
SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

NAME
snmpd.conf - configuration file for the Net-SNMP SNMP agent

DESCRIPTION
The Net-SNMP agent uses one or more configuration files to control its operation and the management
information provided. Thesefiles (snmpd.conf and snmpd.local.conf) can be located in one of several
locations, as described in thesnmp_config(5)manual page.

The (perl) applicationsnmpconf can be used to generate configuration files for the most common agent
requirements. Seethesnmpconf(1)manual page for more information, or try running the command:

snmpconf −g basic_setup

There are a large number of directives that can be specified, but these mostly fall into four distinct cate-
gories:

• those controlling who can access the agent

• those configuring the information that is supplied by the agent

• those controlling active monitoring of the local system

• those concerned with extending the functionality of the agent.

Some directives don’t fall naturally into any of these four categories, but this covers the majority of the con-
tents of a typicalsnmpd.conffile. A full list of recognised directives can be obtained by running the com-
mand:

snmpd −H

AGENT BEHAVIOUR
Although most configuration directives are concerned with the MIB information supplied by the agent,
there are a handful of directives that control the behaviour ofsnmpdconsidered simply as a daemon provid-
ing a network service.

agentaddress [<transport-specifier>:]<transport-address>[,...]
defines a list of listening addresses, on which to receive incoming SNMP requests. See the section
LISTENING ADDRESSES in thesnmpd(8)manual page for more information about the format
of listening addresses.

The default behaviour is to listen on UDP port 161 on all IPv4 interfaces.

agentgroup {GROUP|#GID}
changes to the specified group after opening the listening port(s).This may refer to a group by
name (GROUP), or a numeric group ID starting with ’#’ (#GID).

agentuser {USER|#UID}
changes to the specified user after opening the listening port(s). This may refer to a user by name
(USER), or a numeric user ID starting with ’#’ (#UID).

leave_pidfile yes
instructs the agent to not remove its pid file on shutdown. Equivalent to specifying "−U" on the
command line.

maxGetbulkRepeats NUM
Sets the maximum number of responses allowed for a single variable in a getbulk request. Set to 0
to enable the default and set it to −1 to enable unlimited.Because memory is allocated ahead of
time, setting this to unlimited is not considered safe if your user population can not be trusted.A
repeat number greater than this will be truncated to this value.

This is set by default to -1.

maxGetbulkResponses NUM
Sets the maximum number of responses allowed for a getbulk request. This is set by default to
100. Setto 0 to enable the default and set it to −1 to enable unlimited. Because memory is allo-
cated ahead of time, setting this to unlimited is not considered safe if your user population can not

V5.7.3 30Jun 2010 1

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

be trusted.

In general, the total number of responses will not be allowed to exceed the maxGetbulkResponses
number and the total number returned will be an integer multiple of the number of variables
requested times the calculated number of repeats allow to fit below this number.

Also not that processing of maxGetbulkRepeats is handled first.

SNMPv3 Configuration - Real Security
SNMPv3 is added flexible security models to the SNMP packet structure so that multiple security solutions
could be used. SNMPv3 was original defined with a "User-based Security Model" (USM) [RFC3414] that
required maintaining a SNMP-specific user database.This was later determined to be troublesome to main-
tain and had some minor security issues.The IETF has since added additional security models to tunnel
SNMP over SSH [RFC5592] and DTLS/TLS [RFC-to-be].Net-SNMP contains robust support for
SNMPv3/USM, SNMPv3/TLS, and SNMPv3/DTLS.It contains partial support for SNMPv3/SSH as well
but has not been as extensively tested. It also contains code for support for an experimental Kerberos based
SNMPv3 that never got standardized.

Hopefully more SNMP software and devices will eventually support SNMP over (D)TLS or SSH, but it is
likely that devices with original support for SNMP will only contain support for USM users. If your net-
work manager supports SNMP over (D)TLS or SNMP over SSH we suggest you use one of these mecha-
nisms instead of using USM, but as always with Net-SNMP we give you the options to pick from so you
can make the choice that is best for you.

SNMPv3 generic parameters
These parameters are generic to all the forms of SNMPv3. The SNMPv3 protocol defines "engineIDs" that
uniquely identify an agent. The string must be consistent through time and should not change or conflict
with another agent’s engineID. Ever. Internally, Net-SNMP by default creates a unique engineID that is
based off of the current system time and a random number. This should be sufficient for most users unless
you’re embedding our agent in a device where these numbers won’t vary between boxes on the devices ini-
tial boot.

EngineIDs are used both as a "context" for selecting information from the device and SNMPv3
with USM uses it to create unique entries for users in its user table.

The Net-SNMP agent offers the following mechanisms for setting the engineID, but again you
should only use them if you know what you’re doing:

engineID STRING
specifies that the engineID should be built from the given text STRING.

engineIDType 1|2|3
specifies that the engineID should be built from the IPv4 address (1), IPv6 address (2) or MAC
address (3).Note that changing the IP address (or switching the network interface card) may
cause problems.

engineIDNic INTERFACE
defines which interface to use when determining the MAC address. IfengineIDType 3is not spec-
ified, then this directive has no effect.

The default is to use eth0.

SNMPv3 over T LS
SNMPv3 may be tunneled over TLS and DTLS. TLS runs over TCP and DTLS is the UDP equivalent.
Wes Hardaker (the founder of Net-SNMP) performed a study and presented it at an IETF meeting that
showed that TCP based protocols are sufficient for stable networks but quickly becomes a problem in unsta-
ble networks with even moderate levels of packet loss (˜ 20-30%).If you are going to use TLS or DTLS,
you should use the one appropriate for your networking environment. You should potentially turn them
both on so your management system can access either the UDP or the TCP port as needed.

Many of the configuration tokens described below are prefixed with a ’[snmp]’ tag. If you place these
tokens in your snmpd.conf file, this take is required. Seethe snmp_config(5) manual page for the meaning

V5.7.3 30Jun 2010 2

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

of this context switch.

[snmp] localCert <specifier>
This token defines the default X.509 public key to use as the server’s identity. It should either be a
fingerprint or a filename.To create a public key for use, please run the "net−snmp−cert" utility
which will help you create the required certificate.

The default value for this is the certificate in the "snmpd" named certificate file.

[snmp] tlsAlgorithms <algorithms>
This string will select the algorithms to use when negotiating security during (D)TLS session
establishment. Seethe openssl manual page ciphers(1) for details on the format.Examples strings
include:

DEFAULT
ALL
HIGH
HIGH:!AES128−SHA

The default value is whatever openssl itself was configured with.

[snmp] x509CRLFile
If you are using a Certificate Authority (CA) that publishes a Certificate Revocation List (CRL)
then this token can be used to specify the location in the filesystem of a copy of the CRL file.
Note that Net-SNMP will not pull a CRL over http and this must be a file, not a URL.Addition-
ally, OpenSSL does not reload a CRL file when it has changed so modifications or updates to the
file will only be noticed upon a restart of the snmpd agent.

certSecName PRIORITY FINGERPRINT OPTIONS
OPTIONS can be one of <−−sn SECNAME | −−rfc822 | −−dns | −−ip | −−cn | −−any>.

The certSecName token will specify how to map a certificate field from the client’s X.509 certifi-
cate to a SNMPv3 username.Use the −−sn SECNAME flag to directly specify a securityName for
a giv en certificate. Theother flags extract a particular component of the certificate for use as a
snmpv3 securityName. These fields are one of: A SubjectAltName containing an rfc822 value (eg
hardaker@net−snmp.org), A SubjectAltName containing a dns name value (eg foo.net−snmp.org),
an IP address (eg 192.0.2.1) or a common name "Wes Hardaker". The−−any flag specifies that
any of the subjecAltName fields may be used.Make sure once a securityName has been selected
that it is given authorization via the VACM controls discussed later in this manual page.

See the http://www.net−snmp.org/wiki/index.php/Using_DTLS web page for more detailed
instructions for setting up (D)TLS.

trustCert <specifier>
For X509 to properly verify a certificate, it should be verifiable up until a trust anchor for it.This
trust anchor is typically a CA certificate but it could also be a self-signed certificate.The
"trustCert" token should be used to load specific trust anchors into the verification engine.

SNMP over (D)TLS requires the use of the Transport Security Model (TSM), so read the section on the
usage of the Transport Security Model as well.Make sure when you configure the VACM to accept con-
nections from (D)TLS that you use the "tsm" security model. E.G.:

rwuser −s tsm hardaker@net−snmp.org

SNMPv3 over SSH Support
To use SSH, you’ll need to configure sshd to invoke the sshtosnmp program as well as configure the access
control settings to allow access through the tsm security model using the user name provided to snmpd by
the ssh transport.

V5.7.3 30Jun 2010 3

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

SNMPv3 with the Transport Security Model (TSM)
The Transport Security Model [RFC5591] defines a SNMPv3 security system for use with "tunneled" secu-
rity protocols like TLS, DTLS and SSH. It is a very simple security model that simply lets properly pro-
tected packets to pass through into the snmp application.The transport is required to pass a securityName
to use to the TSM and the TSM may optionally prefix this with a transport string (see below).

tsmUseTransportPrefix (1|yes|true|0|no|false)
If set to true, the TSM module will take every securityName passed to it from the transports under-
neath and prefix it with a string that specifically identities the transport it came from.This is use-
ful to avoid securityName clashes with transports that generate identical security names.For
example, if the ssh security transport delivered the security name of "hardaker" for a SSH connec-
tion and the TLS security transport also delivered the security name of "hardaker" for a TLS con-
nection then it would be impossible to separate out these two users to provide separate access con-
trol rights. With the tsmUseTransportPrefix set to true, however, the securityNames would be pre-
fixed appropriately with one of: "tls:", "dtls:" or "ssh:".

SNMPv3 with the User-based Security Model (USM)
SNMPv3 was originally defined using the User-Based Security Model (USM), which contains a private list
of users and keys specific to the SNMPv3 protocol. The operational community, howev er, declared it a
pain to manipulate yet another database and would prefer to use existing infrastructure.To that end the
IETF created the ISMS working group to battle that problem, and the ISMS working group decided to tun-
nel SNMP over SSH and DTLS to make use existing user and authentication infrastructures.

SNMPv3 USM Users
To use the USM based SNMPv3-specific users, you’ll need to create them.It is recommended youuse the
net−snmp−config commandto do this, but you can also do it by directly specifying createUser directives
yourself instead:

createUser [−e ENGINEID] username (MD5|SHA) authpassphrase [DES|AES] [privpassphrase]

MD5 and SHA are the authentication types to use. DES and AES are the privacy protocols to use.
If the privacy passphrase is not specified, it is assumed to be the same as the authentication
passphrase. Notethat the users created will be useless unless they are also added to the VACM
access control tables described above.

SHA authentication and DES/AES privacy require OpenSSL to be installed and the agent to be
built with OpenSSL support. MD5 authentication may be used without OpenSSL.

Warning: the minimum pass phrase length is 8 characters.

SNMPv3 users can be created at runtime using thesnmpusm(1)command.

Instead of figuring out how to use this directive and where to put it (see below), just run
"net−snmp−config −−create−snmpv3−user" instead, which will add one of these lines to the right
place.

This directive should be placed into the /var/net-snmp/snmpd.conf file instead of the other normal
locations. Thereason is that the information is read from the file and then the line is removed
(eliminating the storage of the master password for that user) and replaced with the key that is
derived from it. This key is alocalized key, so that if it is stolen it can not be used to access other
agents. Ifthe password is stolen, however, it can be.

If you need to localize the user to a particular EngineID (this is useful mostly in the similar
snmptrapd.conf file), you can use the −e argument to specify an EngineID as a hex value (EG,
"0x01020304").

If you want to generate either your master or localized keys directly, replace the given password
with a hexstring (preceded by a "0x") and precede the hex string by a −m or −l token (respec-
tively). EGs:

[these keys are *not* secure but are easy to visually parse for
counting purposes. Please generate random keys instead of using

V5.7.3 30Jun 2010 4

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

these examples]

createUser myuser SHA −l 0x0001020304050607080900010203040506070809 AES −l 0x00010203040506070809000102030405
createUser myuser SHA −m 0x0001020304050607080900010203040506070809 AES −m 0x0001020304050607080900010203040506070809

Due to the way localization happens, localized privacy keys are expected to be the length needed
by the algorithm (128 bits for all supported algorithms).Master encryption keys, though, need to
be the length required by the authentication algorithm not the length required by the encrypting
algorithm (MD5: 16 bytes, SHA: 20 bytes).

ACCESS CONTROL
snmpd supports the View-Based Access Control Model (VACM) as defined in RFC 2575, to control who
can retrieve or update information.To this end, it recognizes various directives relating to access control.

Tr aditional Access Control
Most simple access control requirements can be specified using the directives rouser/rwuser(for SNMPv3)
or rocommunity/rwcommunity(for SNMPv1 or SNMPv2c).

rouser [−s SECMODEL] USER [noauth|auth|priv [OID | −V VIEW [CONTEXT]]]

rwuser [−s SECMODEL] USER [noauth|auth|priv [OID | −V VIEW [CONTEXT]]]
specify an SNMPv3 user that will be allowed read-only (GET and GETNEXT) or read-write
(GET, GETNEXT and SET) access respectively. By default, this will provide access to the full
OID tree for authenticated (including encrypted) SNMPv3 requests, using the default context. An
alternative minimum security level can be specified usingnoauth (to allow unauthenticated
requests), orpriv (to enforce use of encryption).The OID field restricts access for that user to the
subtree rooted at the given OID, or the named view. An optional context can also be specified, or
"context*" to denote a context prefix. If no context field is specified (or the token "*" is used), the
directive will match all possible contexts.

If SECMODEL is specified then it will be the security model required for that user (note that iden-
tical user names may come in over different security models and will be appropriately separated
via the access control settings).The default security model is "usm" and the other common secu-
rity models are likely "tsm" when using (D)TLS or SSH support and "ksm" if the Kerberos support
has been compiled in.

rocommunity COMMUNITY [SOURCE [OID | −V VIEW [CONTEXT]]]

rwcommunity COMMUNITY [SOURCE [OID | −V VIEW [CONTEXT]]]
specify an SNMPv1 or SNMPv2c community that will be allowed read-only (GET and GET-
NEXT) or read-write (GET, GETNEXT and SET) access respectively. By default, this will pro-
vide access to the full OID tree for such requests, regardless of where they were sent from. The
SOURCE token can be used to restrict access to requests from the specified system(s) - see
com2secfor the full details. The OID field restricts access for that community to the subtree
rooted at the given OID, or named view. Contexts are typically less relevant to community-based
SNMP versions, but the same behaviour applies here.

rocommunity6 COMMUNITY [SOURCE [OID | −V VIEW [CONTEXT]]]

rwcommunity6 COMMUNITY [SOURCE [OID | −V VIEW [CONTEXT]]]
are directives relating to requests received using IPv6 (if the agent supports such transport
domains). Theinterpretation of the SOURCE, OID, VIEW and CONTEXT tokens are exactly the
same as for the IPv4 versions.

In each case, only one directive should be specified for a given SNMPv3 user, or community string. It is
not appropriate to specify bothrouserandrwuserdirectives referring to the same SNMPv3 user (or equiva-
lent community settings). Therwuserdirective provides all the access ofrouser(as well as allowing SET
support). Thesame holds true for the community-based directives.

More complex access requirements (such as access to two or more distinct OID subtrees, or different views
for GET and SET requests) should use one of the other access control mechanisms.Note that if several dis-
tinct communities or SNMPv3 users need to be granted the same level of access, it would also be more

V5.7.3 30Jun 2010 5

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

efficient to use the main VACM configuration directives.

VA CM Configuration
The full flexibility of the VACM is available using four configuration directives −com2sec, group, viewand
access. These provide direct configuration of the underlying VACM tables.

com2sec [−CnCONTEXT] SECNAME SOURCE COMMUNITY

com2sec6 [−Cn CONTEXT] SECNAME SOURCE COMMUNITY
map an SNMPv1 or SNMPv2c community string to a security name - either from a particular
range of source addresses, or globally ("default"). A restricted source can either be a specific host-
name (or address), or a subnet - represented as IP/MASK (e.g. 10.10.10.0/255.255.255.0), or
IP/BITS (e.g. 10.10.10.0/24), or the IPv6 equivalents.

The same community string can be specified in several separate directives (presumably with differ-
ent source tokens), and the first source/community combination that matches the incoming request
will be selected.Various source/community combinations can also map to the same security
name.

If a CONTEXT is specified (using−Cn), the community string will be mapped to a security name
in the named SNMPv3 context. Otherwise the default context ("") will be used.

com2secunix [−Cn CONTEXT] SECNAME SOCKPATH COMMUNITY
is the Unix domain sockets version ofcom2sec.

group GROUP {v1|v2c|usm|tsm|ksm} SECNAME
maps a security name (in the specified security model) into a named group.Several group direc-
tives can specify the same group name, allowing a single access setting to apply to several users
and/or community strings.

Note that groups must be set up for the two community-based models separately - a single
com2sec(or equivalent) directive will typically be accompanied bytwo groupdirectives.

view VNAME TYPE OID [MASK]
defines a named "view" - a subset of the overall OID tree. This is most commonly a single subtree,
but sev eral view directives can be given with the same view name (VNAME), to build up a more
complex collection of OIDs. TYPE is eitherincludedor excluded, which can again define a more
complex view (e.g by excluding certain sensitive objects from an otherwise accessible subtree).

MASK is a list of hex octets (optionally separated by ’.’ or ’ :’) with the set bits indicating which
subidentifiers in the view OID to match against. Ifnot specified, this defaults to matching the OID
exactly (all bits set), thus defining a simple OID subtree. So:

view iso1 included .iso 0xf0
view iso2 included .iso
view iso3 included .iso.org.dod.mgmt 0xf0

would all define the same view, covering the whole of the ’iso(1)’ subtree (with the third example
ignoring the subidentifiers not covered by the mask).

More usefully, the mask can be used to define a view covering a particular row (or rows) in a table,
by matching against the appropriate table index value, but skipping the column subidentifier:

view ifRow4 included .1.3.6.1.2.1.2.2.1.0.4 0xff:a0

Note that a mask longer than 8 bits must use ’:’ to separate the individual octets.

access GROUP CONTEXT {any|v1|v2c|usm|tsm|ksm} LEVEL PREFX READ WRITE NOTIFY
maps from a group of users/communities (with a particular security model and minimum security
level, and in a specific context) to one of three views, depending on the request being processed.

LEVEL is one ofnoauth, auth, or priv. PREFX specifies how CONTEXT should be matched
against the context of the incoming request, eitherexact or prefix. READ, WRITE and NOTIFY
specifies the view to be used for GET*, SET and TRAP/INFORM requests (althought the
NOTIFY view is not currently used).For v1 or v2c access, LEVEL will need to benoauth.

V5.7.3 30Jun 2010 6

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

Typed-View Configuration
The final group of directives extend the VACM approach into a more flexible mechanism, which can be
applied to other access control requirements. Rather than the fixed three views of the standard VACM
mechanism, this can be used to configure various different view types. Asfar as the main SNMP agent is
concerned, the two main view types areread andwrite, corresponding to the READ and WRITE views of
the mainaccessdirective. See the ’snmptrapd.conf(5)’ man page for discussion of other view types.

authcommunity TYPESCOMMUNITY [SOURCE[OID | −V VIEW [CONTEXT]]]
is an alternative to the rocommunity/rwcommunitydirectives. TYPESwill usually be read or
read,write respectively. The view specification can either be an OID subtree (as before), or a
named view (defined using theviewdirective) for greater flexibility . If this is omitted, then access
will be allowed to the full OID tree. If CONTEXT is specified, access is configured within this
SNMPv3 context. Otherwisethe default context ("") is used.

authuser TYPES[−s MODEL] USER [LEVEL [OID | −V VIEW [CONTEXT]]]
is an alternative to the rouser/rwuserdirectives. Thefields TYPES, OID, VIEW and CONTEXT
have the same meaning as forauthcommunity.

authgroup TYPES[−s MODEL] GROUP [LEVEL [OID | −V VIEW [CONTEXT]]]
is a companion to theauthuserdirective, specifying access for a particular group (defined using
the group directive as usual). Bothauthuserand authgroupdefault to authenticated requests -
LEVEL can also be specified asnoauth or priv to allow unauthenticated requests, or require
encryption respectively. Both authuserandauthgroupdirectives also default to configuring access
for SNMPv3/USM requests - use the ’−s’ flag to specify an alternative security model (using the
same values as foraccessabove).

authaccess TYPES [−s MODEL] GROUP VIEW [LEVEL [CONTEXT]]
also configures the access for a particular group, specifying the name and type of view to apply.
The MODEL and LEVEL fields are interpreted in the same way as forauthgroup. If CONTEXT
is specified, access is configured within this SNMPv3 context (or contexts with this prefix if the
CONTEXT field ends with ’*’). Otherwise the default context ("") is used.

setaccess GROUP CONTEXT MODEL LEVEL PREFIX VIEW TYPES
is a direct equivalent to the originalaccessdirective, typically listing the view types asread or
read,write as appropriate.(or see ’snmptrapd.conf(5)’ for other possibilities). All other fields
have the same interpretation as withaccess.

SYSTEM INFORMATION
Most of the information reported by the Net-SNMP agent is retrieved from the underlying system, or
dynamically configured via SNMP SET requests (and retained from one run of the agent to the next).
However, certain MIB objects can be configured or controlled via thesnmpd.conf(5)file.

System Group
Most of the scalar objects in the ’system’ group can be configured in this way:

sysLocation STRING

sysContact STRING

sysName STRING
set the system location, system contact or system name (sysLocation.0 , sysContact.0
and sysName.0) for the agent respectively. Ordinarily these objects are writable via suitably
authorized SNMP SET requests.However, specifying one of these directives makes the corre-
sponding object read-only, and attempts to SET it will result in anotWritableerror response.

sysServices NUMBER
sets the value of thesysServices.0 object. For a host system, a good value is 72 (application
+ end-to-end layers). If this directive is not specified, then no value will be reported for the
sysServices.0 object.

V5.7.3 30Jun 2010 7

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

sysDescr STRING

sysObjectID OID
sets the system description or object ID for the agent. Although these MIB objects are not SNMP-
writable, these directives can be used by a network administrator to configure suitable values for
them.

Interfaces Group
interface NAME TYPE SPEED

can be used to provide appropriate type and speed settings for interfaces where the agent fails to
determine this information correctly. TYPE is a type value as given in the IANAifType−MIB, and
can be specified numerically or by name (assuming this MIB is loaded).

interface_fadeout TIMEOUT
specifies, for how long the agent keeps entries inifTable after appropriate interfaces have been
removed from system (typically various ppp, tap or tun interfaces). Timeout value is in seconds.
Default value is 300 (=5 minutes).

interface_replace_old yes
can be used to remove already existing entries inifTable when an interface with the same name
appears on the system. E.g. when ppp0 interface is removed, it is still listed in the table forinter-
face_fadeoutseconds. This option ensures, that the old ppp0 interface is removed even before the
interface_fadeouttimeour when new ppp0 (with differentifIndex) shows up.

Host Resources Group
This requires that the agent was built with support for thehostmodule (which is now included as part of the
default build configuration on the major supported platforms).

ignoreDisk STRING
controls which disk devices are scanned as part of populating thehrDiskStorageTable (and
hrDeviceTable). The HostRes implementation code includes a list of disk device patterns
appropriate for the current operating system, some of which may cause the agent to block when
trying to open the corresponding disk devices. Thismight lead to a timeout when walking these
tables, possibly resulting in inconsistent behaviour. This directive can be used to specify particular
devices (either individually or wildcarded) that should not be checked.

Note: Please consult the source (host/hr_disk.c) and check for theAdd_HR_Disk_entrycalls
relevant for a particular O/S to determine the list of devices that will be scanned.

The pattern can include one or more wildcard expressions. Seesnmpd.examples(5)for illustration
of the wildcard syntax.

skipNFSInHostResources true
controls whether NFS and NFS-like file systems should be omitted from the hrStorageTable (true
or 1) or not (false or 0, which is the default). If the Net-SNMP agent gets hung on NFS-mounted
filesystems, you can try setting this to ’1’.

storageUseNFS [1|2]
controls how NFS and NFS-like file systems should be reported in the hrStorageTable. as’Net-
work Disks’ (1) or ’Fixed Disks’ (2) Historically, the Net-SNMP agent has reported such file sys-
tems as ’Fixed Disks’, and this is still the default behaviour. Setting this directive to ’1’ reports
such file systems as ´Network Disks’, as required by the Host Resources MIB.

realStorageUnits
controlls how the agent reports hrStorageAllocationUnits, hrStorageSize and hrStorageUsed in
hrStorageTable. For big storage drives with small allocation units the agent re-calculates these
values so they all fit Integer32 and hrStorageAllocationUnits x hrStorageSize gives real size of the
storage.

Example:
Linux xfs 16TB filesystem with 4096 bytes large blocks will be reported ashrStorageAl-
locationUnits = 8192 and hrStorageSize = 2147483647, so 8192 x 2147483647 gives real

V5.7.3 30Jun 2010 8

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

size of the filesystem (=16 TB).

Setting this directive to ’1’ turns off this calculation and the agent reports real hrStorageAllocatio-
nUnits, but it might report wrong hrStorageSize for big drives because the value won’t fit into Inte-
ger32. In this case, hrStorageAllocationUnits x hrStorageSize won’t giv e real size of the storage.

Process Monitoring
ThehrSWRun group of the Host Resources MIB provides information about individual processes running
on the local system.The prTable of the UCD−SNMP−MIB complements this by reporting on selected
services (which may involve multiple processes). This requires that the agent was built with support for the
ucd−snmp/procmodule (which is included as part of the default build configuration).

proc NAME [MAX [MIN]]
monitors the number of processes called NAME (as reported by "/bin/ps -e") running on the local
system.

If the number of NAMEd processes is less than MIN or greater than MAX, then the corresponding
prErrorFlag instance will be set to 1, and a suitable description message reported via the
prErrMessage instance.

Note: This situation willnot automatically trigger a trap to report the problem - see the DisMan
Event MIB section later.

If neither MAX nor MIN are specified, they will default to infinity and 1 respectively ("at least
one"). If only MAX is specified, MIN will default to 0 ("no more than MAX").If MAX is 0 (and
MIN is not), this indicates infinity ("at least MIN"). If both MAX and MIN are 0, this indicates a
process that shouldnot be running.

procfix NAME PROG ARGS
registers a command that can be run to fix errors with the given process NAME. This will be
invoked when the correspondingprErrFix instance is set to 1.

Note: This command willnot be invoked automatically.

Theprocfixdirective must be specifiedafter the matchingproc directive, and cannot be used on its
own.

If no procdirectives are defined, then walking theprTable will fail (noSuchObject).

Disk Usage Monitoring
This requires that the agent was built with support for theucd−snmp/diskmodule (which is included as part
of the default build configuration).

disk PATH [MINSPACE | MINPERCENT%]
monitors the disk mounted at PATH for available disk space.

The minimum threshold can either be specified in kB (MINSPACE) or as a percentage of the total
disk (MINPERCENT% with a ’%’ character), defaulting to 100kB if neither are specified. If the
free disk space falls below this threshold, then the correspondingdskErrorFlag instance will
be set to 1, and a suitable description message reported via thedskErrorMsg instance.

Note: This situation willnot automatically trigger a trap to report the problem - see the DisMan
Event MIB section later.

includeAllDisks MINPERCENT%
configures monitoring of all disks found on the system, using the specified (percentage) threshold.
The threshold for individual disks can be adjusted using suitabledisk directives (which can come
either before or after theincludeAllDisksdirective).

Note: Whetherdisk directives appears before or afterincludeAllDisksmay affect the indexing
of thedskTable .

Only oneincludeAllDisksdirective should be specified - any subsequent copies will be ignored.

V5.7.3 30Jun 2010 9

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

The list of mounted disks will be determined when the agent starts using the setmntent(3) and
getmntent(3), or fopen(3) and getmntent(3),or setfsent(3)and getfsent(3)system calls. If none
of the above system calls are available then the root partition "/" (whichis assumedto exist on
any UNIX based system) will be monitored.Disks mounted after the agent has started will not be
monitored.

If neither any disk directives or includeAllDisksare defined, then walking thedskTable will fail (noSu-
chObject).

Disk I/O Monitoring
This requires that the agent was built with support for theucd−snmp/diskiomodule (which is not included
as part of the default build configuration).

By default, all block devices known to the operating system are included in the diskIOTable. On platforms
other than Linux, this module has no configuration directives.

On Linux systems, it is possible to exclude several classes of block devices from the diskIOTable in order
to avoid cluttering the table with useless zero statistics for pseudo-devices that often are not in use but are
configured by default to exist in most recent Linux distributions.

diskio_exclude_fd yes
Excludes all Linux floppy disk block devices, whose names start with "fd", e.g. "fd0"

diskio_exclude_loop yes
Excludes all Linux loopback block devices, whose names start with "loop", e.g. "loop0"

diskio_exclude_ram yes
Excludes all LInux ramdisk block devices, whose names start with "ram", e.g. "ram0"

System Load Monitoring
This requires that the agent was built with support for either theucd−snmp/loadavemodule or the
ucd−snmp/memorymodule respectively (both of which are included as part of the default build configura-
tion).

load MAX1 [MAX5 [MAX15]]
monitors the load average of the local system, specifying thresholds for the 1-minute, 5-minute
and 15-minute averages. Ifany of these loads exceed the associated maximum value, then the cor-
respondinglaErrorFlag instance will be set to 1, and a suitable description message reported
via thelaErrMessage instance.

Note: This situation willnot automatically trigger a trap to report the problem - see the DisMan
Event MIB section later.

If the MAX15 threshold is omitted, it will default to the MAX5 value. Ifboth MAX5 and MAX15
are omitted, they will default to the MAX1 value. If this directive is not specified, all three thresh-
olds will default to a value of DEFMAXLOADAVE.

If a threshold value of 0 is given, the agent will not report errors via the relevant laErrorFlag
or laErrMessage instances, regardless of the current load.

Unlike the proc and disk directives, walking the walking thelaTable will succeed (assuming the
ucd−snmp/loadavemodule was configured into the agent), even if the loaddirective is not present.

swap MIN
monitors the amount of swap space available on the local system.If this falls below the specified
threshold (MIN kB), then thememErrorSwapobject will be set to 1, and a suitable description
message reported viamemSwapErrorMsg.

Note: This situation willnot automatically trigger a trap to report the problem - see the DisMan
Event MIB section later.

If this directive is not specified, the default threshold is 16 MB.

V5.7.3 30Jun 2010 10

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

Log File Monitoring
This requires that the agent was built with support for either theucd−snmp/fileor ucd−snmp/logmatch
modules respectively (both of which are included as part of the default build configuration).

file FILE [MAXSIZE]
monitors the size of the specified file (in kB).If MAXSIZE is specified, and the size of the file
exceeds this threshold, then the correspondingfileErrorFlag instance will be set to 1, and a
suitable description message reported via thefileErrorMsg instance.

Note: This situation willnot automatically trigger a trap to report the problem - see the DisMan
Event MIB section later.

Note: A maximum of 20 files can be monitored.

Note: If nofile directives are defined, then walking thefileTable will fail (noSuchObject).

logmatch NAME FILE CYCLETIME REGEX
monitors the specified file for occurances of the specified pattern REGEX. The file position is
stored internally so the entire file is only read initially, every subsequent pass will only read the
new lines added to the file since the last read.

NAME name of the logmatch instance (will appear as logMatchName under logMatch/log-
MatchTable/logMatchEntry/logMatchName in the ucd−snmp MIB tree)

FILE absolute path to the logfile to be monitored. Note that this path can contain date/time
directives (like in the UNIX ’date’ command). See the manual page for ’strftime’ for the
various directives accepted.

CYCLETIME
time interval for each logfile read and internal variable update in seconds. Note: an
SNMPGET* operation will also trigger an immediate logfile read and variable update.

REGEX
the regular expression to be used. Note: DO NOT enclose the regular expression in quotes
ev en if there are spaces in the expression as the quotes will also become part of the pat-
tern to be matched!

Example:

logmatch apache−GETs /usr/local/apache/logs/access.log−%Y−%m−%d 60
GET.*HTTP.*

This logmatch instance is named ’apache−GETs’, uses ’GET.*HTTP.*’ as its regular
expression and it will monitor the file named (assuming today is May 6th 2009):
’/usr/local/apache/logs/access.log−2009−05−06’, tomorrow it will look for
’access.log−2009−05−07’. The logfile is read every 60 seconds.

Note: A maximum of 250 logmatch directives can be specified.

Note: If no logmatchdirectives are defined, then walking thelogMatchTable will fail (noSu-
chObject).

ACTIVE MONITORING
The usual behaviour of an SNMP agent is to wait for incoming SNMP requests and respond to them - if no
requests are received, an agent will typically not initiate any actions. This section describes various direc-
tives that can configuresnmpdto take a more active role.

Notification Handling
trapcommunity STRING

defines the default community string to be used when sending traps. Note that this directive must
be used prior to any community-based trap destination directives that need to use it.

trapsink HOST [COMMUNITY [PORT]]

V5.7.3 30Jun 2010 11

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

trap2sink HOST [COMMUNITY [PORT]]

informsink HOST [COMMUNITY [PORT]]
define the address of a notification receiver that should be sent SNMPv1 TRAPs, SNMPv2c
TRAP2s, or SNMPv2 INFORM notifications respectively. See the sectionLISTENING
ADDRESSES in the snmpd(8)manual page for more information about the format of listening
addresses. IfCOMMUNITY is not specified, the most recenttrapcommunitystring will be used.

If the transport address does not include an explicit port specification, then PORT will be used. If
this is not specified, the well known SNMP trap port (162) will be used.

Note: This mechanism is being deprecated, and the listening port should be specified via the
transport specification HOST instead.

If several sink directives are specified, multiple copies of each notification (in the appropriate for-
mats) will be generated.

Note: It is not normally appropriate to list two (or all three) sink directives with the same desti-
nation.

trapsess [SNMPCMD_ARGS] HOST
provides a more generic mechanism for defining notification destinations.SNMPCMD_ARGS
should be the command-line options required for an equivalent snmptrap(or snmpinform) com-
mand to send the desired notification.The option−Ci can be used (with−v2c or −v3) to generate
an INFORM notification rather than an unacknowledged TRAP.

This is the appropriate directive for defining SNMPv3 trap receivers. See
http://www.net−snmp.org/tutorial/tutorial−5/commands/snmptrap−v3.html for more information
about SNMPv3 notification behaviour.

authtrapenable {1|2}
determines whether to generate authentication failure traps (enabled(1)) or not (disabled(2)- the
default). Ordinarily the corresponding MIB object (snmpEnableAuthenTraps.0) is read-
write, but specifying this directive makes this object read-only, and attempts to set the value via
SET requests will result in anotWritableerror response.

v1trapaddress HOST
defines the agent address, which is inserted into SNMPv1 TRAPs. Arbitrary local IPv4 address is
chosen if this option is ommited. This option is useful mainly when the agent is visible from out-
side world by specific address only (e.g. because of network address translation or firewall).

DisMan Event MIB
The previous directives can be used to configure where traps should be sent, but are not concerned with
whento send such traps (or what traps should be generated).This is the domain of the Event MIB - devel-
oped by the Distributed Management (DisMan) working group of the IETF.

This requires that the agent was built with support for thedisman/eventmodule (which is now included as
part of the default build configuration for the most recent distribution).

Note: The behaviour of the latest implementation differs in some minor respects from the previ-
ous code - nothing too significant, but existing scripts may possibly need some minor
adjustments.

iquerySecName NAME

agentSecName NAME
specifies the default SNMPv3 username, to be used when making internal queries to retrieve any
necessary information (either for evaluating the monitored expression, or building a notification
payload). Theseinternal queries always use SNMPv3, even if normal querying of the agent is
done using SNMPv1 or SNMPv2c.

Note that this user must also be explicitly created (createUser) and given appropriate access rights
(e.g. rouser). This directive is purely concerned with definingwhich user should be used - not

V5.7.3 30Jun 2010 12

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

with actually setting this user up.

monitor [OPTIONS] NAME EXPRESSION
defines a MIB object to monitor. If the EXPRESSION condition holds (see below), then this will
trigger the corresponding event, and either send a notification or apply a SET assignment (or both).
Note that the event will only be triggered once, when the expression first matches. This monitor
entry will not fire again until the monitored condition first becomes false, and then matches again.
NAME is an administrative name for this expression, and is used for indexing themteTrig-
gerTable (and related tables).Note also that such monitors use an internal SNMPv3 request to
retrieve the values being monitored (even if normal agent queries typically use SNMPv1 or
SNMPv2c). Seethe iquerySecNametoken described above.

EXPRESSION
There are three types of monitor expression supported by the Event MIB - existence, boolean and
threshold tests.

OID | ! OID | != OID
defines anexistence(0)monitor test. A bare OID specifies apresent(0)test, which will
fire when (an instance of) the monitored OID is created. An expression of the form! OID
specifies anabsent(1)test, which will fire when the monitored OID is delected.An
expression of the form!= OID specifies achanged(2)test, which will fire whenever the
monitored value(s) change. Note that theremust be whitespace before the OID token.

OID OP VALUE
defines aboolean(1)monitor test.OP should be one of the defined comparison operators
(!=, ==, <, <=, >, >=) and VALUE should be an integer value to compare against. Note
that theremust be whitespace around the OP token. A comparison such asOID !=0
will not be handled correctly.

OID MIN MAX [DMIN DMAX]
defines athreshold(2)monitor test. MIN and MAX are integer values, specifying lower
and upper thresholds. If the value of the monitored OID falls below the lower threshold
(MIN) or rises above the upper threshold (MAX), then the monitor entry will trigger the
corresponding event.

Note that the rising threshold event will only be re-armed when the monitored value falls
below the lower threshold (MIN). Similarly, the falling threshold event will be re-armed
by the upper threshold (MAX).

The optional parameters DMIN and DMAX configure a pair of similar threshold tests,
but working with the delta differences between successive sample values.

OPTIONS
There are various options to control the behaviour of the monitored expression. Theseinclude:

−D indicates that the expression should be evaluated using delta differences between sample
values (rather than the values themselves).

−d OID

−di OID
specifies a discontinuity marker for validating delta differences. A−di object instance
will be used exactly as given. A −d object will have the instance subidentifiers from the
corresponding (wildcarded) expression object appended. If the−I flag is specified, then
there is no difference between these two options.

This option also implies−D .

−e EVENT
specifies the event to be invoked when this monitor entry is triggered. If this option is not
given, the monitor entry will generate one of the standard notifications defined in the
DISMAN−EVENT−MIB.

V5.7.3 30Jun 2010 13

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

−I indicates that the monitored expression should be applied to the specified OID as a single
instance. Bydefault, the OID will be treated as a wildcarded object, and the monitor
expanded to cover all matching instances.

−i OID

−o OID define additional varbinds to be added to the notification payload when this monitor trig-
ger fires.For a wildcarded expression, the suffix of the matched instance will be added to
any OIDs specified using−o, while OIDs specified using−i will be treated as exact
instances. Ifthe −I flag is specified, then there is no difference between these two
options.

SeestrictDismanfor details of the ordering of notification payloads.

−r FREQUENCY
monitors the given expression every FREQUENCY, where FREQUENCY is in seconds
or optionally suffixed by one of s (for seconds), m (for minutes), h (for hours), d (for
days), or w (for weeks).By default, the expression will be evaluated every 600s (10 min-
utes).

−S indicates that the monitor expression shouldnot be evaluated when the agent first starts
up. Thefirst evaluation will be done once the first repeat interval has expired.

−s indicates that the monitor expressionshouldbe evaluated when the agent first starts up.
This is the default behaviour.

Note: Notifications triggered by this initial evaluation will be sentbeforethe cold-
Start trap.

−u SECNAME
specifies a security name to use for scanning the local host, instead of the default iquery-
SecName. Once again, this user must be explicitly created and given suitable access
rights.

notificationEvent ENAME NOTIFICATION [−m] [−i OID | −o OID]*
defines a notification event named ENAME. This can be triggered from a given monitorentry by
specifying the option−e ENAME (see above). NOTIFICATION should be the OID of the NOTI-
FICATION−TYPE definition for the notification to be generated.

If the −m option is given, the notification payload will include the standard varbinds as specified in
the OBJECTS clause of the notification MIB definition. This option must comeafter the NOTIFI-
CATION OID (and the relevant MIB file must be available and loaded by the agent).Otherwise,
these varbinds must be listed explicitly (either here or in the correspondingmonitordirective).

The −i OID and −o OID options specify additional varbinds to be appended to the notification
payload, after the standard list. If the monitor entry that triggered this event involved a wildcarded
expression, the suffix of the matched instance will be added to any OIDs specified using−o, while
OIDs specified using−i will be treated as exact instances. If the−I flag was specified to themoni-
tor directive, then there is no difference between these two options.

setEvent ENAME [−I] OID = VALUE
defines a set event named ENAME, assigning the (integer) VALUE to the specified OID. This can
be triggered from a given monitorentry by specifying the option−e ENAME(see above).

If the monitor entry that triggered this event involved a wildcarded expression, the suffix of the
matched instance will normally be added to the OID. If the−I flag was specified to either of the
monitoror setEventdirectives, the specified OID will be regarded as an exact single instance.

strictDisman yes
The definition of SNMP notifications states that the varbinds defined in the OBJECT clause should
come first (in the order specified), followed by any "extra" varbinds that the notification generator
feels might be useful.The most natural approach would be to associate these mandatory varbinds
with the notificationEvententry, and append any varbinds associated with the monitor entry that

V5.7.3 30Jun 2010 14

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

triggered the notification to the end of this list.This is the default behaviour of the Net-SNMP
Event MIB implementation.

Unfortunately, the DisMan Event MIB specifications actually state that the trigger-related varbinds
should comefirst , followed by the event-related ones. This directive can be used to restore this
strictly-correct (but inappropriate) behaviour.

Note: Strict DisMan ordering may result in generating invalid notifications payload lists if the
notificationEvent −nflag is used together withmonitor −o(or −i) varbind options.

If no monitorentries specify payload varbinds, then the setting of this directive is irrelevant.

linkUpDownNotifications yes
will configure the Event MIB tables to monitor theifTable for network interfaces being taken
up or down, and triggering alinkUp or linkDownnotification as appropriate.

This is exactly equivalent to the configuration:

notificationEvent linkUpTrap linkUp ifIndex ifAdminStatus ifOperStatus
notificationEvent linkDownTrap linkDown ifIndex ifAdminStatus ifOperStatus

monitor −r60 −e linkUpTrap "GeneratelinkUp" ifOperStatus != 2
monitor −r60 −e linkDownTrap "Generate linkDown" ifOperStatus == 2

defaultMonitors yes
will configure the Event MIB tables to monitor the variousUCD−SNMP−MIBtables for problems
(as indicated by the appropriatexxErrFlag column objects).

This is exactly equivalent to the configuration:

monitor −oprNames −o prErrMessage "process table" prErrorFlag != 0
monitor −omemErrorName −o memSwapErrorMsg "memory" memSwapError != 0
monitor −oextNames −o extOutput "extTable" extResult != 0
monitor −odskPath −o dskErrorMsg "dskTable" dskErrorFlag != 0
monitor −olaNames −o laErrMessage "laTable" laErrorFlag != 0
monitor −ofileName −o fileErrorMsg "fileTable" fileErrorFlag != 0

In both these latter cases, the snmpd.conf must also contain aiquerySecNamedirective, together with a cor-
respondingcreateUserentry and suitable access control configuration.

DisMan Schedule MIB
The DisMan working group also produced a mechanism for scheduling particular actions (a specified SET
assignment) at given times. Thisrequires that the agent was built with support for thedisman/schedule
module (which is included as part of the default build configuration for the most recent distribution).

There are three ways of specifying the scheduled action:

repeat FREQUENCY OID = VALUE
configures a SET assignment of the (integer) VALUE to the MIB instance OID, to be run every
FREQUENCY seconds, where FREQUENCY is in seconds or optionally suffixed by one of s (for
seconds), m (for minutes), h (for hours), d (for days), or w (for weeks).

cron MINUTE HOUR DAY MONTH WEEKDAY OID = VALUE
configures a SET assignment of the (integer) VALUE to the MIB instance OID, to be run at the
times specified by the fields MINUTE to WEEKDAY. These follow the same pattern as the equiv-
alentcrontab(5)fields.

Note: These fields should be specified as a (comma-separated) list of numeric values. Named
values for the MONTH and WEEKDAY fields are not supported, and neither are value
ranges. A wildcard match can be specified as ’*’.

The DAY field can also accept negative values, to indicate days counting backwards from the end
of the month.

V5.7.3 30Jun 2010 15

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

at MINUTE HOUR DAY MONTH WEEKDAY OID = VALUE
configures a one-shot SET assignment, to be run at the first matching time as specified by the
fields MINUTE to WEEKDAY. The interpretation of these fields is exactly the same as for the
crondirective.

Data Delivery via Notfiications
Note: this functionality is only available if thedeliver/deliverByNotifymib module was complied in to the
agent

In some situations it may be advantageous to deliver SNMP data over SNMP Notifications (TRAPs and
INFORMs) rather than the typical process of having the manager issue requests for the data (via GETs and
GETNEXTs). Reasonsfor doing this are numerous, but frequently corner cases. The most common reason
for wanting this behaviour might be to monitor devices that reside behind NATs or Firewalls that prevent
incoming SNMP traffic.

It should be noted that although most management software is capable of logging notifications, very little
(if any) management software will updated their "knowledge database" based on the contents of SNMP
notifications. IE,it won’t (for example) update the interface traffic counter history that is used to produce
graphs. Mostlarger network management packages have a separate database for storing data received via
SNMP requests (GETs and GETNEXTs) vs those received from notifications. Researching the capabilities
of your management station software is required before assuming this functionality will solve your data
delivery requirements.

Notifications generated via this mechanism will be sent to the standard set of configured notification targets.
See the "Notification Handling" section of this document for further information.

deliverByNotify [−p] [−m] [−s MAXSIZE] FREQUENCY OID
This directive tells the SNMP agent to self-walk theOID, collect all the data and send it out every
FREQUENCYseconds, where FREQUENCY is in seconds or optionally suffixed by one of s (for
seconds), m (for minutes), h (for hours), d (for days), or w (for weeks). By default scalars are
included in the notification that specify the how often the notification will be sent (unless the−p
option is specified) and which message number of how many messages a particular notification is
(unless−m is specified).To break the notifications into manageable packet sizes, use the−s flag
to specify the approximate maximum number of bytes that a notification message should be lim-
ited to. If more thanMAXSIZEof bytes is needed then multiple notifications will be sent to deliver
the data. Note that the calculations for ensuring the maximum size is met are approximations and
thus it can be absolutely guaranteed they’ ll be under that size, so leave a padding buffer if it is crit-
ical that you avoid fragmentation.A value of −1 indicates force everything into a single message
no matter how big it is.

Example usage: the following will deliver the contents of the ifTable once an hour and the contents
of the system group once every 2 hours:

deliverByNotify 3600 ifTable
deliverByNotify 7200 system

deliverByNotifyMaxPacketSize SIZEINBYTES
Sets the default notification size limit (see the−s flag above).

deliverByNotifyOid OID

deliverByNotifyFrequencyOid OID

deliverByNotifyMessageNumberOid OID

deliverByNotifyMaxMessageNumberOid OID
These set the data OID that the notification will be sent under, the scalar OID, the message number
OID, and the maximum message number OID. These default to objects in the
NET−SNMP−PERIODIC−NOTIFY−MIB.

V5.7.3 30Jun 2010 16

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

EXTENDING AGENT FUNCTIONALITY
One of the first distinguishing features of the original UCD suite was the ability to extend the functionality
of the agent - not just by recompiling with code for new MIB modules, but also by configuring the running
agent to report additional information. There are a number of techniques to support this, including:

• running external commands (exec, extend, pass)

• loading new code dynamically (embedded perl,dlmod)

• communicating with other agents (proxy, SMUX, AgentX)

Arbitrary Extension Commands
The earliest extension mechanism was the ability to run arbitrary commands or shell scripts. Such com-
mands do not need to be aware of SNMP operations, or conform to any particular behaviour - the MIB
structures are designed to accommodate any form of command output.Use of this mechanism requires that
the agent was built with support for theucd−snmp/extensibleand/oragent/extendmodules (which are both
included as part of the default build configuration).

exec [MIBOID] NAME PROG ARGS

sh [MIBOID] NAME PROG ARGS
invoke the named PROG with arguments of ARGS. By default the exit status and first line of out-
put from the command will be reported via theextTable , discarding any additional output.

Note: Entries in this table appear in the order they are read from the configuration file.This
means that adding new exec (or sh) directives and restarting the agent, may affect the
indexing of other entries.

The PROG argument forexec directives must be a full path to a real binary, as it is executed via
the exec() system call.To inv oke a shell script, use theshdirective instead.

If MIBOID is specified, then the results will be rooted at this point in the OID tree, returning the
exit statement as MIBOID.100.0 and the entire command output in a pseudo-table based at MIB-
NUM.101 - with one ’row’ for each line of output.

Note: The layout of this "relocatable" form ofexec (or sh) output does not strictly form a valid
MIB structure. This mechanism is being deprecated - please see theextend directive
(described below) instead.

The agent does not cache the exit status or output of the executed program.

execfix NAME PROG ARGS
registers a command that can be invoked on demand - typically to respond to or fix errors with the
correspondingexec or sh entry. When theextErrFix instance for a given NAMEd entry is set to
the integer value of 1, this command will be called.

Note: This directive can only be used in combination with a correspondingexecor shdirective,
which must be defined first. Attempting to define an unaccompaniedexecfix directive
will fail.

exec andsh extensions can only be configured via the snmpd.conf file.They cannot be set up via SNMP
SET requests.

extend [MIBOID] NAME PROG ARGS
works in a similar manner to theexec directive, but with a number of improvements. TheMIB
tables (nsExtendConfigTableetc) are indexed by the NAME token, so are unaffected by the order
in which entries are read from the configuration files. There aretwo result tables - one (nsExtend-
Output1Table) containing the exit status, the first line and full output (as a single string) for each
extendentry, and the other (nsExtendOutput2Table) containing the complete output as a series of
separate lines.

If MIBOID is specified, then the configuration and result tables will be rooted at this point in the
OID tree, but are otherwise structured in exactly the same way. This means that several separate
extenddirectives can specify the same MIBOID root, without conflicting.

V5.7.3 30Jun 2010 17

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

The exit status and output is cached for each entry individually, and can be cleared (and the
caching behaviour configured) using thensCacheTable .

extendfix NAME PROG ARGS
registers a command that can be invoked on demand, by setting the appropriatensExtendRunType
instance to the valuerun-command(3). Unlike the equivalent execfix, this directive does not need
to be paired with a correspondingextendentry, and can appear on its own.

Both extend and extendfix directives can be configured dynamically, using SNMP SET requests to the
NET−SNMP−EXTEND−MIB.

MIB-Specific Extension Commands
The first group of extension directives inv oke arbitrary commands, and rely on the MIB structure (and man-
agement applications) having the flexibility to accommodate and interpret the output. This is a convenient
way to make information available quickly and simply, but is of no use when implementing specific MIB
objects, where the extension must conform to the structure of the MIB (rather than vice versa). The
remaining extension mechanisms are all concerned with such MIB-specific situations - starting with "pass-
through" scripts. Use of this mechanism requires that the agent was built with support for the
ucd−snmp/passanducd−snmp/pass_persistmodules (which are both included as part of the default build
configuration).

pass [−p priority] MIBOID PROG
will pass control of the subtree rooted at MIBOID to the specified PROG command. GET and
GETNEXT requests for OIDs within this tree will trigger this command, called as:

PROG −g OID

PROG −n OID

respectively, where OID is the requested OID. The PROG command should return the response
varbind as three separate lines printed to stdout - the first line should be the OID of the returned
value, the second should be its TYPE (one of the text stringsinteger, gauge, counter, timeticks,
ipaddress, objectid,or string), and the third should be the value itself.

If the command cannot return an appropriate varbind - e.g the specified OID did not correspond to
a valid instance for a GET request, or there were no following instances for a GETNEXT - then it
should exit without producing any output. Thiswill result in an SNMPnoSuchNameerror, or a
noSuchInstanceexception.

Note: The SMIv2 typecounter64 and SNMPv2noSuchObjectexception are not sup-
ported.

A SET request will result in the command being called as:

PROG −s OID TYPE VALUE

where TYPE is one of the tokens listed above, indicating the type of the value passed as the third
parameter.

If the assignment is successful, the PROG command should exit without producing any output.
Errors should be indicated by writing one of the stringsnot-writable, or wrong-type to stdout,
and the agent will generate the appropriate error response.

Note: The other SNMPv2 errors are not supported.

In either case, the command should exit once it has finished processing.Each request (and each
varbind within a single request) will trigger a separate invocation of the command.

The default registration priority is 127. This can be changed by supplying the optional −p flag,
with lower priority registrations being used in preference to higher priority values.

pass_persist [−p priority] MIBOID PROG
will also pass control of the subtree rooted at MIBOID to the specified PROG command.However
this command will continue to run after the initial request has been answered, so subsequent
requests can be processed without the startup overheads.

V5.7.3 30Jun 2010 18

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

Upon initialization, PROG will be passed the string "PING\n" on stdin, and should respond by
printing "PONG\n" to stdout.

For GET and GETNEXT requests, PROG will be passed two lines on stdin, the command (get or
getnext) and the requested OID. It should respond by printing three lines to stdout - the OID for
the result varbind, the TYPE and the VALUE itself - exactly as for thepassdirective above. If the
command cannot return an appropriate varbind, it should print print "NONE\n" to stdout (but con-
tinue running).

For SET requests, PROG will be passed three lines on stdin, the command (set) and the requested
OID, followed by the type and value (both on the same line). If the assignment is successful, the
command should print "DONE\n" to stdout. Errors should be indicated by writing one of the
stringsnot−writable, wrong−type, wrong−length, wrong−value or inconsistent−valueto std-
out, and the agent will generate the appropriate error response. In either case, the command
should continue running.

The registration priority can be changed using the optional −p flag, just as for thepassdirective.

passandpass_persistextensions can only be configured via the snmpd.conf file.They cannot be set up via
SNMP SET requests.

Embedded Perl Support
Programs using the previous extension mechanisms can be written in any convenient programming lan-
guage - including perl, which is a common choice for pass-through extensions in particular. Howev er the
Net-SNMP agent also includes support for embedded perl technology (similar tomod_perlfor the Apache
web server). Thisallows the agent to interpret perl scripts directly, thus avoiding the overhead of spawning
processes and initializing the perl system when a request is received.

Use of this mechanism requires that the agent was built with support for the embedded perl mechanism,
which is not part of the default build environment. It must be explicitly included by specifying the
’−−enable−embedded−perl’ option to the configure script when the package is first built.

If enabled, the following directives will be recognised:

disablePerl true
will turn off embedded perl support entirely (e.g. if there are problems with the perl installation).

perlInitFile FILE
loads the specified initialisation file (if present) immediately before the firstperl directive is
parsed. If not explicitly specified, the agent will look for the default initialisation file
/code/git/mgt/target/install/share/snmp/snmp_perl.pl.

The default initialisation file creates an instance of aNetSNMP::agent object - a variable
$agent which can be used to register perl-based MIB handler routines.

perl EXPRESSION
evaluates the given expression. Thiswould typically register a handler routine to be called when a
section of the OID tree was requested:

perl use Data::Dumper;
perl sub myroutine { p rint "got called: ",Dumper(@_),"\n"; }
perl $agent−>register(’mylink’, ’.1.3.6.1.8765’, \&myroutine);

This expression could also source an external file:
perl ’do /path/to/file.pl’;

or perform any other perl-based processing that might be required.

Dynamically Loadable Modules
Most of the MIBs supported by the Net-SNMP agent are implemented as C code modules, which were
compiled and linked into the agent libraries when the suite was first built. Suchimplementation modules
can also be compiled independently and loaded into the running agent once it has started.Use of this
mechanism requires that the agent was built with support for theucd−snmp/dlmodmodule (which is
included as part of the default build configuration).

V5.7.3 30Jun 2010 19

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

dlmod NAME PATH
will load the shared object module from the file PATH (an absolute filename), and call the initiali-
sation routineinit_NAME.

Note: If the specified PATH is not a fully qualified filename, it will be interpreted relative to
/code/git/mgt/target/install/lib/snmp/dlmod, and.so will be appended to the filename.

This functionality can also be configured using SNMP SET requests to the UCD−DLMOD−MIB.

Proxy Support
Another mechanism for extending the functionality of the agent is to pass selected requests (or selected
varbinds) to another SNMP agent, which can be running on the same host (presumably listening on a differ-
ent port), or on a remote system.This can be viewed either as the main agent delegating requests to the
remote one, or acting as a proxy for it. Use of this mechanism requires that the agent was built with sup-
port for theucd−snmp/proxymodule (which is included as part of the default build configuration).

proxy [−Cn CONTEXTNAME] [SNMPCMD_ARGS] HOST OID [REMOTEOID]
will pass any incoming requests under OID to the agent listening on the port specified by the trans-
port address HOST. See the sectionLISTENING ADDRESSES in the snmpd(8)manual page
for more information about the format of listening addresses.

Note: To proxy the entire MIB tree, use the OID .1.3 (not the top-level .1)

TheSNMPCMD_ARGSshould provide sufficient version and administrative information to generate a valid
SNMP request (seesnmpcmd(1)).

Note: The proxied request willnotuse the administrative settings from the original request.

If a CONTEXTNAME is specified, this will register the proxy delegation within the named context in the
local agent. Defining multipleproxy directives for the same OID but different contexts can be used to
query several remote agents through a single proxy, by specifying the appropriate SNMPv3 context in the
incoming request (or using suitable configured community strings - see thecom2secdirective).

Specifying the REMOID parameter will map the local MIB tree rooted at OID to an equivalent subtree
rooted at REMOID on the remote agent.

SMUX Sub-Agents
The Net-SNMP agent supports the SMUX protocol (RFC 1227) to communicate with SMUX-based sub-
agents (such asgated, zebraor quagga). Useof this mechanism requires that the agent was built with sup-
port for thesmuxmodule, which is not part of the default build environment, and must be explicitly
included by specifying the ’−−with−mib−modules=smux’ option to the configure script when the package
is first built.

Note: This extension protocol has been officially deprecated in favour of AgentX (see below).

smuxpeer OID PASS
will register a subtree for SMUX-based processing, to be authenticated using the password PASS.
If a subagent (or "peer") connects to the agent and registers this subtree then requests for OIDs
within it will be passed to that SMUX subagent for processing.

A suitable entry for an OSPF routing daemon (such asgated, zebraor quagga) might be some-
thing like

smuxpeer .1.3.6.1.2.1.14 ospf_pass

smuxsocket <IPv4-address>
defines the IPv4 address for SMUX peers to communicate with the Net-SNMP agent.The default
is to listen on all IPv4 interfaces ("0.0.0.0"), unless the package has been configured with
"−−enable−local−smux" at build time, which causes it to only listen on 127.0.0.1 by default.
SMUX uses the well-known TCP port 199.

Note the Net-SNMP agent will only operate as a SMUXmasteragent. It does not support acting in a
SMUX subagent role.

V5.7.3 30Jun 2010 20

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

AgentX Sub-Agents
The Net-SNMP agent supports the AgentX protocol (RFC 2741) in both master and subagent roles.Use of
this mechanism requires that the agent was built with support for theagentx module (which is included as
part of the default build configuration), and also that this support is explicitly enabled (e.g. via the
snmpd.conffile).

There are two directives specifically relevant to running as an AgentX master agent:

master agentx
will enable the AgentX functionality and cause the agent to start listening for incoming AgentX
registrations. Thiscan also be activated by specifying the ’−x’ command-line option (to specify
an alternative listening socket).

agentXPerms SOCKPERMS [DIRPERMS [USER|UID [GROUP|GID]]]
Defines the permissions and ownership of the AgentX Unix Domain socket, and the parent direc-
tories of this socket. SOCKPERMSand DIRPERMS must be octal digits (seechmod(1)). By
default this socket will only be accessible to subagents which have the same userid as the agent.

There is one directive specifically relevant to running as an AgentX sub-agent:

agentXPingInterval NUM
will make the subagent try and reconnect every NUM seconds to the master if it ever becomes (or
starts) disconnected.

The remaining directives are relevant to both AgentX master and sub-agents:

agentXSocket [<transport-specifier>:]<transport-address>[,...]
defines the address the master agent listens at, or the subagent should connect to. The default is
the Unix Domain socket "/var/agentx/master" . Another common alternative is
tcp:localhost:705 . See the sectionLISTENING ADDRESSES in the snmpd(8)manual
page for more information about the format of addresses.

Note: Specifying an AgentX socket doesnot automatically enable AgentX functionality (unlike
the ’−x’ command-line option).

agentXTimeout NUM
defines the timeout period (NUM seconds) for an AgentX request.Default is 1 second.NUM
also be specified with a suffix of one of s (for seconds), m (for minutes), h (for hours), d (for days),
or w (for weeks).

agentXRetries NUM
defines the number of retries for an AgentX request. Default is 5 retries.

net-snmp ships with both C and Perl APIs to develop your own AgentX subagent.

OTHER CONFIGURATION
override [−rw] OID TYPE VALUE

This directive allows you to override a particular OID with a different value (and possibly a differ-
ent type of value). The−rw flag will allow snmp SETs to modify it’s value as well. (note that if
you’re overriding original functionality, that functionality will be entirely lost.Thus SETS will do
nothing more than modify the internal overridden value and will not perform any of the original
functionality intended to be provided by the MIB object. It’s an emulation only.) An example:

override sysDescr.0 octet_str "my own sysDescr"

That line will set the sysDescr.0 value to "my own sysDescr" as well as make it modifiable with
SNMP SETs as well (which is actually illegal according to the MIB specifications).

Note that care must be taken when using this.For example, if you try to override a property of the
3rd interface in the ifTable with a new value and later the numbering within the ifTable changes
it’s index ordering you’ll end up with problems and your modified value won’t appear in the right
place in the table.

V5.7.3 30Jun 2010 21

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

Valid TYPEs are: integer, uinteger, octet_str, object_id, counter, null (for gauges, use "uinteger";
for bit strings, use "octet_str").Note that setting an object to "null" effectively delete’s it as being
accessible. NoVALUE needs to be given if the object type is null.

More types should be available in the future.

If you’re trying to figure out aspects of the various mib modules (possibly some that you’ve added your-
self), the following may help you spit out some useful debugging information.First off, please read the
snmpd manual page on the −D flag. Then the following configuration snmpd.conf token, combined with
the −D flag, can produce useful output:

injectHandler HANDLER modulename [beforeThis]
This will insert new handlers into the section of the mib tree referenced by "modulename".If
"beforeThis" is specified then the module will be injected before the named module. This is useful
for getting a handler into the exact right position in the chain.

The types of handlers available for insertion are:

stash_cache
Caches information returned from the lower level. This greatly help the performance of
the agent, at the cost of caching the data such that its no longer "live" for 30 seconds (in
this future, this will be configurable). Note that this means snmpd will use more memory
as well while the information is cached.Currently this only works for handlers registered
using the table_iterator support, which is only a few mib tables. To use it, you need to
make sure to install it before the table_iterator point in the chain, so to do this:

injectHandler stash_cache NAME table_iterator

If you want a table to play with, try walking thensModuleTable with and without this
injected.

debug Prints out lots of debugging information when the −Dhelper:debug flag is passed to the
snmpd application.

read_only
Forces turning off write support for the given module.

serialize
If a module is failing to handle multiple requests properly (using the new 5.0 module
API), this will force the module to only receive one request at a time.

bulk_to_next
If a module registers to handle getbulk support, but for some reason is failing to imple-
ment it properly, this module will convert all getbulk requests to getnext requests before
the final module receives it.

dontLogTCPWrappersConnects
If the snmpd was compiled with TCP Wrapper support, it logs every connection made to the
agent. This setting disables the log messages for accepted connections. Denied connections will
still be logged.

Figuring out module names
To figure out which modules you can inject things into, runsnmpwalk on thensModuleTable
which will give a list of all named modules registered within the agent.

Internal Data tables

V5.7.3 30Jun 2010 22

SNMPD.CONF(5) Net-SNMP SNMPD.CONF(5)

table NAME

add_row NAME INDEX(ES) VALUE(S)

NOTES
o The Net-SNMP agent can be instructed to re-read the various configuration files, either via an

snmpset assignment of integer(1) toUCD−SNMP−MIB::versionUpdateConfig.0
(.1.3.6.1.4.1.2021.100.11.0), or by sending akill −HUP signal to the agent process.

o All directives listed with a value of "yes" actually accept a range of boolean values. Thesewill
accept any of 1, yesor true to enable the corresponding behaviour, or any of 0, no or falseto dis-
able it. The default in each case is for the feature to be turned off, so these directives are typically
only used to enable the appropriate behaviour.

EXAMPLE CONFIGURATION FILE
See the EXAMPLE.CONF file in the top level source directory for a more detailed example of how the
above information is used in real examples.

FILES
/code/git/mgt/target/install/etc/snmp/snmpd.conf

SEE ALSO
snmpconf(1), snmpusm(1), snmp.conf(5), snmp_config(5), snmpd(8), EXAMPLE.conf, netsnmp_con-
fig_api(3).

V5.7.3 30Jun 2010 23

