of the
Notification Service may implicitly suppress notifications when both of the following
conditions are met:

The implementation of the Notification Service does not provide logging for the
notification type, i.e., the notification type is one of object creation / deletion,
attribute value change or state change.

There is currently no subscription for this notification.

118

SAI-AIS-NTF-A.01.01 Section 3.16 AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY Notification Service

FORUM

4 Configuration

This chapter describes the data to be configured for the Notification Service. The
description is high level. A XML description is still missing.

4.1 Trap OID Mapping

For the SNMP interface, it is important that Notification Class Identifiers (NCls) can
be mapped to OIDs of SNMP traps. This will allow a SNMP manager to easily identify
notifications sent as SNMP traps.

The mapping table is read by the SNMP agent, which acts as a notification subscriber
and needs to find the related trap OID for an incoming notification. It does a table
lookup using the NCI as index into the mapping table.

Field Name Data Type Description

NCI SaNtfClassIdT The Notification Class |dentifier; index into this table
(= unique key).

The value {0, 0, 0} has a special meaning: If exist-
ing, it identifies the mapping which is used by
default when no record is found for a particular NCI.

Trap OID string OID of the SNMP trap in dot-notation.

SA Forum defines mappings for those NCls specified by SA Forum. Specific AlIS
implementations and vendor-specific applications may add mappings for their own
notification classes.

4.2 Internationalization

Optionally, for each NCI internationalized textual information can be configured. This
information refers to localized message catalogs which can be installed on a system
for multiple languages. Currently, POSIX and GNU message catalogs are supported.
Entries for both catalog types can be freely intermixed in the table. However, for one
particular NCI there can be only an entry for one catalog type.
For POSIX message catalogs these configuration data fields are relevant:

Catalog

Format

Set ID

Message ID

AIS Specification SAI-AIS-NTF-A.01.01 Section 4 119

10

15

20

25

30

35

40

Notification Service

Service AvailabilityT'VI Application Interface Specification

SERVICE
AVAILABILITY’

FORUM

For GNU message catalogs these configuration data fields are relevant:

. Catalog

. Format

Set ID and Message ID are not relevant for GNU message catalog, since the GNU
gettext(3) API uses the format string not only as default message text (as is the case
with the POSIX catgets(3) API) but also as an index in the message catalog.

The format string may contain references to elements of the notification. At runtime
the complete localized message text of a notification can be retrieved with the
saNtfLocalizedMessageGet function of the Consumer API.

Field Name Data Type Description

NCI SaNtfClassldT The Notification Class Identifier; index into this table
(= unique key).

The value {0, 0, 0} has a special meaning: If exist-
ing, it identifies the internationalization data which is
used by default when no record is found for a partic-
ular NCI.

Catalog Type enumeration: The type of the message catalog.

POSIX_TYPE
GNU_TYPE

Catalog string Name of the localized message catalog (for POSIX)
or domain (for GNU).

Format string The format string in the default language (english).
It may contain references to elements in the naotifi-
cation. See below for a description of the syntax of
the format string and the list of keywords which can
be used for references.

For GNU message catalogs this is also the mes-
sage identifier passed to the gettext(3) function.

Set ID int The identifier of the message set (needed for
POSIX catalogs, only)

Message ID int The identifier of the message within the set (needed
for POSIX catalogs, only)

Currently, SA Forum does not define any internationalization data but provides the
underlying mechanisms, only. All message catalogs and related configuration entries
have to be provided by implementations.

The format string may contain keywords determining which notification parameter to
insert at that place in the string. Keywords are inserted into the string with enclosing
‘${" and '}, for instance, “object ${notificationObject} created” to reference the

120

SAI-AIS-NTF-A.01.01 Section 4.2 AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification

Notification Service

notification object. For list-type parameters, e.g., specific problems or object
attributes, each list element is referenced via C style array syntax, for instance,
“object ${notificationObject} created with xyz attribute value
${objectAttributes[0].attributeValue}” which references the first object attribute in the

notification.

Elements of data type SaNtfValueT are inserted into the format string according to
the field defining their data type (SaNtfValueTypeT). It is not supported to include
elements of data type SA_NTF_VALUE_ARRAY or SA_NTF_VALUE_BINARY in the

format text.

There are the following keywords (j represents an index into the respective array):

Keywords Notification Parameter
eventType Event Type
notificationObject Notification Object
notifyingObject Notifying Object

notificationClassldentifier.vendorld
notificationClassldentifier.majorld
notificationClassldentifier.minorld

Notification Class Identifier

notificationldentifier

Notification Identifier

correlatedNotifications]j]

Correlated Notifications

eventTime

Event Time

additional Text

Additional Text

additionallnformation[j].infold
additionallnformation[j].infoValue

Additional Information

probableCause

Probable cause

specificProblems[j].problemlid
specificProblems[j].problemClassld.vendorld
specificProblems[j].problemClassld.majorld
specificProblemsj].problemClassld.minorld
specificProblems[j].problemValue

Specific problems

perceivedSeverity

Perceived severity

trendIndication

Trend indication

AIS Specification

SAI-AIS-NTF-A.01.01 Section 4.2 121

10

15

20

25

30

35

40

Service AvailabilityT'VI Application Interface Specification
Notification Service

SERVICE
AVAILABILITY’

FORUM

Keywords

Notification Parameter

thresholdInformation.thresholdld
thresholdInformation.thresholdValue
thresholdinformation.thresholdHysteresis
thresholdInformation.observedValue
thresholdInformation.armTime

Threshold information

monitoredAttributes(j].attributeld
monitoredAttributes]j].attributeValue

Monitored attributes

proposedRepairActions]j].actionld
proposedRepairActions]j]. actionValue

Proposed repair actions

sourcelndicator

Source indicator

changedStates]j].stateType
changedStates]j].oldState
changedStates[j].newState

Changed state attribute list

objectAttributesj].attributeld
objectAttributes[j].attributeValue

Attribute list (object creation/deletion)

changedAttributes[j].attributeld
changedAttributes[j].oldAttributeValue
changedAttributes[j].newAttributeValue

Changed attributes

securityAlarmCause Security alarm cause
securityAlarmSeverity Security alarm severity
securityAlarmDetector Security alarm detector
serviceUser Service user
serviceProvider Service provider

SAI-AIS-NTF-A.01.01 Section 4.2

AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

Appendix A APl Usage Examples

This section gives sample code for generating notifications using the API functions
described in this document.

Producer Side (example function) — Object Create Delete Notification

/* Send a notification about the creation of an object of type AbcObject, which has two
attributes, one attribute of type integer and another attribute of type string. One additional
information element is used here to convey the current number of instances of this kind of
object. In this example, the object creation notification is correlated to a single previous
notification via the supplied correlatedld parameter. The notification identifier that is set by
saNtfNotificationSend() will be assigned to the supplied parameter ntfldPtr.

This example uses a Notification Class Identifier with a vendorld 33333, majorld 999 and
minorld 1. The corresponding textual description of the situation is “Created
${notificationObject}, instance ${additionallnformation[0].infoValue} of AbcObject, with
integerAttr ${objectAttributes[0].attribute Value}”.

4

SaAisErrorT sendAbcCreateNotification(
SaNtfHandle T myNtfnstHandle,
SaNameT *object,

SaUint32T instCnit,
Salnt32T integerAttrVal,
SaStringT stringAttrVal,
SaUuint16T correlatedld,
SaNftfldentifierT *ntfldPtr)

SaNtfObjectCreateDeleteNotificationT myNotification;
SaAisErrorT ret;

SaStringT destPtr = NULL;
SaStringT myAdditionalText = “My additional text”;

/* identifier for meaning of first additional information item,
in this case it is a counter for the current number of AbcObject instances */
SaUint16T MY_INST_COUNT = 1;

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 123

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

ret = saNtfObjectCreateDeleteNotificationAllocate(

myNIlflnstHandle, /* handle to Notification Service instance */
&myNotification,

1 /* number of correlated notifications */,
strlen(myAdditionalText) + 1 /* length of additional text */,

1 /* number of additional info items™,

2 /* number of object attributes */,

SA NTF_ALLOC_SYSTEM_LIMIT /* use default allocation size */);
*(myNotification.notificationHeader.eventType) = SA_NTF_OBJECT_CREATION;

/* event time to be set automatically to current time by saNtfNotificationSend */
*(myNotification.notificationHeader.eventTime) = SA_TIME_UNKNOWN;

/* copy the given object name to notification storage */

myNotification.notificationHeader.notificationObject->length = object->length;

memcpy(myNotification.notificationHeader.notificationObject->value, object->value,
object->length);

/* set Notification Class Identifier */

/* vendor id 33333 is not an existing SNMP enterprise number - just an example ¥/
myNotification.notificationHeader.notificationClassld->vendorld = 33333;

/* sub id of this notification class within “name space” of vendor ID */
myNotification.notificationHeader.notificationClassld->majorld = 999;
myNotification.notificationHeader.notificationClassld->minorld = 1;

/* who initiated this operation */
*(myNotification.sourcelndicator) = SA_NTF_OBJECT_OPERATION;

myNotification.notificationHeader.correlatedNotifications[0] = correlatedld;
/* set attributes */

/* object attributes have to be identified via the attributeld field, the list of
possible values of attributeld is NCI and parameter specific, in this example
the value is setto 1. */

myNotification.objectAttributes[0].attributeld = 1;

myNotification.objectAttributes[0].attribute Type = SA_NTF_VALUE_INT32;

myNotification.objectAttributes[0].attribute Value.int32Val = integerAttrVal;

124

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

/* object attributes have to be identified via the attributeld field, the list of possible
values of attributeld is NCI and parameter specific, in this example the value
is setto 2. ¥/

myNotification.objectAttributes[1].attributeld = 2;

myNotification.objectAttributes[1].attribute Type = SA_NTF_VALUE_STRING;

ret = saNtfPtrValAllocate(
myNotification.notificationHandle,
strlen(stringAttrVal) + 1,
(void**) &destPitr,
&(myNotification.objectAttributes[1].attribute Value));

if (ret I= SA_AIS_OK) {
forintf(stderr, “could not allocate ptr value\n”);
saNtfNotificationFree(myNotification.notificationHandle);
return ret;

}
strcpy(destPtr, stringAttrVal);

/* set additional text*/
strcpy(myNotification.notificationHeader.additional Text, myAdditionalText);

/* set additional info item, in this case it is filled with the current number of AbcObject
instances ¥/
myNotification.notificationHeader.additionallnfo[0].infold = MY _INST_COUNT;

myNotification.notificationHeader.additionallnfo[0].info Type =

SA _NTF_VALUE _UINT32;
myNotification.notificationHeader.additionallnfo[0].infoValue.uint32Val = instCnt;
/* send notification, a unique notification identifier will be returned in ntfldPtr */
ret = saNtfNotificationSend(myNotification.notificationHandle);
*ntfldPtr = *(myNotification.notificationHeader.notificationld);

ret = saNtfNotificationFree(myNotification.notificationHandle);

return ret;

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 125

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

An example for calling the above function:

SaAisErrorT ret;
SaNftfldentifierT ntfld;

SaNameT name;

SaNtfHandle T myNftfinstHandle;

/* inform about creation of first AbcObject instance with attribute values 33 and blue.
This notification is correlated to a previous notification with notification
identifier 100. */

ret = sendAbcCreateNotification(myNtfinstHandle, &name, 1, 33, “blue”, 100, &ntfld);

126

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

Producer Side (example function) — Attribute Change Notification

/* Send a notification about the modification of an object of type AbcObject, which has two
attributes, one attribute of type integer and another attribute of type string. In this example,
the attribute change notification is correlated to a single previous notification via the supplied
correlatedld parameter. The notification identifier that is set by saNtfNotificationSend() will
be assigned to the supplied parameter ntfldPtr.

This example uses a Notification Class Identifier with a vendorld 33333, majorld 998 and
minorld 1. The corresponding textual description of the situation is

“Modified ${notificationObject}, instance of AbcObject, with new integerAttr
${changedAttributes[0].newAttributeValue}, stringAttr
${changedAttributes[1].newAttributeValue}”.

Y

SaAisErrorT sendAbcAttribute ChangeNotification(
SaNtfHandleT myNtfinstHandle,
SaNameT *object,
Salnt32T newlintegerAttrVal,
Salnt32T oldIntegerAttrVal,
SaStringT newStringAttrVal,
SaStringT oldStringAttrVal,
SaUint16T correlatedld,
SaNftfldentifierT *ntfldPtr)

SaNitfAttributeChangeNotification T myNotification;
SaAisErrorT ret;

SaStringT destPtr = NULL;

SaStringT myAdditionalText = “My additional text”;

SaStringT myAdditionallnfo = “My second additional information item”;
/* identifier for meaning of first additional information item */
SaUint16T additionallnfoldent1 = 2;

/* identifier for meaning of second additional information item */
SaUint16T additionallnfoldent2 = 33;

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 127

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

ret = saN(tfAttribute ChangeNotificationAllocate(

myNIlflnstHandle, /* handle to Notification Service instance */
&myNotification,

1 /* number of correlated notifications */,
strlen(myAdditionalText) + 1 /* length of additional text */,

2 /* number of additional info items™,

2 /* number of object attributes */,

SA NTF_ALLOC_SYSTEM_LIMIT /* use default allocation size */);
*(myNotification.notificationHeader.eventType) = SA_NTF_ATTRIBUTE_CHANGED;

/* event time to be set automatically to current time by saNtfNotificationSend */
*(myNotification.notificationHeader.eventTime) = SA_TIME_UNKNOWN;

/* copy the given object name to notification storage */

myNotification.notificationHeader.notificationObject->length = object->length;

memcpy(myNotification.notificationHeader.notificationObject->value, object->value,
object->length);

/* set Notification Class Identifier */

/* vendor id 33333 is not an existing SNMP enterprise number - just an example ¥/
myNotification.notificationHeader.notificationClassld->vendorld = 33333;

/* sub id of this notification class within “name space” of vendor ID */
myNotification.notificationHeader.notificationClassld->majorld = 998;
myNotification.notificationHeader.notificationClassld->minorld = 1;

/* who initiated this operation */
*(myNotification.sourcelndicator) = SA_NTF_OBJECT_OPERATION;

myNotification.notificationHeader.correlatedNotifications[0] = correlatedld;
/* set attributes */

/* reuse attributeld values from previous example */
myNotification.changedAfttributes[0].attributeld = 1;
myNotification.changedAfttributes[0].attribute Type = SA_NTF_VALUE INT32;
myNotification.changedAttributes[0].newAttribute Value.int32Val = newlntegerAttrVal;
myNotification.changedAttributes[0].oldAttributePresent = SA_TRUE;
myNotification.changedAfttributes[0].oldAttributeValue.int32Val = oldIntegerAttrVal;

128

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

myNotification.changedAfttributes[1].attributeld = 2;
myNotification.changedAfttributes[1].attribute Type = SA_NTF_VALUE STRING;

ret = saNtfPtrValAllocate(
myNotification.notificationHandle,
strlen(newStringAttrVal) + 1,
(void**) &destPitr,
&(myNotification.changedAttributes[1].newAttributeValue));

if (ret I= SA_AIS_OK) {
forintf(stderr, “could not allocate ptr value\n”);
saNtfNotificationFree(myNotification.notificationHandle);
return ret;

}
strcpy(destPtr, newStringAttrVal);

myNotification.changedAttributes[1].oldAttributePresent = SA_TRUE;
ret = saNtfPtrValAllocate(
myNotification.notificationHandle,
strlen(oldStringAttrVal) + 1,
(void**) &destPtr,
&(myNotification.changedAfttributes[1].oldAttribute Value));

if (ret I= SA_AIS_OK) {
forintf(stderr, “could not allocate ptr value\n”);
saNtfNotificationFree(myNotification.notificationHandle);
return ret;

}
strcpy(destPtr, oldStringAttrVal);

/* set additional text */
strepy(myNotification.notificationHeader.additional Text, myAdditionalText);

/* set first additional info item */
myNotification.notificationHeader.additionallnfo[0].infold = additionallnfoldent1;
myNotification.notificationHeader.additionallnfo[0].info Type =
SA_NTF_VALUE_INT32;
myNotification.notificationHeader.additionallnfo[0].infoValue.int32Val = 100;

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 129

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

/* set second additional info item */
myNotification.notificationHeader.additionallnfo[1].infold = additionallnfoldent2;
myNotification.notificationHeader.additionallnfo[1].info Type =

SA_NTF_VALUE STRING;

ret = saNtfPtrValAllocate(
myNotification.notificationHandle,
strlen(myAdditionallnfo) + 1,
(void**) &destPtr,
&(myNotification.notificationHeader.additionallnfo[1].infoValue));

if (ret I= SA_AIS_OK) {
forintf(stderr, “could not allocate ptr value\n”);
saNtfNotificationFree(myNotification.notificationHandle);
return reft;

}
strcpy(destPtr, myAdditionallnfo);

ret = saNtfNotificationSend(myNotification.notificationHandle);
*ntfldPtr = *(myNotification.notificationHeader.notificationld);

ret = saNtfNotificationFree(myNotification.notificationHandle);

return ret;

An example for calling the above function:

SaAisErrorT ret;
SaNitfldentifierT ntfld;

SaNameT name;

SaNtfHandleT myNftfinstHandle;

/* Inform about changes in an AbcObject instance with attribute changes from
33 to 42 and from blue to red. This notification is correlated to a previous notification
with notification identifier 101. */

ret = sendAbcAttribute ChangeNotification(myNtfinstHandle, &name, 42, 33, “red”,
“blue”, 101, &ntfld);

130

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

Producer Side (example function) — State Change Notification

/* Send a notification about the state changes of an object of type AbcObject, which has two
state attributes: operational state and usage state. In this example, the state change
notification is correlated to a single previous notification via the supplied correlatedld
parameter. The notification identifier that is set by saNtfNotificationSend() will be assigned to
the supplied parameter ntfldPtr.

This example uses a Notification Class Identifier with a vendorld 33333, majorld 997 and
minorld 1. The corresponding textual description of the situation is

“${notificationObject} with new operational state ${changedStates[0].newState} and new
usage state ${changedStates[1].newState}”.

Y

/* application-specific definition of element ID for operational state and usage state */
#define MY _APP_OPER _STATE 1
#define MY _APP_USAGE _STATE 2

SaAisErrorT sendAbcStateChangeNotification(
SaNtfHandleT myNtfinstHandle,
SaNameT *object,

Sauint32T newOpState,
SaUuint32T oldOpState,
Sauint32T newUsgState,
SaUint32T oldUsgState,
SaUint16T correlatedld,
SaNtfldentifierT *ntfldPtr)

SaNtfStateChangeNotificationT myNotification;
SaAisErrorT ret;

SaStringT destPtr = NULL;

SaStringT myAdditionalText = “My additional text’;

SaStringT myAdditionallnfo = “My second additional information item”;
/* identifier for meaning of first additional information item */
SaUint16T additionallnfoldent1 = 2;

/* identifier for meaning of second additional information item */
SaUint16T additionallnfoldent2 = 33;

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 131

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

ret = saNtfStateChangeNotificationAllocate(

myNIlflnstHandle, /* handle to Notification Service instance */
&myNotification,

1 /* number of correlated notifications */,
strlen(myAdditionalText) + 1 /* length of additional text */,

2 /* number of additional info items™,

2 /* number of changed object states %/,

SA NTF_ALLOC_SYSTEM_LIMIT /* use default allocation size */);

*(myNotification.notificationHeader.eventType) =
SA_NTF_OBJECT_STATE_CHANGE;

/* event time to be set automatically to current time by saNtfNotificationSend */
*(myNotification.notificationHeader.eventTime) = SA_TIME_UNKNOWN;

/* copy the given object name to notification storage */

myNotification.notificationHeader.notificationObject->length = object->length;

memcpy(myNotification.notificationHeader.notificationObject->value, object->value,
object->length);

/* set Notification Class Identifier */

/* vendor id 33333 is not an existing SNMP enterprise number - just an example */
myNotification.notificationHeader.notificationClassld->vendorld = 33333;

/* sub id of this notification class within “name space” of vendor ID */
myNotification.notificationHeader.notificationClassld->majorld = 997;
myNotification.notificationHeader.notificationClassld->minorld = 1;

/* who Iinitiated this operation */
*(myNotification.sourcelndicator) = SA_NTF_OBJECT_OPERATION;

myNotification.notificationHeader.correlatedNotifications[0] = correlatedld;

/* set operational state */

myNotification.changedStates[0].stateld = MY_APP_OPER_STATE;
myNotification.changedStates[0].oldStatePresent = SA_TRUE;
myNotification.changedStates[0].oldState = oldOpState;
myNotification.changedStates[0].newState = newOpState;

132

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

/* set usage state */

myNotification.changedStates[1].stateld = MY _APP_USAGE_STATE;
myNotification.changedStates[1].oldStatePresent = SA_TRUE;
myNotification.changedStates[1].oldState = oldUsgState;
myNotification.changedStates[1].newState = newUsgState;

/* set additional text */
strcpy(myNotification.notificationHeader.additional Text, myAdditionalText);

/* set first additional info item */
myNotification.notificationHeader.additionallnfo[0].infold = additionallnfoldent1;
myNotification.notificationHeader.additionallnfo[0].info Type =
SA_NTF_VALUE_UINTS;
myNotification.notificationHeader.additionallnfo[0].infoValue.uint8Val = 42;

/* set second additional info item */
myNotification.notificationHeader.additionallnfo[1].infold = additionallnfoldent2;
myNotification.notificationHeader.additionallnfo[1].info Type =

SA_NTF_VALUE STRING;

ret = saNtfPtrValAllocate(
myNotification.notificationHandle,
strlen(myAdditionallnfo) + 1,
(void**) &destPtr,
&(myNotification.notificationHeader.additionallnfo[1].infoValue));

if (ret I= SA_AIS_OK) {
forintf(stderr, “could not allocate ptr value\n”);
saNtfNotificationFree(myNotification.notificationHandle);
return reft;

}
strcpy(destPtr, myAdditionallnfo);

ret = saNtfNotificationSend(myNotification.notificationHandle);
*ntfldPtr = *(myNotification.notificationHeader.notificationld);

ret = saNtfNotificationFree(myNotification.notificationHandle);

return ret;

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 133

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

An example for calling the above function:

SaAisErrorT ret;
SaNftfldentifierT ntfld;

SaNameT name;

SaNtfHandle T myNftfinstHandle;

/* Inform about state changes in an AbcObject instance with state changes from
SA _NTF_DISABLED to SA_ NTF_ENABLED and from SA_NTF_IDLE to
SA_NTF_ACTIVE. This notification is correlated to a previous notification with
notification identifier 102. */

ret = sendAbcStateChangeNotification(
myNftfinstHandle
&name,
SA_NTF_ENABLED,
SA_NTF_DISABLED,
SA_NTF_ACTIVE,
SA_NTF_IDLE,
102,
&ntfld);

134

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification

AVAILABILITY’

FORUM

Notification Service

Producer Side (example function) — Alarm Notification

/* Send an alarm notification about an object of type AbcObject that has communication

problems caused by reduced bandwidth. In this example, the alarm notification is correlated

to a single previous notification via the supplied correlatedld parameter. This example
shows two specific problems and two repair actions.Notification parameters are partly
supplied as arguments to this example function and partly hard-coded. The notification
identifier that is set by saNtfNotificationSend() will be assigned to the supplied parameter
ntfldPtr.

This example uses a Notification Class Identifier with a vendorld 33333, majorld 996 and
minorld 1. The corresponding textual description of the situation is

“Communication problem: reduced bandwidth on connections
${specificProblems[0].problemValue} (${additionallnformation[0].infoValue} %) and
${specificProblems[1].problemValue} ((${additionalinformation[1].infoValue} %)’

Y/

SaAisErrorT sendAbcAlarmNotification(
SaNtfHandleT myNtfinstHandle,
SaNameT *object,

Salnt32T specificProblem1,
Sauint16T perc1,

Salnt32T specificProblem?2,
Sauint16T perc2,
Sauint16T repair1,
Sauint16T repair2,
SaUint16T correlatedld,
SaNiftfldentifierT *ntfldPtr)

SaNtfAlarmNotificationT myNotification;
SaAisErrorT ret;

SaStringT destPtr = NULL;

SaStringT myAdditionalText = “My additional text’;
SaStringT myAttribute2 = “My Attribute”;
SaStringT myRepairArguments1 = “connection1”;
SaStringT myRepairArguments2 = “connection2”;

SaNtfElementldT MY_CONNECTION = 1; /* my application specific problem id */
SaNtfElementldT MY _PERCENTAGE = 1; /* my application specific additional
information id */

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A

135

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

Notification Service FORUM

ret = saNtfAlarmNotificationAllocate(

myNIlflnstHandle, /* handle to Notification Service instance */
&myNotification,

1 /* number of correlated notifications */,
strlen(myAdditionalText) + 1 /* length of additional text */,

2 /* number of additional info items™,

2 /* number of specific problems */,

2 /* number of monitored attributes */,

2 /* number of proposed repair actions %/,

SA_NTF_ALLOC_SYSTEM_LIMIT /* use default allocation size *);

*(myNotification.notificationHeader.eventType) =
SA NTF_ALARM_COMMUNICATION;

/* event time to be set automatically to current time by saNtfNotificationSend */
*(myNotification.notificationHeader.eventTime) = SA_TIME_UNKNOWN;

/* copy the given object name to notification storage */

myNotification.notificationHeader.notificationObject->length = object->length;

memcpy(myNotification.notificationHeader.notificationObject->value, object->value,
object->length);

/* set Notification Class Identifier */

/* vendor id 33333 is not an existing SNMP enterprise number - just an example ¥/
myNotification.notificationHeader.notificationClassld->vendorld = 33333;

/* sub id of this notification class within “name space” of vendor ID */
myNotification.notificationHeader.notificationClassld->majorld = 996;
myNotification.notificationHeader.notificationClassld->minorld = 1;

/* determine perceived severity */
*(myNotification.perceivedSeverity) = SA_ NTF_SEVERITY MAJOR;

/* determine trend indication */
*(myNotification.trend) = SA_ NTF_TREND _NO_CHANGE;

myNotification.notificationHeader.correlatedNotifications[0] = correlatedld;

/* set probable cause*/
*(myNotification.probableCause) = SA_ NTF_BANDWIDTH_REDUCED;

136

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

/* set first specific problem */

myNotification.specificProblems[0].problemld = MY _CONNECTION;

/* no reference to other NCI, set problemClassld values to 0 ¥/
myNotification.specificProblems[0].problemClassld.vendorld = 0;
myNotification.specificProblems[0].problemClassld.majorld = O;
myNotification.specificProblems[0].problemClassld.minorld = O;
myNotification.specificProblems[0].problemType = SA_NTF_VALUE_INT32;
myNotification.specificProblems[0].problemValue.int32Val = specificProblem1;

/* set second specific problem */
myNotification.specificProblems[1].problemld = MY _CONNECTION;
/* no reference to other NCI, set problemClassld values to 0 ¥/
myNotification.specificProblems[1].problemClassld.vendorld = 0;
myNotification.specificProblems[1].problemClassld.majorld = O;
myNotification.specificProblems[1].problemClassld.minorld = O;

myNotification.specificProblems[1].problemType= SA_NTF_VALUE_INT32;
myNotification.specificProblems[1].problemValue.int32Val = specificProblem?2;

/* set first proposed repair action */
myNotification.proposedRepairActions[0].actionld = repair1;

myNotification.proposedRepairActions[0].actionValue Type =
SA NTF_VALUE STRING;

ret = saN(tfPtrValAllocate(
myNotification.notificationHandle,
strlen(myRepairArguments1) + 1,
(void**) &destPtr,
&(myNotification.proposedRepairActions[0].actionValue));

if (ret I= SA_AIS_OK) {
forintf(stderr, “could not allocate ptr value\n”);
saNtfNotificationFree(myNotification.notificationHandle);
return ret;

}
strepy(destPtr, myRepairArguments1);

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 137

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

Notification Service FORUM

/* set second proposed repair action */

myNotification.proposedRepairActions[1].actionld = repair2;

myNotification.proposedRepairActions[1].actionValue Type =
SA_NTF_VALUE STRING;

ret = saNtfPtrValAllocate(
myNotification.notificationHandle,
strlen(myRepairArguments2) + 1,
(void**) &destPtr,
&(myNotification.proposedRepairActions[1].actionValue));

if (ret I= SA_AIS_OK) {
forintf(stderr, “could not allocate ptr value\n”);
saNtfNotificationFree(myNotification.notificationHandle);
return reft;

}
strepy(destPtr, myRepairArguments2);

/* set first monitored attribute; object attributes have to be identified via the attributeld
field, the list of possible values of attributeld is NCI specific, in this example the
value is setto 1. 7/

myNotification.monitoredAttributes[0].attributeld = 1;

myNotification.monitoredAttributes[0].attribute Type = SA_NTF_VALUE INT32;

myNotification.monitoredAttributes[0].attribute Value.int32Val = 100;

/* set second monitored attribute; object attributes have to be identified via the
attributeld field, the list of possible values of attributeld is object and NCI
specific, in this example the value is set to 2. */

myNotification.monitoredAttributes[1].attributeld = 2;

myNotification.monitoredAttributes[1].attribute Type = SA_NTF_VALUE_STRING;

ret = saNtfPtrValAllocate(
myNotification.notificationHandle,
strlen(myAttribute2) + 1,
(void**) &destPtr,
&(myNotification.monitoredAttributes[1].attribute Value));

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

if (ret I= SA_AIS_OK) {
forintf(stderr, “could not allocate ptr value\n”);
saNtfNotificationFree(myNotification.notificationHandle);
return ret;

}
strcpy(destPtr, myAttribute2);

/* set additional text and additional info */
strcpy(myNotification.notificationHeader.additional Text, myAdditionalText);

/* set first additional info item, in this case it contains a percentage value */
myNotification.notificationHeader.additionallnfo[0].infold =

MY _PERCENTAGE;
myNotification.notificationHeader.additionallnfo[0].info Type =

SA _NTF_VALUE UINT16;
myNotification.notificationHeader.additionallnfo[0].infoValue.uint16Val = perc1;

/* set second additional info item, in this case it contains a percentage value */
myNotification.notificationHeader.additionallnfo[1].infold =
MY _PERCENTAGE;
myNotification.notificationHeader.additionallnfo[1].info Type =
SA_NTF_VALUE_UINT16;
myNotification.notificationHeader.additionallnfo[1].infoValue.uint16Val = perc2;

ret = saNtfNotificationSend(myNotification.notificationHandle);
*ntfldPtr = *(myNotification.notificationHeader.notificationld);

ret = saNtfNotificationFree(myNotification.notificationHandle);

return ret;

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 139

10

15

20

25

30

35

40

Service AvailabilityT'VI Application Interface Specification

Notification Service

SERVICE
AVAILABILITY’

FORUM

An example for calling the above function:

SaAisErrorT ret;

SaNitfldentifierT ntfld;

SaNameT name;

SaNtfHandle T myNftfinstHandle;

/* Inform about communication problems of an AbcObject instance with a loss of 5 %
on its connection identified by 1034 and 3 % on connection 1035. Repair actions are
given by 1 and 2. This notification is correlated to a previous notification with

notification identifier 111. */

ret = sendAbcAlarmNotification(
myNftflnstHandle,

&name,
1034,

5,

1035,

140

SAI-AIS-NTF-A.01.01 Section Appendix A

AIS Specification

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

Producer Side (example function) — Security Alarm Notification

/* Send a security alarm notification about an authentication failure for accessing an object
of type AbcObject. In this example, the notification is correlated to a single previous
notification via the supplied correlatedld parameter. The notification identifier that is set by
saNtfNotificationSend() will be assigned to the supplied parameter ntfldPtr.

This example uses a Notification Class Identifier with a vendorld 33333, majorld 995 and
minorld 1. The corresponding textual description of the situation is

“Service provider ${serviceProvider}: authentication failure of service user ${serviceUser}”.
Y

SaAisErrorT sendAbcSecurityAlarmNotification(
SaNtfHandleT myNtfinstHandle,
SaNameT *object,

SaStringT serviceUser,
SaStringT serviceProvider,
SaStringT alarmDetector,
SaUuint16T correlatedld,
SaNftfldentifierT *ntfldPtr)

SaNitfSecurityAlarmNotificationT myNotification;
SaAisErrorT ret;
SaStringT destPtr = NULL;

ret = saNtfSecurityAlarmNotificationAllocate(

myNIlflnstHandle, /* handle to Notification Service instance */
&myNotification,

1 /* number of correlated notifications */,

0 /* length of additional text */,

0 /* number of additional info items?,

SA_NTF_ALLOC_SYSTEM_LIMIT /* use default allocation size *);

*(myNotification.notificationHeader.eventType) =
SA_NTF_OPERATION_VIOLATION;

/* event time to be set automatically to current time by saNftfNotificationSend */
*(myNotification.notificationHeader.eventTime) = SA_TIME_UNKNOWN;

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 141

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

FORUM

/* copy the given object name to notification storage */

myNotification.notificationHeader.notificationObject->length = object->length;

memcpy(myNotification.notificationHeader.notificationObject->value, object->value,
object->length);

/* set Notification Class Identifier */

/* vendor id 33333 is not an existing SNMP enterprise number - just an example */
myNotification.notificationHeader.notificationClassld->vendorld = 33333;

/* sub id of this notification class within “name space” of vendor ID */
myNotification.notificationHeader.notificationClassld->majorld = 995;
myNotification.notificationHeader.notificationClassld->minorld = 1;

/* set severity */
*(myNotification.severity) = SA_NTF_SEVERITY_MAJOR;

myNotification.notificationHeader.correlatedNotifications[0] = correlatedld;

/* set probable cause */
*(myNotification.probableCause) = SA_ NTF_AUTHENTICATION_FAILURE;

/* set service user; a string is used here */
myNotification.serviceUser->valueType = SA_NTF_VALUE _STRING;
ret = saNtfPtrValAllocate(myNotification.notificationHandle, strlen(serviceUser) + 1,
(void**) &destPtr, &(myNotification.serviceUser->value));
if (ret I= SA_AIS_OK) {
forintf(stderr, “could not allocate ptr value\n”);
saNtfNotificationFree(myNotification.notificationHandle);
return reft;

}

strcpy(destPtr, serviceUser);

/* set service provider; a string is used here ¥/
myNotification.serviceProvider->value Type = SA_NTF_VALUE_STRING;
ret = saNtfPtrValAllocate(myNotification.notificationHandle,
strlen(serviceProvider) + 1,
(void**) &destPtr,
&(myNotification.serviceProvider->value));
if (ret I= SA_AIS_OK) {
forintf(stderr, “could not allocate ptr value\n”);
saNtfNotificationFree(myNotification.notificationHandle);

142

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

return ret;

}

strcpy(destPtr, serviceProvider);

/* set alarm detector; a string is used here */

myNotification.securityAlarmDetector->value Type = SA_NTF_VALUE _STRING;

ret = saNtfPtrValAllocate(myNotification.notificationHandle,
strlen(alarmDetector) + 1, (void™*) &destPtr,
&(myNotification.securityAlarmDetector->value));

if (ret I= SA_AIS_OK) {
forintf(stderr, “could not allocate ptr value\n”);
saNtfNotificationFree(myNotification.notificationHandle);
return ret;

}
strcpy(destPtr, alarmDetector);
/* No additional text and no additional info */

ret = saNtfNotificationSend(myNotification.notificationHandle);
*ntfldPtr = *(myNotification.notificationHeader.notificationld);

ret = saNtfNotificationFree(myNotification.notificationHandle);

return ret;

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 143

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
Notification Service AVAILABILITY

FORUM

An example for calling the above function:

SaAisErrorT ret;
SaNftfldentifierT ntfld;

SaNameT name;

SaNtfHandle T myNftfinstHandle;

/* Inform about an authentication error for accessing an AbcObject instance.
This notification is correlated to a previous notification with notification i
identifier 120. */

ret = sendAbcSecurityAlarmNotification(
myNIlflnstHandle,
&name,
“My Service User’,
“My Service Provider”,
“My Alarm Detector’,
120,
&ntfld);

144

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

Consumer Side (example function) — Subscribe for Notifications

/* subscribe for all those kinds of notifications that are generated in the producer API
examples using the notification class identifiers as filter criteria.

4

SaAisErrorT subscribeForAbcNotifications(SaNtfHandle T myNftfinstHandle)

{

SaAisErrorT ret;

SaNtfObjectCreateDeleteNotificationFilterT myOCDFilter;
SaNtfAttributeChangeNotificationFilterT myAVCFilter;
SaNitfStateChangeNotificationFilterT mySCFilter;
SaNtfAlarmNotificationFilterT myAFilter;
SaNtfSecurityAlarmNotificationFilterT mySAFilter;

SaNtfNotificationTypeFilterHandlesT abcNotificationFilterHandles;

ret = saNtfObjectCreateDeleteNotificationFilterAllocate(

myNftflnstHandle, /* handle to Notification Service instance */
&myOCDkilter, /* put filter here */

0 /* number of event types ¥/,

0 /* number of notification objects */,

0 /* number of notifying objects */,

1 /* number of notification class ids */,

0 /* number of source indicators */);

if (ret I= SA_AIS_OK)

{
forintf(stderr, “could not allocate notification filter \n”);
return ret;

}

/* set Notification Class Identifier */

/* vendor id 33333 is not an existing SNMP enterprise number - just an example */
myOCDFilter.notificationFilterHeader.notificationClasslds[0].vendorld = 33333;

/* sub id of this notification class within “name space” of vendor ID */
myOCDFilter.notificationFilterHeader.notificationClasslds[0]. majorld = 999;
myOCDFilter.notificationFilterHeader.notificationClasslds[O]. minorld = 1;

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 145

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

ret = saNftfAttribute ChangeNotificationFilterAllocate(

myNIlflnstHandle, /* handle to Notification Service instance */
&myAVCFilter, /* put filter here */
0 /* number of event types */,
0 /* number of notification objects */,
0 /* number of notifying objects */,
1 /* number of notification class ids %/,
0 /* number of source indicators */);

if (ret I= SA_AIS_OK)

{
forintf(stderr, “could not allocate notification filter \n”);
saNtfNotificationFilterFree(myOCDFilter.notificationFilterHandle);
return ret;

}

/* set Notification Class Identifier */

/* vendor id 33333 is not an existing SNMP enterprise number - just an example */
myAVCFilter.notificationFilterHeader.notificationClasslds[0].vendorld = 33333;

/* sub id of this notification class within “name space” of vendor ID */
myAVCFilter.notificationFilterHeader.notificationClasslds[0]. majorld = 998;
myAVCFilter.notificationFilterHeader.notificationClasslds[0].minorld = 1;

ret = saNtfState ChangeNotificationFilterAllocate(

myNftflnstHandle, /* handle to Notification Service instance */
&mySCeFilter, /* put filter here */

0 /* number of event types ¥/,

0 /* number of notification objects */,

0 /* number of notifying objects */,

1 /* number of notification class ids */,

0 /* number of source indicators */,

0 /* number of changed states ¥/);

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

if (ret I= SA_AIS_OK)

{
forintf(stderr, “could not allocate notification filter \n”);
saNtfNotificationFilterFree(myOCDFilter.notificationFilterHandle);
saNtfNotificationFilterFree(myAVCFilter.notificationFilterHandle);
return reft;

}

/* set Notification Class Identifier */

/* vendor id 33333 is not an existing SNMP enterprise number - just an example */
mySCFilter.notificationFilterHeader.notificationClasslds[0].vendorld = 33333;

/* sub id of this notification class within “name space” of vendor ID */

mySCFilter.notificationFilterHeader.notificationClasslds[0]. majorld = 997;
mySCFilter.notificationFilterHeader.notificationClasslds[0].minorld = 1;

ret = saNtfAlarmNotificationFilterAllocate(

myNIlflnstHandle, /* handle to Notification Service instance */
&myAFilter, /* put filter here */
0 /* number of event types */,
0 /* number of notification objects */,
0 /* number of notifying objects */,
1 /* number of notification class ids %/,
0 /* number of probable causes 7/,
0 /* number of perceived severities */,
0 /* number of trend indications */);

if (ret I= SA_AIS_OK)

{
forintf(stderr, “could not allocate notification filter \n”);
saNtfNotificationFilterFree(myOCDFilter.notificationFilterHandle);
saNtfNotificationFilterFree(myAVCFilter.notificationFilterHandle);
saNtfNotificationFilterFree(mySCFilter.notificationFilterHandle);
return reft;

}

/* set Notification Class Identifier ¥/

/* vendor id 33333 is not an existing SNMP enterprise number - just an example */
myAFilter.notificationFilterHeader.notificationClasslds[0].vendorld = 33333;

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 147

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

/* sub id of this notification class within “name space” of vendor ID */
myAFilter.notificationFilterHeader.notificationClasslds[0]. majorld = 996;
myAFilter.notificationFilterHeader.notificationClasslds[0]. minorld = 1;

ret = saNtfSecurityAlarmNotificationFilterAllocate(

myNIlflnstHandle, /* handle to Notification Service instance */
&mySAFilter, /* put filter here */
0 /* number of event types ¥/,
0 /* number of notification objects */,
0 /* number of notifying objects */,
1 /* number of notification class ids */,
0 /* number of probable causes 7/,
0 /* number of severities ¥/,
0 /* number of security alarm detectors */,
0 /* number of service users 7/,
0 /* number of service providers */);

if (ret I= SA_AIS_OK)

{
forintf(stderr, “could not allocate notification filter \n”);
saNtfNotificationFilterFree(myOCDFilter.notificationFilterHandle);
saNtfNotificationFilterFree(myAVCFilter.notificationFilterHandle);
saNtfNotificationFilterFree(mySCFilter.notificationFilterHandle);
saNtfNotificationFilterFree(myAFilter.notificationFilterHandle);
return reft;

}

/* set Notification Class Identifier */

/* vendor id 33333 is not an existing SNMP enterprise number - just an example */
mySAFilter.notificationFilterHeader.notificationClasslds[0].vendorld = 33333;

/* sub id of this notification class within “name space” of vendor ID */
mySAFilter.notificationFilterHeader.notificationClasslds[0].majorld = 995;
mySAFilter.notificationFilterHeader.notificationClasslds[0].minorld = 1;

148

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM

Notification Service

}

abcNotificationFilterHandles.objectCreateDeleteFilterHandle =
myOCDGFilter.notificationFilterHandle;
abcNotificationFilterHandles.attribute ChangeFilterHandle =
myAVCFilter.notificationFilterHandle;
abcNotificationFilterHandles.stateChangeFilterHandle =
mySCFilter.notificationFilterHandle;
abcNotificationFilterHandles.alarmFilterHandle =
myAFilter.notificationFilterHandle;
abcNotificationFilterHandles.securityAlarmFilterHandle =
mySAFilter.notificationFilterHandle;

ret = saNtfNotificationSubscribe(&abcNotificationFilterHandles, 1);

saNtfNotificationFilterFree(myOCDFilter.notificationFilterHandle);
saNtfNotificationFilterFree(myACFilter.notificationFilterHandle);
saNtfNotificationFilterFree(mySCFilter.notificationFilterHandle);
saNtfNotificationFilterFree(myAFilter.notificationFilterHandle);
saNtfNotificationFilterFree(mySAFilter.notificationFilterHandle);

return ret;

/* define common callback for all notification types */

void myNotificationCallback(

~ N—

SaNtfSubscriptionldT subscriptionld,
const SaNtfNotificationsT *notification

SaNftfNotificationHeaderT *ntfHeader;

SaNftfNotificationHandleT ntfHandle;

void myNtfGenericHandler(
SaNitfNotificationHandle T notificationHandle,
SaNitfNotificationHeaderT * header);

switch(notification->notification Type)
{
case SA_NTF_TYPE_OBJECT_CREATE_DELETE:
ntfHeader =
&(notification->notification.objectCreateDeleteNotification.notificationHeader);

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 149

10

15

20

25

30

35

40

Notification Service

Service Availability™ Application Interface Specification SERVICE

AVAILABILITY’

FORUM

ntfHandle =
notification->notification.objectCreateDeleteNotification.notificationHandle;
break;
case SA_ NTF_TYPE ATTRIBUTE_CHANGE:
ntfHeader =

&(notification->notification.attribute ChangeNotification.notificationHeader);

ntfHandle =
notification->notification.attribute ChangeNotification.notificationHandle;
break;
case SA_ NTF_TYPE _STATE _CHANGE:
ntfHeader =
&(notification->notification. state ChangeNotification.notificationHeader);
ntfHandle =
notification->notification.state ChangeNotification.notificationHandle;
break;
case SA_NTF_TYPE _ALARM:
ntfHeader = &(notification->notification.alarmNotification.notificationHeader);
ntfHandle = notification->notification.alarmNotification.notificationHandle;
break;
case SA NTF_TYPE SECURITY_ALARM:
ntfHeader =
&(notification->notification.securityAlarmNotification.notificationHeader);
ntfHandle =
notification->notification.securityAlarmNotification.notificationHandle;
break;
}
/* first do some generic notification handling */
myNtfGenericHandler(ntfHandle, ntfHeader);

/* then do some handling specific for the notification type */

/50

switch(notification->notification Type)

{

case SA NTF_TYPE OBJECT CREATE DELETE:
/50
break;

case SA NTF_TYPE ATTRIBUTE _CHANGE:
/5
break;

case SA NTF_TYPE _STATE CHANGE:
/5.
break;

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE
AVAILABILITY’

FORUM

Service AvailabilityTM Application Interface Specification

Notification Service

case SA_NTF_TYPE_ALARM:

/5
break;

case SA_NTF_TYPE_SECURITY_ALARM:

/5
break;

}

/* free resources */

saNtfNotificationFree(ntfHandle);

/* some simple generic handling for all kinds of notifications,
* simply print their message text to stdout together with the notification time stamp. */

AIS Specification

SAI-AIS-NTF-A.01.01 Section Appendix A

151

10

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE

Notification Service

AVAILABILITY’

FORUM

void myNtfGenericHandler(

~ N—

SaNtfNotificationHandleT notificationHandle,
SaNTtfNotificationHeaderT * header

SaAisErrorT rc;

SaStringT message = (SaStringT) NULL;
char time_str[24];

SaTimeT ntfTime = (SaTimeT)O0;

rc = saNtfLocalizedMessageGet(notificationHandle, &message);

if (rc I= SA_AIS_OK)

{
forintf(stderr, “Cannot get localized message text, error %d\n, rc);
return;

}

ntfTime = *(header->eventTime),

ntfTime /= SA_TIME_ONE_SECOND;

/* print message together with some info from notification, e.g., time */
strftime(time_str, sizeof(time_str), "%d-%m-%Y %T", localtime((time_t *) &ntfTime));
printf(“%s %s\n”, time_str, message);

152

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

An example for using the above functions:

SaAisErrorT ret;
SaVersionT version;
SaNtfHandleT ntfHandle,

/* set up callback */
ntfCallbacks.saNtfNotificationCallback = myNotificationCallback;

/* then initialize library instance */
ret = saNftfinitialize(&ntfHandle, &ntfCallbacks, &version);
if (ret I= SA_AIS_OK)
{
/* could not initialize the notification service library */
exit (1),
}

/* subscribe for notifications */

ret = subscribeForAbcNotifications(ntfHandle);

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A

153

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

Consumer Side (example function) — Read Logged Notifications

/* In this example, it is assumed that an application has subscribed for certain alarm
notifications, but due to a short application down time (e.g., due to a crash) or fail over, it
may have lost some notifications. Reading logged notifications will cover the gap. The time
stamp of the last received notification is used as a starting point. */

SaAisErrorT readMissedAbcNotifications(
SaNtfHandleT myNtfinstHandle,
SaNitfldentifierT lastReceivedNotificationld

)
{

SaAisErrorT ret;

SaStringT destPtr = NULL;

SaNtfNotificationsT returnedNotification;

SaNtfNotificationTypeFilterHandlesT notificationFilterHandles;

SaNtfSearchCriteriaT criteria;

SaNtfAlarmNotificationFilterT myAFilter;

SaNtfReadHandleT readHandle;

ret = saNtfAlarmNotificationFilterAllocate(
myNIlflnstHandle, /* handle to Notification Service instance */
&myAFilter, /* put filter here */
0 /* number of event types */,
0 /* number of notification objects */,
0 /* number of notifying objects */,
1 /* number of notification class ids */,
0 /* number of probable causes 7/,
0 /* number of perceived severities */,
0 /* number of trend indications */,
0 /* number of source indicators */);

if (ret I= SA_AIS_OK)

{

forintf(stderr, “could not allocate notification filter \n”);

return ret;

}

/* set Notification Class Identifier */

/* vendor id 33333 is not an existing SNMP enterprise number - just an example */

myAFilter.notificationFilterHeader.notificationClasslds[0].vendorld = 33333;

154 SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

SERVICE Service Availability™ Application Interface Specification
AVAILABILITY

FORUM Notification Service

/* sub id of this notification class within “name space” of vendor ID */
myAFilter.notificationHeader.notificationClasslds[0]. majorld = 990;
myAFilter.notificationHeader.notificationClasslds[0]. minorld = 0x12;

notificationFilterHandles.alarmFilterHandle =
myAFilter.notificationFilterHandle;
notificationFilterHandles.objectCreateDeleteFilterHandle =
SA NTF_FILTER HANDLE NULL;
notificationFilterHandles.attribute ChangeFilterHandle =
SA_NTF_FILTER_HANDLE_NULL;
notificationFilterHandles.stateChangeFilterHandle =
SA NTF _FILTER HANDLE NULL;
notificationFilterHandles.securityAlarmFilterHandle =
SA NTF_FILTER HANDLE NULL;

/* initial search criteria is the last notification ID that was received before the
application down time */

criteria.searchMode = SA_NTF_NOTIFICATION_ID;

criteria.notificationld = lastReceivedNotificationld;

ret = saNtfNotificationReadlnitialize(criteria,
¬ificationFilterHandles,
&readHandle);

if (ret I= SA_AIS_OK)

forintf(stderr, “could not initialize read sequence with last received
notification id\n”);
return ret;
}
/* filters no longer needed - free them */
saNtfNotificationFilterFree(myAFilter.notificationFilterHandle);

/* read as many matching notifications as exist for the time period between the
last received one and now */
for (; (ret = saNtfNotificationReadNext(readHandle,
SA NTF_SEARCH_YOUNGER,
&returnedNotification)) == SA_AIS_OK;)

AIS Specification SAI-AIS-NTF-A.01.01 Section Appendix A 155

10

15

20

25

30

35

40

Service Availability™ Application Interface Specification SERVICE
AVAILABILITY

Notification Service FORUM

Salnt8 *dataPtr;
SaUint16T dataSize;
SaNtfAlarmNotificationT *returnedANIff;

returnedANtf = &returnedNotification.alarmNotification;

/* handle this notification, e.g., check whether the application has not yet
received it previously */

/* get first proposed repair action in alarm notification */
if (returnedANtf->numProposedRepairActions > 0 &&
returnedANIf->proposedRepairActions[0].actionValue Type ==
SA NTF_VALUE STRING)

ret = saNtfPtrValGet(
returnedANItf->notificationHandle,
&(returnedANtf->proposedRepairActions[0].actionValue),
&dataPtr,
&dataSize);

... /* do something with the proposed repair action value pointed to by
dataPtr */

}

saNtfNotificationFree(returnedANtf->notificationHandle);

}

/* finalize reading */
saNtfNotificationReadFinalize(readHandle);

return ret;

156

SAI-AIS-NTF-A.01.01 Section Appendix A AIS Specification

10

15

20

25

30

35

40

	1 Document Introduction
	1.1 Document Purpose
	1.2 AIS Documents Organization
	1.3 History
	1.4 References
	1.5 How to Provide Feedback on the Specification
	1.6 How to Join the Service Availability™ Forum
	1.7 Additional Information
	1.7.1 Member Companies
	1.7.2 Press Materials

	2 Overview
	2.1 Users of the Notification Library
	2.1.1 Producer
	2.1.2 Consumer
	2.1.2.1 Subscriber
	2.1.2.2 Reader

	2.2 SNMP Interface
	2.3 CIM/WBEM Interface
	2.4 Notification Service
	2.4.1 Notification Library
	2.4.2 Notification Server
	2.4.3 Transport Service

	2.5 Logging Service

	3 Notification Service API
	3.1 Notifications
	3.2 Notification Filters
	3.3 Notification Types
	3.3.1 Alarm Notification
	3.3.2 State Change Notification
	3.3.3 Object Create / Delete and Attribute Change Notifications
	3.3.4 Security Alarm Notification

	3.4 Common Parameters
	3.4.1 Event Type
	3.4.2 Notification Object
	3.4.3 Notifying Object
	3.4.4 Notification Class Identifier
	3.4.5 Notification Identifier
	3.4.6 Correlated Notifications
	3.4.7 Event Time
	3.4.8 Additional Text
	3.4.9 Additional Information

	3.5 Notification-specific Parameters
	3.5.1 Alarm
	3.5.1.1 Probable Cause
	3.5.1.2 Specific Problems
	3.5.1.3 Perceived Severity
	3.5.1.4 Trend Indication
	3.5.1.5 Threshold Information
	3.5.1.6 Monitored Attributes
	3.5.1.7 Proposed Repair Actions

	3.5.2 State Change
	3.5.2.1 Source Indicator
	3.5.2.2 Changed State Attribute List

	3.5.3 Object Creation/Deletion
	3.5.3.1 Source Indicator
	3.5.3.2 Attribute List

	3.5.4 Attribute Value Change
	3.5.4.1 Source Indicator
	3.5.4.2 Changed Attribute List

	3.5.5 Security Alarm
	3.5.5.1 Security Alarm Cause
	3.5.5.2 Security Alarm Severity
	3.5.5.3 Security Alarm Detector
	3.5.5.4 Service User
	3.5.5.5 Service Provider

	3.6 Notification Delivery Characteristics
	3.6.1 Discarded Notifications

	3.7 Integration of HPI Events
	3.8 Semantic Identification of Notification Elements
	3.9 Internationalization Issues
	3.10 API Design Goals
	3.11 Include File and Library Name
	3.12 Type Definitions
	3.12.1 Handles
	3.12.1.1 SaNtfHandleT
	3.12.1.2 SaNtfNotificationHandleT
	3.12.1.3 SaNtfNotificationFilterHandleT
	3.12.1.4 SaNtfReadHandleT

	3.12.2 Callbacks
	3.12.2.1 SaNtfCallbacksT

	3.12.3 SaNtfNotificationTypeT
	3.12.4 SaNtfEventTypeT
	3.12.5 Notification Object
	3.12.6 Notifying Object
	3.12.7 SaNtfClassIdT
	3.12.8 SaServicesT
	3.12.9 SaNtfElementIdT
	3.12.10 SaNtfIdentifierT
	3.12.11 Event Time
	3.12.12 SaNtfValueTypeT
	3.12.13 SaNtfValueT
	3.12.14 Additional Text
	3.12.15 SaNtfAdditionalInfoT
	3.12.16 SaNtfProbableCauseT
	3.12.17 SaNtfSpecificProblemT
	3.12.18 SaNtfSeverityT
	3.12.19 SaNtfSeverityTrendT
	3.12.20 SaNtfThresholdInformationT
	3.12.21 SaNtfProposedRepairActionT
	3.12.22 SaNtfSourceIndicatorT
	3.12.23 SaNtfStateChangeT
	3.12.24 SaNtfAttributeT
	3.12.25 SaNtfAttributeChangeT
	3.12.26 SaNtfServiceUserT
	3.12.27 SaNtfSecurityAlarmDetectorT
	3.12.28 SaNtfNotificationHeaderT
	3.12.29 SaNtfObjectCreateDeleteNotificationT
	3.12.30 SaNtfAttributeChangeNotificationT
	3.12.31 SaNtfStateChangeNotificationT
	3.12.32 SaNtfAlarmNotificationT
	3.12.33 SaNtfSecurityAlarmNotificationT
	3.12.34 Default variable notification data size
	3.12.35 SaNtfSubscriptionIdT
	3.12.36 SaNtfNotificationFilterHeaderT
	3.12.37 SaNtfObjectCreateDeleteNotificationFilterT
	3.12.38 SaNtfAttributeChangeNotificationFilterT
	3.12.39 SaNtfStateChangeNotificationFilterT
	3.12.40 SaNtfAlarmNotificationFilterT
	3.12.41 SaNtfSecurityAlarmNotificationFilterT
	3.12.42 SaNtfSearchModeT
	3.12.43 SaNtfSearchCriteriaT
	3.12.44 SaNtfSearchDirectionT
	3.12.45 SaNtfNotificationTypeFilterHandlesT
	3.12.46 SaNtfNotificationsT

	3.13 Library Life Cycle
	3.13.1 saNtfInitialize()
	3.13.2 saNtfSelectionObjectGet()
	3.13.3 saNtfDispatch()
	3.13.4 saNtfFinalize()

	3.14 Operations of the Producer API
	3.14.1 saNtfObjectCreateDeleteNotificationAllocate()
	3.14.2 saNtfAttributeChangeNotificationAllocate()
	3.14.3 saNtfStateChangeNotificationAllocate()
	3.14.4 saNtfAlarmNotificationAllocate()
	3.14.5 saNtfSecurityAlarmNotificationAllocate()
	3.14.6 saNtfPtrValAllocate()
	3.14.7 saNtfArrayValAllocate()
	3.14.8 saNtfNotificationSend()
	3.14.9 saNtfNotificationFree()

	3.15 Consumer Operations
	3.15.1 Filtering
	3.15.2 Common Consumer Operations
	3.15.2.1 saNtfLocalizedMessageGet()
	3.15.2.2 saNtfLocalizedMessageFree()
	3.15.2.3 saNtfPtrValGet()
	3.15.2.4 saNtfArrayValGet()
	3.15.2.5 saNtfObjectCreateDeleteNotificationFilterAllocate()
	3.15.2.6 saNtfAttributeChangeNotificationFilterAllocate()
	3.15.2.7 saNtfStateChangeNotificationFilterAllocate()
	3.15.2.8 saNtfAlarmNotificationFilterAllocate()
	3.15.2.9 saNtfSecurityAlarmNotificationFilterAllocate()
	3.15.2.10 saNtfNotificationFilterFree()

	3.15.3 Operations of the Subscriber API
	3.15.3.1 saNtfNotificationSubscribe()
	3.15.3.2 saNtfNotificationUnsubscribe()
	3.15.3.3 SaNtfNotificationCallbackT
	3.15.3.4 SaNtfNotificationDiscardedCallbackT

	3.15.4 Operations of the Reader API
	3.15.4.1 saNtfNotificationReadInitialize()
	3.15.4.2 saNtfNotificationReadNext()
	3.15.4.3 saNtfNotificationReadFinalize()

	3.16 Notification Suppression

	4 Configuration
	4.1 Trap OID Mapping
	4.2 Internationalization

	Appendix A API Usage Examples
	Producer Side (example function) - Object Create Delete Notification
	Producer Side (example function) - Attribute Change Notification
	Producer Side (example function) - State Change Notification
	Producer Side (example function) - Alarm Notification
	Producer Side (example function) - Security Alarm Notification
	Consumer Side (example function) - Subscribe for Notifications
	Consumer Side (example function) - Read Logged Notifications

